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Sorbonne universités, Université de Technologie de Compiègne, CNRS UMR 7253 Heudiasyc, France

Abstract— Localization is one of the main challenges to be
addressed to develop autonomous vehicles able to perform
complex maneuvers on roads opened to public traffic. Having an
accurate dead-reckoning system is an essential step to reach this
objective. This paper presents a dead-reckoning model for car-
like vehicles that performs the data fusion of complementary
and redundant sensors: wheel encoders, yaw rate gyro and
steering wheel measurements. In order to get an accurate dead-
reckoning system with a drift reduced to the minimum, the
parameters have to be well calibrated and the procedure has to
be simple and efficient. We present a method able to accurately
calibrate the parameters without knowing the ground truth by
using a Rauch-Tung-Striebel smoothing scheme which enables
to obtain state estimates as close to the ground truth as possible.
The smoothed estimates are then used within a optimization
process to calibrate the model parameters. The method has
been tested using data recorded from an experimental vehicle
on public roads. The results show a significant diminution of the
dead-reckoning drift compared to a commonly used calibration
method. We evaluate finally the average distance a vehicle can
navigate without exteroceptive sensors by using the proposed
four-wheeled dead reckoning system.

I. INTRODUCTION

Mobile robots can be qualified as autonomous if they are
able to navigate in uncontrolled environments without the
need for guidance devices. Alternatively, mobile robots can
rely on guidance devices that allow them to travel a pre-
defined navigation route in relatively controlled space. They
are referred to as Autonomous Guided Vehicle (AGV) in this
case. The same distinction can be made for autonomous cars.
In order to develop truly “autonomous” vehicles, localization
is an essential element for navigation, in particular, for
planning and control. For that purpose, we believe that a
strong dead-reckoning (DR) ability is mandatory. Indeed,
while localization methods using exteroceptive sensors exist
[5], [6], [14], they often only provide low-frequency and
intermittent localization.

Many odometry methods exist in the literature. Methods
using the vehicle on-board sensors have been used for many
years[2]. These methods generally offer high frequency posi-
tioning but are limited by the accuracy of the sensors. More
recently, methods using cameras [11], [7] and LiDAR [16]
have been developed by estimating the relative displacement
between two images or laser scans. However, since these
methods use exteroceptive data, their accuracy depends on
the quality of the observed environment. Thus, unstructured
environments are challenging to such methods.

Localization using DR systems is subject to an unavoid-
able drift. This drift is firstly caused by the random-walk phe-
nomenon that emerges from the integration of proprioceptive
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Fig. 1. Geometry of the experimental vehicle.

measurements over time and, secondly, by inaccuracies in the
modeling of both the displacement of the mobile frame and
the sensors observation models. The proprioceptive measure-
ment errors are all the more significant that DR sensors are
affected by systematic errors (biases/scaling factors),which
increase the drift of the localization system.

In this work, we aim to obtain a DR model as accurate
as possible using sensors readily available in production
vehicles. To reach this objective, we first develop a model
that uses all the different sensors knowing that they provide
redundant information which is crucial to get an accurate and
robust system able to handle wheel slippages or irregularities
on the road surface. We then present a method to calibrate
the most sensitive parameters in order to compensate the
systematic errors of the sensors and observation models. For
this, we have developed a calibration process which utilizes
a Rauch-Tung-Striebel smoothing method to provide a better
estimation of the vehicle state and then uses these states to
calibrate the parameters of the system.

This paper is structured as follows: Section II details
the DR model. The smoothing method is then explained
in Section III followed in Section IV by the calibration
method. Finally Section V presents the results obtained on
experimental data.



II. ODOMETRIC MODEL

A. Evolution model

In this work, we assume that the vehicle drives in a
2D environment. We therefore try to estimate at each step
its position [xk, yk] (point M in Fig. 1) and its yaw ψk.
Additionally, the observations used in the fusion process
depend on the vehicle speed vk and yaw rate ψ̇k. Therefore,
the state xk considered in the fusion process is 5-dimensional
and is defined as follows:

xk =
[
xk yk ψk vk ψ̇k

]T
. (1)

The state transition is defined with a non-linear function:

xk+1 = f (xk) +αk, (2)

where the αk is a zero mean Gaussian noise and f the
transition function is derived using Euler integration over
a time Te as follows:

xk+1 = xk + Te · vk · cos
(
ψk + Teψ̇k

2

)
+αxyk

yk+1 = yk + Te · vk · sin
(
ψk + Teψ̇k

2

)
+αxyk

ψk+1 = ψk + Te · ψ̇k +αψk
vk+1 = vk +αvk
ψ̇k+1 = ψ̇k +αψ̇k

. (3)

It can be noted that instead of considering a constant yaw
angle ψk to compute the next position, a circular motion
between ψk and ψk+1 is considered. This can be approxi-
mated for small angle variations by using the angle ψk+Teψ̇k

2
instead of ψk.

As there is no prior information on the variation of the
vehicle speed and yaw rate, the model considers them as
constant and the noise model is chosen to reflect that lack of
information. The selection of standard deviation is detailed
in Section V.

B. Observation model

In order to reduce the natural drift that dead-reckoning
processes are known for, the fusion of multiple sensors is
performed. The measurements from a gyro, a speed sensor,
four-wheel encoders as well as the steering wheel angle
are used in the estimation process. These sensors operate at
different frequencies (50 Hz for the wheel encoders, 100 Hz
for the rest) and are not synchronized. When these sensors
are used in the fusion scheme, the state estimate is updated
when the wheel encoder measurements are received. The
most recent measurements of the other sensors are used in the
fusion (half of the measurements from the other sensors are
therefore discarded). We have observed experimentally that
given the high frequency of the sensors and the relatively
slow dynamic of the vehicle, interpolating the measurements
does not lead to a significant accuracy improvement and is
therefore not performed.

1) Gyro measurements: Most vehicles are equipped with
a gyro that is used by the Electronic Stability Program (ESP)
to prevent skidding. Automotive grade gyros are known
to be affected by a significant bias denoted here bgyro.
Although this bias does not vary much during a normal
driving sequence, it changes depending on environmental
factors and therefore needs to be re-estimated at every vehicle
start-up. Additionally, a zero-mean Gaussian noise βωk affects
the measurements. Its observation model can thus be written
as

ωgyrok = ψ̇k + bgyro + βωk , (4)

where βωk is a zero-mean Gaussian noise. In the rest of this
section, a variable β∗k will refer to a zero-mean Gaussian
noise.

In this model, we suppose that the gyro internally com-
pensates the effect of the temperature.

2) Speed measurements: A speed measurement vcank is
available through the CAN bus of the vehicle. This mea-
surement is most likely computed using the wheel encoders.
It is however available at a higher frequency than the
encoder measurements and does not seem correlated to those.
Therefore, it can be used in the estimation. It is affected by a
scaling factor av that is particularly relevant at high speeds.
The observation model is described as follows:

vcank = av · vk + βvk . (5)

3) Wheel encoders: The wheel encoders provide the num-
ber of ticks ∆XX

1 that occurred during a time T (20 ms
in our case). These measurements can be linked to the
state variables using the Ackermann steering geometry and
parameters such as the number of ticks per turn Nwheel, the
wheel radii ρXX and the front (lF ) and rear (lR) track widths.
Under the non-slippage assumption, the speed measured on
each wheel of the vehicle can be linked to the vehicle
longitudinal speed vk and its yaw rate ψ̇k using geometrical
considerations. Therefore, the number of ticks elapsed within
a time interval T can be linked to the vehicle state using
the tick resolution Nwheel and the wheel circumference as
follows:

∆RL
k = Nwheel

ρRL
T
(
vk − lR

2 ψ̇k

)
+ βRLk

∆RR
k = Nwheel

ρRR
T
(
vk + lR

2 ψ̇k

)
+ βRRk

∆FL
k = Nwheel

ρFL
T

√
l2RF ψ̇

2
k +

(
vk − lF

2 ψ̇k

)2
+ βFLk

∆FR
k = Nwheel

ρFR
T

√
l2RF ψ̇

2
k +

(
vk + lF

2 ψ̇k

)2
+ βFRk

. (6)

Note that these measurements are affected by a quantization
error due to the resolution of the sensors: Nwheel ticks by
turns (48 typically for a normal car, which is quite few
compared to mobile robots encoders).

1XX refers interchangeably to: RL (Rear Left), RR (Rear Right), FL
(Front Left), FR (Front Right)



4) Steering wheel measurements: The steering wheel
measurement δCANk is not used as is in the filter. Instead,
it is expressed through the transversal speed of the front of
the vehicle: lRF · ψ̇k. This is done to avoid having a promi-
nent non-linear observation model at small speeds where
this particular measurement is most useful. The steering
wheel measurement is therefore scaled down by a factor
rs, which corresponds to the factor between the angle of
the steering wheel and the angle of the virtual front wheel.
The scaled measurement then corresponds to the angle of
the virtual front wheel. Using this angle, we then know that
tan

(
δCAN
k

rs

)
= lRF ·ψ̇k

vk−1
, therefore we obtain

vk−1 · tan

(
δCANk

rs

)
= lRF · ψ̇k + vk−1 · βδk. (7)

The dead reckoning observation model is thus as shown
in equation (8)

The precision of some of these sensors can be improved
by estimating some of their parameters with a calibration
step. Therefore, the gyro bias, a scaling factor (for the speed
measurement) and the wheel circumference are calibrated
in order to have a better model of the sensors. From equa-
tion (8), we see that several parameters p = [p1, . . . , p6]T

can be estimated in order for the model to best fit reality,
namely

p =
[
bgyro av 1/ρRL

1/ρRR
1/ρFL

1/ρFR

]T
. (9)

Note that to calibrate the wheel circumference ρXX , the
inverse circumference 1/ρXX is used instead which enables
to solve the problems using Ordinary Least Squares.

III. RAUCH-TUNG-STRIEBEL SMOOTHING

A. Global referencing

In order to best calibrate the DR system, it is important to
prevent drift on the trajectory used for calibration. Otherwise,
the calibration parameters will be estimated to best match
the drifting trajectory, and will therefore not be useful to
limit the vehicle drift. For that purpose, we need external
redundant information. A GNSS receiver is, therefore, used.
The receiver is available at a lower frequency (2 Hz) and
is used in a loose coupling scheme. The receiver antenna is
located roughly mid way between the front and back wheel
axle (see Fig. 1), thus a lever arm of length lGNSS has to
be accounted for. The observation model of the receiver is
given as follows:

xGNSSk = xk + lGNSS · cos (ψk) + βGNSSk

yGNSSk︸ ︷︷ ︸ = yk + lGNSS · sin (ψk)︸ ︷︷ ︸ + βGNSSk︸ ︷︷ ︸
zGNSSk = hGNSSk (xk,p) + βGNSSk

.

(10)
The noise variance is provided by the GNSS receiver.

B. Smoothing

To estimate the calibration parameters, we need the most
accurate state estimation we can obtain. For that purpose,

conventional Kalman filtering suffer from the disadvantage
of estimating states based only on current and past measure-
ments. To exploit all the information that is available during
the calibration stage, a smoothing step is applied after the
filter and performed backward on the whole trajectory. The
literature contains many smoothing methods[15], [1], [9].
In this paper we use the Rauch–Tung–Striebel smoother[13]
(also known as Kalman smoother), since it is the simplest
method and directly extends Kalman filtering.

To perform the forward processing of the smoothing, a
Kalman filter is first ran using the available measurements.
The equations for the filter are reminded next.

Prediction:

x̂k|k−1 = fk
(
x̂k−1|k−1

)
, (11)

P k|k−1 = F kP k−1|k−1F
T
k +Qk. (12)

Update:

ỹk = zk − hk
(
x̂k|k−1

)
, (13)

Sk = HkP k|k−1H
T
k +Rk, (14)

Kk = P k|k−1H
T
kS
−1
k , (15)

x̂k|k = x̂k|k−1 +Kkỹk, (16)
P k|k = (I −KkHk)P k|k−1, (17)

where Hk is the Jacobian of the function hk which either
considers the DR measurements only:

hk (·) = hDRk (·) , (18)

or both the GNSS and the DR measurements when they are
available at the same time:

hk (·) =
[
hDRk (·) hGNSSk

]T
. (19)

During the filtering, several variables are recorded, namely
the predicted state estimates

{
x̂k|k−1

}
k∈J1,NK and their

covariance matrices
{
P k|k−1

}
k∈J1,NK as well as the updated

state estimates
{
x̂k|k

}
k∈J0,NK and their covariance matrices{

P k|k
}
k∈J0,NK.

Smoothing. : The smoothing step is then performed
backward, starting at the final state estimate x̂N |N back to
state x̂0|N as follows:

x̂k|N = x̂k|k + Jk
(
x̂k+1|N − x̂k+1|k

)
, (20)

P k|N = P k|k + Jk
(
P k+1|N − P k+1|k

)
JTk , (21)

where

Jk = P k|kF
T
k+1P

−1
k+1|k. (22)

After this process is done, we obtain smoothed state
estimates

{
x̂k|N

}
k∈J0,NK that are estimated knowing all the

observations {zk}k∈J1,NK.



ωgyrok = ψ̇k + bgyro + βωk
vcank = av · vk + βvk
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)
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ρFL
· T ·
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2
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k = Nwheel

ρFR
· T ·

√
l2RF ψ̇

2
k +

(
vk + lF

2 ψ̇k
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+ βFRk

tan

(
δCANk

rs

)
· vk−1︸ ︷︷ ︸ = lRF · ψ̇k︸ ︷︷ ︸ + vk−1 · βδk︸ ︷︷ ︸

zDRk = hDRk (xk,p) + βDRk

(8)

IV. PARAMETER CALIBRATION

In order to limit the dead reckoning drift to a minimum, the
calibration parameters need to be chosen so that systematic
errors are reduced as much as possible.

The problem has been explored in the literature. Methods
have been developed requiring the vehicle to perform partic-
ular trajectories [8], [3] to calibrate the sensors systematic
errors. Others have used particle filtering [10] or augmented
state Kalman filters [4] to find the model calibration param-
eters. Methods estimating the parameters in post-processing
by comparing odometry and GNSS relative displacements
have also been presented[12].

In this paper, we do not use a ground truth, nor an
explicit calibration trajectory[3]. In practice, we record a first
trajectory with all the raw data. This trajectory needs to be
as diverse as possible in order to reach a well-conditioned
calibration problem. As the ground truth is unknown, the
smoothed states x̂k|N are used since they are as close to the
ground truth as can be expected given the available observa-
tions. The problem is therefore a minimization problem and
can be written as

p̂ = argmin
p

N∑
k=1

(
zk − hk

(
x̂k|N ,p

))2
. (23)

This minimization problem can be solved in our particular
case using Least Squares because hk is linear with respect
to p for a given value of xk. Since each parameter pi
appears in only one equation, the problem can be solved
as multiple one-dimensional problems instead of one 6-
dimensional problem.

As such, the gyro bias is estimated by solving the follow-
ing problem:

p̂1 = bgyro = argmin
bgyro

N∑
k=1

(
ωgyrok − ˆ̇

ψk|N − bgyro
)2
. (24)

The gyro bias can therefore be estimated simply as follows:

bgyro =
1

N

N∑
k=1

(
ωgyrok − ˆ̇

ψk|N

)
. (25)

The estimation of the speed scale factor av is given as

p̂2 = av =
(
V TV

)−1
V T

 vCAN1
...

vCANN

 , (26)

with V =
[
v̂1|N · · · v̂N |N

]T
.

The same estimation method is applied to estimate the
1/ρXX parameters.
Remark 1. Note that there is no matrix inversion since the
problems are one-dimensional. There is no numerical issues.
Remark 2. When estimating parameters that appear in equa-
tions containing the vehicle speed vk, such as av and ρXX ,
the epochs when the vehicle is slow (below 2m/s in our
experiments) have to be discarded since some parameters
become non-observable.
Remark 3. The smoothing and calibration processes can be
iterated to reach higher accuracy.

V. EXPERIMENTAL RESULTS

A. Experimental setup

The method has been tested using one of the Heudiasyc
laboratory experimental vehicles (see figure 2). It is set up
with the Robot Operating System (ROS) middleware with
which we are able to retrieve the sensors data with an
accurate time-stamping. The DR sensors (yaw rate, speed,
wheel top, steering angle) from the Anti-lock braking system
(ABS) and Electronic Stability Program (ESP) of the car are
available through a CAN-bus interface. The vehicle is also
equipped with a non-differential u-blox M8T receiver set
up to use GPS and GLONASS constellations. This receiver
shares its antenna with a high accuracy Novatel SPAN-CPT
that combines IMU, GNSS and RTK corrections to generate
an accurate localization solution used as ground truth (GT)
to evaluate our algorithms.

The aforementioned method has been tested using data
recorded on public roads outside the laboratory. Several
trajectories have been recorded in order to calibrate the dead
reckoning model and test it on different data. In particular,
two trajectories have been used to produce the experimental
results. The first consists of a 4 km loop driven twice (dashed
line on Fig. 3) adding up to an 8 km dataset. Once the



Fig. 2. Experimental vehicle of the Heudiasyc laboratory used in the
experiments.

Fig. 3. Trajectories driven during the experiments. The route used for
calibrating the odometric model parameters consists in two turns around
the red trajectory (dashed line). The evaluation route consists of three turns
around the green trajectory (solid line).

parameters have been calibrated using this trajectory, the
dead reckoning has been tested without GNSS using a 1.7 km
loop (solid line on Fig. 3) driven three times adding up to
over 5 km. The vehicle speed averaged about 30 km/h and
never went above 70 km/s on both trajectories. The two
trajectories have been recorded back-to-back meaning that
the environmental condition can be assumed to be similar, in
particular concerning the visibility of satellite constellations.

B. Filter tuning

The standard deviation of the evolution model noise is
detailed in Table I. The standard deviation of the position
and orientation have been set in order for the estimation to
be consistent (i.e., the state estimate error stays bounded by
3σ with a confidence rate of 99.7%), whereas the standard
deviation for the speed and the yaw rate have been set to
fairly high values since we have no a priori knowledge about
the evolution of these variables.

To set the measurement noise characteristics, the sensors
error variances have been quantified using a ground truth
equipment and the noise parameters have been set to match
best the observed error distributions. Using the ground truth
to set these parameters is not an issue since they are not

TABLE I
EVOLUTION MODEL NOISE CHARACTERISTICS.

Model noise Standard deviation

αxyk 10−3 m
αψk 10−5 rad
αvk 10 m/s

αψ̇k 1 rad/s

TABLE II
OBSERVATION MODEL NOISE CHARACTERISTICS

Model noise Standard deviation
βωk 0.003 rad/s
βvk 10−1 m/s
βRLk 1 (unitless)
βRRk 1 (unitless)
βFLk 1 (unitless)
βFRk 1 (unitless)
βδk 0.02 (unitless)

expected to change over time and could be obtained from
the sensors datasheet. The list of standard deviation is given
in Table II.

C. Results of the parameter calibration

The parameters calibration has been performed using the
method described in the previous sections and compared to
the well known Zero Velocity Update (ZUPT) method. The
method described in this paper uses the smoothed estimates
as substitutes for the ground truth. We therefore also compare
it to a calibration where the ground truth is available. The
ZUPT method estimates the yaw rate bias by averaging the
yaw rate measurements when the vehicle is stopped and
therefore not turning. The other parameters, speed scale
factor and wheel circumferences are set at their nominal
values (1.0 for the speed scale factor, 1.92 m for the wheel
circumferences). Table III details the parameters estimated
using the two methods. The estimated gyro bias is noticeably
different between our method and the ZUPT technique. It
can be noted that estimating the gyro bias by comparing the
measurements to those of an high accuracy IMU yield a bias
of −0.00298 rad/s on the calibration trajectory and −0.00269
rad/s on the testing trajectory. This method therefore manages
to estimate the yaw rate bias within a 7% margin of error
which is vastly better than by using the ZUPT technique
(error of 35%). Regarding the speed scale factor and the
wheel circumferences, the result are very close to the default
values. This can be explain by the fact that the experimental
vehicle is driven very little compared to personal vehicles.
Hence, the wheels are not worn out.

To evaluate the quality of the calibration process and the
performance of the dead reckoning method, we have carried
out other experiments using a different, 5 km long, testing
trajectory. The state has been initialized using the ground
truth.

We use the following methodology to evaluate the drift.
When a DR distance of 100 m has been traveled, the
difference between the estimated position and the ground



TABLE III
PARAMETERS CALIBRATION RESULTS (ZUPT IS USED TO CALIBRATE

bgyro ONLY, THE OTHER PARAMETERS ARE THE DEFAULTS).

Method bgyro av ρRL ρRR ρFL ρFR
(rad/s) (m) (m) (m) (m)

GT −0.00298 0.987 1.9166 1.9164 1.9134 1.9129
Ours −0.00279 1.0 1.9198 1.9197 1.9177 1.9159
ZUPT −0.00194 1.0 1.92 1.92 1.92 1.92

TABLE IV
DEAD RECKONING DRIFT USING DIFFERENT CALIBRATION METHODS.

Method position
mean error

position error
standard deviation

GT 0.79% 0.39%
Our method 0.81% 0.51%

ZUPT 0.93% 0.57%

truth is computed and recorded. The state is then corrected
using the ground truth and the process continues. The quality
of the dead reckoning is evaluated as the average distance
drifted per 100 m. The results of the experiments are reported
in table IV and the error distributions are shown in Fig. 4.

In the context of autonomous driving it is also useful
to know how long one can drive using DR without going
outside of the lane. To evaluate this we apply a similar
strategy than previously but this time the estimation is not
corrected every 100 m but only when the estimation error
reaches 1 m. The result of this test is shown in Fig. 5.
The proposed method increases quite significantly the DR
navigation performance. On this experiment, we estimate that
the car is able to maintain a 1-meter accuracy at least during
100 meters and sometimes it can be more than 200 meters.
It should be noted that since the estimation is corrected only
once the 1 m threshold is reached, the epochs at which the
corrections happen are different for the two methods. This
results in DR starting at different epochs and so comparing
the results is difficult.

The trajectories obtained by the different parameter cali-
bration methods are compared in Fig. 6. Both ZUPT and our
method are significantly better than using standard parame-
ters. This highlight the importance of calibrating the sensors.
Our method performs slightly better than ZUPT which is
most likely due to the better estimation of the gyro bias.

Fig. 4. Horizontal error distribution after 100 m traveled in DR.

Fig. 5. Distance traveled in DR before reaching an error of one meter.

Fig. 6. Dead-reckoning results with different calibration methods.

VI. CONCLUSION

This paper has presented a dead-reckoning model that
fuses all the sensors usually available on modern cars. This
methods merges redundant sensors and therefore is more
robust that classical methods that usually use only the wheel
speed sensors of the rear wheels. We have presented a new
calibration method that is easy to implement. By performing
smoothing over a calibration trajectory, parameters compen-
sating for the sensors systematic errors are well estimated.
The resulting model is more accurate, therefore its drift is
reduced. Results obtained using experimental data obtained
on public road shows a clear improvement compared to
a non calibrated system or a method that uses the ZUPT
method when the car is motion less. We have also evaluated
the accuracy of a well calibrated model. Based on our
experimental results, we estimate that the drift remains lower
than 1-meter up to 100 meters of DR navigation which is
very interesting for many functions that rely on localization
for autonomous driving.
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