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Abstract— Vessel transit in ice-covered waters poses unique
challenges in safe and efficient motion planning. When the
concentration of ice is high, it may not be possible to find
collision-free trajectories. Instead, ice can be pushed out of the
way if it is small or if contact occurs near the edge of the ice. In
this work, we propose a real-time navigation framework that
minimizes collisions with ice and distance travelled by the vessel.
We exploit a lattice-based planner with a cost that captures the
ship interaction with ice. To address the dynamic nature of the
environment, we plan motion in a receding horizon manner
based on updated vessel and ice state information. Further, we
present a novel planning heuristic for evaluating the cost-to-go,
which is applicable to navigation in a channel without a fixed
goal location. The performance of our planner is evaluated
across several levels of ice concentration both in simulated and
in real-world experiments.

I. INTRODUCTION

Recent successes in deploying autonomous ship naviga-
tion systems demonstrate that ship autonomy can improve
marine safety and travel efficiency [1]. These benefits are
especially appealing to crews tasked with high-risk missions
such as arctic navigation through ice-covered waters [2],
[3]. This setting typically features a significantly higher
concentration of obstacles than most autonomous navigation
applications [4]. In addition, the obstacles are dynamic in
nature, moving in response to actions taken by the ship and
contributing to the overall complexity of the problem.

In this paper, we address the problem of planning motion
for an autonomous surface vehicle (ASV) operating in icy
waters. We assume that the ASV is built for arctic or sub-
arctic conditions but has limited ice-breaking capabilities.
Depending on the ice conditions, these ASVs may need
to be escorted by an icebreaker which creates a narrow
channel containing a high concentration of ice of widely
different sizes (e.g., navigation through the St. Lawrence
Seaway during winter). Our proposed framework operates
by planning a reference path to be tracked by the ASV, and
then replanning in a receding horizon fashion using updated
ice information.

Existing work on path planning for ASVs predominantly
focuses on planning collision-free paths [1], [5]–[8]. For the
conditions described above — and illustrated in Figure 1 —
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Fig. 1. Model vessel being tested in the 12 m× 76 m National Research
Council Canada (NRC) ice tank in St. John’s, Newfoundland and Labrador.

such paths may not exist. Thus, rather than avoiding ice, the
objective should be to minimize a cost function that captures
the effect of a collision with an ice piece (for example, the
energy transferred during collision). In this work we propose
a planning framework that utilizes such a cost function.

Contributions: For ships operating in an ice field, we
propose a local path planner which we incorporate into a
real-time navigation system. The underlying methodology we
adopt is the familiar A* path planner over a graph of motion
primitives [9]. However, to apply this methodology to ship
navigation in ice, several key challenges are addressed. We
adapt an existing collision model for ship-ice interactions
[10] to show that a cost function modelled on kinetic energy
efficiently penalizes head-on collisions with large ice pieces.
Further, since the goal of our planner is forward progress
through an ice channel, we propose an admissible closed-
form heuristic where the objective is to reach a line segment
as opposed to a single configuration. Finally, we demonstrate
the efficacy of our approach in ice fields through experiments
— both in simulation and in a physical 12 m×76 m ice tank.

Related Work: Navigation among movable obstacles
(NAMO) is considered in [11], [12]. The authors address the
problem of navigating a robot through an environment where
obstacles can be manipulated by the robot. The NAMO prob-
lem is similar to the problem of navigating an ASV through
an ice field in that obstacles are movable in both settings.
However, unlike ASV navigation the obstacles considered in
the NAMO problem typically do not interact with each other
once manipulated. Of perhaps greater consequence, obstacles
inflict no damage to the robot.

Extensive work has been done in path planning, tracking
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control, and collision avoidance algorithms for ASVs. For
many of these works, the obstacles considered are either
other vessels or static surrounding environments [5], [13],
[14] like harbors [1] and urban waterways [6]. The ap-
proaches proposed in these works are effective in their
settings, but assume that collisions are forbidden. Therefore,
they are not easily generalized to path planning in highly
congested environments where collisions are unavoidable.

In path planning for ships, related to our work, the
authors in [7] use aggregated statistics of the ice conditions
retrieved from satellite imaging for their uncertainty-based
route planner. Their work plans paths – consisting of a set
of waypoints – on the scale of several thousand kilometers
which require a local planner (e.g., the one presented in
this paper) for real-time autonomous navigation. Local path
planning is considered in [15] where the authors propose a
motion planner using bidirectional RRT and data gathered
from marine radar imaging. Similarly, in [16] the authors
construct a graph using a morphological skeleton from a
post processed overhead snapshot of an ice field. They then
employ A* to compute a path in the resulting graph. The
techniques proposed in [15], [16] empirically work well
in low-concentration ice fields. However, planned paths are
piece-wise straight lines and do not take into account the
ASVs’ dynamics. Further, the authors assume that computed
paths can and must be collision-free. Minimal turning radius
constraints are considered in [8], but the authors still consider
collision-free paths.

II. PROBLEM FORMULATION

The problem we address is navigating a ship through a
cluttered ice channel (as in Figure 2(a)) while minimizing the
effects of ship-ice collisions on the ship—namely the energy
transferred in the collisions. We treat the water surface on
which a ship moves as a 2D surface W ⊆ R2.

Our objective is forward progress along a channel C ⊆ W
which we model as a rectangle with length parallel to the
y-axis as in 2(a). This model does not limit the applicability
of our method since long, curved channels can be partitioned
into smaller rectangles as in Figure 2(b). The objective is to
reach a goal line segment G ⊂ C with constant y-value as
illustrated in Figure 2(a). Given m ice floes in C, we treat
each floe as an obstacle Oi ⊂ W, i = 1, . . . ,m which we
group into a set of obstacles Wobs = {O1, . . . , Om}. We
assume that the location of each obstacle in Wobs can be
estimated at any time via an onboard vision system.

To navigate a ship through an ice field, three components
are required: a reference path π(s) parameterized by arc-
length s along the path, a velocity profile v that describes
how the path is traversed through time, and a controller for
tracking the path at the desired velocity. The tuple (π, v) is
called a trajectory. To capture the effects of ice collision, we
utilize a cost function u that penalizes the path length (final
arc length) sf and a collision cost:

u(π, v) = sf + α

∫ sf

0

cobs
(
π(s),Wobs, v(s)

)
ds︸ ︷︷ ︸

collision cost

. (1)

Fig. 2. (a) Depiction of the navigation problem of interest for a rectangular
channel with ice (blue), ASV (black), and goal region (green line). (b)
Generalization of problem to curved channel.

Where cobs ≥ 0 is described in detail in Section III and α ≥ 0
is a tuning parameter. Thus, we seek to solve the following
problem.

Problem 1. Given a start position of the ship, a goal line
G, and obstacles Wobs, compute a trajectory (π, v) from the
start to G that minimizes u.

In what follows we propose a solution to this problem and
describe how it is incorporated into a navigation system for
real-time (re-)planning.

III. NAVIGATION FRAMEWORK

In this section, we discuss our navigation framework and
approach to solving Problem 1. To account for the large and
evolving environment, we frequently re-plan a reference path
and velocity profile for a controller in real-time. Replanning
is done over a moving horizon as illustrated by the part of
the channel lying below the orange dotted line in Figure 2(a).

Algorithm 1 Receding Horizon Navigation Framework
Input: G,∆h,∆t

1: while True do
2: Wobs ← obstacles from onboard sensors
3: P, vS ← current ship pose and speed
4: Set intermediate goal Gi a distance ∆h ahead of P
5: if ship pose P has not crossed G then
6: π ← path from P to Gi with static Wobs, vS
7: vnom ← velocity profile for π
8: Send (π, vnom) to controller to track for time ∆t
9: else

10: Exit loop

The navigation framework is summarized in Algorithm 1,
which takes as input a final goal line segment G, receding
horizon parameter ∆h, and control tracking parameter ∆t.
At the start of each iteration we obtain updated ice data
Wobs from onboard sensors (Line 2) along with the ship’s
current position in R2 and orientation (called a pose P ) and
speed (Line 3). We compute an intermediate goal line Gi
a distance ∆h ahead of the ship (Line 4; see Figure 2(a)).
If the ship has not yet reached the final goal G (Line 5),
we run our proposed planning algorithm (see Section III-
A), returning a path from P to Gi (Line 6). A nominal



velocity profile is then computed for the path (Line 7). In
our planner, we use a constant nominal speed based on the
concentration of ice, following established guidelines such as
[2]. The planned trajectory (π, vnom) is sent to a controller
(Line 8) which tracks it for a time ∆t before the process
repeats. We employ a Dynamic Positioning (DP) controller
described in Section IV. The following sections describe how
paths π are computed.

Note that at each iteration, ice is treated as static when
computing a trajectory (π, vnom) but is updated frequently
to account for collisions and ice movement (Line 2). This
approach maintains low planning run-time for each iteration
while still accounting for complex ice movement across all
iterations (this is explored in the evaluation in Section V).

A. Path Planning using a State Lattice

To solve Problem 1, we use a form of lattice planner [9],
where paths are generated using a finite set of motion
primitives.

1) Model: For the purposes of path planning, we treat the
ship as a 2D rigid body with three degrees of freedom [17]:
planar position (x, y) ∈ R2 and heading θ ∈ [0, 2π). We
refer the tuple (x, y, θ) as a configuration. We adopt a
unicycle model commonly used in marine navigation [18]–
[20]: ẋ(s) = cos(θ), ẏ(s) = sin(θ), θ̇(s) = κ, |κ| ≤ κmax,
where derivatives ˙(·) are taken with respect to arc length s, κ
is the curvature, and κmax is a maximum curvature dictated
by the physical limits of the ship. A path π(s) is feasible if
it adheres to the unicycle model above.

2) Lattice planning: In lattice-based path planning, the set
of all configurations is discretized into a regularly repeating
grid called a lattice L. Configurations in the lattice are called
vertices. A set (called a control set) of feasible paths between
lattice vertices (called motion primitives) is pre-computed
offline and used as an action set during an online search. The
key observation in lattice-based path planning is that motion
primitives may be rotated, translated, and concatenated to
form complex paths (observe that motion primitives are paths
between lattice vertices).

For a control set P , we can construct a graph GP =
(L,E, ũ) the vertices of which are the lattice vertices L while
edges are pairs of vertices (p1, p2) such that there exists a
motion primitive π ∈ P that can be rotated and translated so
that π(0) = p1, π(sf ) = p2. Given the ship’s current speed
vS (Line 3 of Algorithm 1) andWobs (Line 2), the cost of an
edge (p1, p2) with associated motion primitive π is given by
ũ((p1, p2)) = u(π, vS) from (1). The problem of computing
a feasible path between lattice vertices reduces to computing
a cost-minimizing path in GP .

We generate a state lattice L by discretizing the plane R2

into a uniform grid and the headings θ into uniformly spaced
angles around the unit circle. To define our motion primitives,
we compute shortest paths between (x, y, θ) configurations
for the unicycle model, known as Dubin’s paths [21]. These
paths are comprised of sequences of straight lines and
circular arcs of radius rmin = κ−1max. The control set P is
generated using the method proposed in [22] which computes

a control set that balances a tradeoff between |P| and path
optimality.

We use the lattice framework to plan a path π (Line 6)
from the ship’s current pose P (Line 3) to the current goal
Gi (Line 4) with the lattice origin aligned with P . This is
accomplished by searching over the graph GP using the A*
search algorithm [23] with a line segment as the objective
as opposed to a single configuration. As a final step in Line
6, we run a smoothing algorithm on π introduced in [22]
as a post-processing step to remove excessive oscillations.
In Section (1) we finalize the cost function u from (1)
while in Section III-C we present a heuristic to improve the
performance of A*.

B. Cost Function

We describe the cost function u from (1) given a feasible
path π, obstacles Wobs, and the ship’s current speed vS .
In detail, we use the notion of kinetic energy to derive a
function cobs(π(s),Wobs, vS) that captures the severity of
ship-ice collisions in terms of the energy transferred during
collision.

We restrict our attention to convex, polygon-shaped ice
and assume uniform ice density and thickness in the indi-
vidual ice floes [10], [24]. Ship-ice collisions are modeled
and empirically validated in [10], and we adopt a simplified
version of their 2D inelastic-collision method to model ship-
ice collisions. Specifically, we treat the ship and ice as disks
rather than polygons and the ice as static prior to collision.
This simplified model lets us efficiently capture sufficient
detail in our collision cost and similar approximations have
been made in existing work [25], [26].

With this collision model, the change in kinetic energy
∆Ksys in the system is given by

∆Ksys =
1

2
MeqV

2
eq, (2)

where Meq and Veq are the effective inertial mass and
velocity, respectively, at the moment of collision [10]. For
the case of two disk-shaped bodies, the effective mass Meq
is constant and is defined as:

Meq =
mSmI

mS +mI
, (3)

where mS ,mI are the ship and ice masses, respectively. We
assume that mS is known and mI can be calculated as the
product of the area, thickness, and density [10]. The effective
velocity Veq is given by [10]:

Veq = vS cos(θ), (4)

where vS is measured in Line 3 of Algorithm 1 and θ is the
angle between the ship’s heading and the collision normal ~n
(Figure 3). Next, we isolate the change in kinetic energy of
the ship ∆KS .

The goal of our collision cost will be to minimize the
ship’s kinetic energy loss from ship-ice collisions. Since the
ice is initially static, it must hold that ∆KI > 0 where ∆KI

is the change in kinetic energy of the ice. Further,

∆Ksys = ∆KI −∆KS . (5)



Fig. 3. (a) Collision scenario between two disk-shaped bodies. (b) Example
path (blue) with ship footprint (red) at regular intervals of arc length with
exaggerated costmap resolution to illustrate the swath (green). (c) Sample
costmap where the color bar indicates the cost. Obstacle centroids are in
red and bounding circles are in light blue.

We treat the ice as having a velocity post-collision equal
to Veq – a reasonable approximation if mS/mI is large.
Therefore, ∆KI = 0.5mIV

2
eq = 0.5mI(vS cos(θ))2 and

from (2), (5):

|∆KS | =
m2
I

2(mS +mI)

(
vS cos(θ)

)2
. (6)

From Figure 3(a), observe that sin(θ) = d/r where d is the
lateral distance between the collision point and the center of
the ice and r is the radius of the ice. Therefore from (6), we
may write |∆KS | as a function of d, r,mI , vS :

∆KS(d, r,mI , vS) =
1

2

m2
I

mS +mI

[
vS cos

(
arcsin

(
d

r

))]2
=

v2Sm
2
I

2(mS +mI)

(
r2 − d2

r2

)
, d ∈ [0, r]. (7)

Observe that the function ∆KS is large if collisions are head-
on (θ = d = 0) or if mI/mS is large. Thus ∆KS has the
benefit of effectively penalizing collisions with ice that are
head-on and or involve large ice relative to the ship. Using
∆KS , we describe the cost function u from (1).

To efficiently compute collision costs across an ice channel
C, we use a costmap representation of the planar environment
as done in [9]. In particular, the channel C ⊆ R2 is
discretized into a square grid where each grid cell is assigned
an identifying tuple k ∈ N2 corresponding to the cells’
center and a cost cobs(k,Wobs, vS) given obstacles Wobs
(determined in Line 2 of Algorithm 1), and vS (Line 3).
Each cell is occupied by at most one obstacle. The set of
costmap cells that are occupied from the area of a ship as
it traverses a path π is called the swath of π and the area
occupied by the ship is called the footprint [9] (see Figure
3(b)).

For our planning task, the costmap is effectively a lookup
table for computing the collision cost associated with a
particular path between a pair of lattice vertices, given an
appropriate mapping from the configuration space to the
costmap. For each polygonal obstacle Oj ∈ Wobs, let Cj
denote the position of the centroid of Oj , rj the radius of
its bounding circle centered at Cj (Figure 3(c)), and mj its

mass. The function cobs(k,Wobs, vS) for a cell k and current
ship speed vS uses the ship kinetic energy loss from (7):

cobs(k,Wobs, vS) =

{
∆KS(q, rj ,mj , vS), k ∩Oj 6= ∅
0 otherwise,

(8)
where q = ||k − Cj ||, the Euclidean distance from the cell
to the centroid of the obstacle. This function is well defined
since each cell can be occupied by at most one obstacle. A
sample costmap is illustrated in Figure 3(c).

Finally, with cobs(k,Wobs, vS) given in (8) we define the
cost u(π, vS) for a candidate path π (and ships current speed
vS) with final arc-length sf using the discretization of (1):

u(π, vS) = sf + α
∑

k∈swath of π

cobs(k,Wobs, vS). (9)

C. Heuristic

Given the current ship pose P (Line 3), we present an
admissible heuristic h with a closed form to improve the
runtime of the path planning step in Line 6.

At a high-level, we compute the shortest path from P to
an infinite line G∞ that is colinear with the intermediate goal
line Gi (Line 4), subject to the unicycle model described in
Section III-A.1. This heuristic is admissible to our graph
search implementation since the cost function u is lower
bounded by path length and Gi ⊂ G∞ (thus the shortest
path to G∞ is no longer than the shortest path to Gi). To
characterize the proposed heuristic, we offer the following
result:

Theorem III.1 (Closed-form Heuristic). The shortest path
from P = (Px, Py, Pθ) to the infinite line G∞ with minimum
turning radius rmin is a Dubin’s path. Referencing Figure 4,

1) if G∞ lies above the point o, the path is of the form CS
(circular arc C of radius rmin, followed by a straight
line S) and S intersects G∞ at a right angle (Fig. 4(a));

2) otherwise, the path is of the form C (Fig. 4(b)).
Given these two cases, h(P ) is the path length and is given
analytically by:

h(P ) =

{
h1(P ), if oy ≤ Gy (case 1),
h2(P ), otherwise (case 2)

,

where

h1(P ) = rmin min

(∣∣∣Pθ − π

2

∣∣∣ , ∣∣∣∣Pθ − 5π

2

∣∣∣∣)+ Gy − oy

h2(P ) = rmin

∣∣∣∣Pθ −m arccos

(
oy − Gy
rmin

)
− n

∣∣∣∣
oy = Py +mrmin cos(Pθ)

m =

{
+1, if Pθ ∈ [0, π2 ] ∪ [ 3π2 , 2π]

−1, otherwise

n =


0, if Pθ ∈ [0, π2 ]

π, if Pθ ∈ (π2 ,
3π
2 ]

2π, if Pθ ∈ ( 3π
2 , 2π]

and where Gy is the constant y-value of the goal G∞.



Fig. 4. Diagram depicting the geometry of the Dubins path to an infinite
line G∞ for two possible cases.

Proof. Without loss of generality, we consider a turn at an
angle of Pθ ∈ [π2 , π] as in Figure 4 (a similar analysis can
be made for angles in the other three quadrants).

Case 1: Suppose that G∞ lies above o. This is equivalent to
the condition that the y-coordinate of o, is no more than the
y-coordinate of G∞, i.e., oy = Py + rmin(− cos(Pθ)) ≤ Gy .
Let P g = (P gx , P

g
y ) be any point on G∞ and is outside of

the circle of radius rmin centered at o (it is trivial to show
P g cannot be inside this circle for the shortest path from
P to G∞). Since the heading of P g is not specified, the
shortest path from P to P g is of the form CS [27], [28]
where S intersects G∞ at an angle θ. Therefore, determining
the shortest path from P to G∞ reduces to computing

min
θ

L(C) + L(S), (10)

where L(·) denotes length. We observe

L(C) = rmin(Pθ − θ),

L(S) =
Gy − [Py − rmin(cos(Pθ)− cos(θ))]

sin(θ)
.

(11)

Further, we observe that the total path length L(C) + L(S)
is minimized by θ = π/2. Replacing this value in h1(P ) =
L(C) + L(S) yields the result of the Theorem for the case
oy ≤ Gy .

Case 2: Suppose instead that G∞ lies below o. In this case,
the shortest path from P to G∞ consists only of a circular
arc C with minimal length equal to the result of the Theorem
for the case that oy > Gy .

In the next section, we detail the integration of our
proposed planner with the experimental platform.

IV. DETAILS ON EXPERIMENTAL PLATFORM

We validated our proposed approach by integrating our
navigation framework with the NRC ice tank facility shown
in Figure 1, which is complete with a model vessel and real-
time overhead vision system [16].

Environment and Physical Model: The NRC ice basin is
12 m × 76 m with ice thickness up to 200 mm. We used
the same 1:45 scale platform supply vessel (PSV) model
deployed in [4] shown in Figure 1.

Vision System: The facility contains 20 ceiling cameras
sending ice information at a frequency of 1 Hz. The ASV
configuration is computed at 50 Hz using the tracking system

Fig. 5. Axis aligned (left) and non-axis aligned (right) motion primitives
generated for a 1:45 scale ASV model.

and an on-board inertial measurement unit (IMU) [4], [16].
Given the two update rates, we set ∆t = 1 in Algorithm 1.

Controller: We employed a Dynamic Positioning (DP)
controller – widely used in marine navigation [29], [30]
– which generates thruster/propeller commands to regulate
position and heading. We used a constant nominal velocity of
0.3 m/s and a minimum turning radius rmin = 2 m, computed
according to a full-scale vessel.

Planner Parameters: Discretization was set to 1×1 m for
planar position and 8 equally spaced values for heading. In
Figure 5 we show the two sets of different motion primitives
generated for the axis-aligned and non-axis aligned directions
which consist of 15 and 19 primitives respectively.

Costmap grid resolution was 0.25 m, finite horizon dis-
tance ∆h = 20 m in Algorithm 1, and the cost function
tuning parameter α = 10 in (1).

V. RESULTS

We demonstrate the efficacy of the proposed approach
through simulation and physical experiments. Each trial
consisted of navigating a ship across the length of an ice
channel to the specified goal G. Our simulations were done
in Python and the 2D physics library Pymunk [31] was used
as our backbone for the simulation experiments.

A. Simulation Setup

The simulation setup matches that of the experimental
platform (e.g., NRC ice tank dimensions, controller, 1:45
vessel model). Given a specified target ice concentration
(expressed as a value in [0, 1] where 1 is maximal ice
cover), we populated the map with randomly generated non-
overlapping polygons subject to the following constraints:
Rmin = 0.5m, Rmax = 2m, ymin = 5m, ymax = 70m,
where Rmin, Rmax are constraints on the radii of the primal
circles from which the polygons stem from while the y
constraints enforce the polygon vertices to be within a
specified region of the environment. We randomized the ship
starting x position, and fixed the ship starting y position and
heading to 2 m and π/2 respectively. The goal line segment
G was set to 72 m in the y-axis.

B. Simulation Results

In simulation, we explored our framework’s effective-
ness as a function of ice concentration via comparisons to
Algorithm 1 using other planning schemes (Line 6). Two
baseline planning algorithms were considered which we refer



to as straight and skeleton. The former is simply a planner
that returns a constant straight path from the ship’s current
position to the goal G and the latter refers to the shortest
open-water path routing approach described in [16] and [4].
Their approach constructs morphological skeletons based on
the ice environment to generate paths. We refer to the three
different versions of our navigation framework based on
their planning scheme, i.e. lattice, straight, and skeleton. We
performed the same set of trials across all three of these
navigators. In total we ran 3 navigators × 50 trials × 4 ice
concentrations = 800 experiments. The ice concentrations
considered were 0.2, 0.3, 0.4, and 0.5. Note, we used a 1st
order Nomoto model [17] to describe our vessel dynamics
in simulation.

1) Metrics: We computed a running total of the kinetic
energy lost by the ship ∆KS due to collisions with ice, using
the physics simulator. To better interpret this metric, we used
the ship total kinetic energy loss in the straight navigator to
normalize the values for each trial for lattice and skeleton.
Further, we captured the average tracking error across all
simulations of the lattice and skeleton navigators to gauge
how easy each reference path was to track. Finally, we logged
the mass of the ice collided with for each collision that oc-
curred in each simulation and obtained a probability density
function for each navigator. This effectively approximates the
probability of colliding with an ice floe of any size for each
navigator.

2) Results: We present two figures that capture the main
results from our simulations. Figure 6 illustrates the im-
proved performance of our approach (lattice) with regards
to the total kinetic energy lost by the ship from collisions
with ice. Our mean and median are consistently lower across
all 4 ice concentrations. For the trials done in the most
dense ice fields (i.e. ice concentration = 0.5) we achieved
a mean of 0.39 vs. 0.43 for skeleton. In other words,
our approach achieved a 9% decrease in terms of kinetic
energy lost. In addition, our maximum (outliers not shown
in plot) is significantly lower both in the 0.2 and the 0.5 ice
concentrations, e.g., for 0.5 concentration our max was 1.0
and skeleton was 1.6.

In Figure 7, we show the probability density functions
for collisions across different navigators [10]. In the 0.4
ice concentration scenario, the mean mass of ice colliding
with the ship was 2.0 for the proposed navigator, 2.6 for
the skeleton, and 2.8 for straight while in the 0.5 ice
concentration scenario, 1.4 for the proposed, 1.9 for the
skeleton, and 2 for the straight. Therefore, on average the
proposed approach collided with ice that was 24% smaller
in mass than the skeleton navigator, and 29% smaller than
the straight.

Further, the tracking error for paths using the proposed
approach was, on average 50% lower than that of the skeleton
navigator. Note, path planning with our approach took an
average of 90 ms with a max of 127 ms which are both
comparable to the skeleton navigator. Finally, graph search
using our heuristic from III-C expanded an average of 15%
(max of 48%) fewer nodes than a euclidean distance baseline.

Fig. 6. Total kinetic energy loss by ship (normalized by straight navigator)
as a function of the ice concentration for our navigation framework using
lattice planning (ours) and skeleton.

Fig. 7. Frequency of ice collision by mass for the three planning methods,
smoothed using kernel density estimation. Note, ice mass is dimensionless
here.

Fig. 8. Snapshots of four different trials done in the 12 m×76 m ice tank
at varying levels of ice concentration.

C. Real World Results
We conclude with an overview of the experiments ran with

our planner in the physical NRC ice tank. We ran a total of



8 trials across two different ice concentrations (medium and
high). This series of tests proved to be the first successful
attempts at fully autonomous navigation across the entire
length of the ice basin in the NRC ice tank facility following
partial successes in preliminary testing done in [4].

We show four representative snapshots (Figure 8) taken
during the experiments and make a series of observations
that highlight our planner features. The advantage of having
a non-distinct goal somewhere along a line segment is clearly
shown across each snapshot. We also see the smoothness
of the turn-constrained planned paths that result in better
tracking behavior than any-angle approaches such as the
skeleton planner. Most importantly, the collisions that occur
along the paths are consistent with our design decisions
captured by our proposed cost function (9). Namely, avoiding
larger ice floes over smaller ones, and colliding with ice such
that the ship loses minimal kinetic energy. These last two
points are most apparent in the 2 snapshots taken from the
high ice concentration experiments (bottom left and bottom
right in Figure 8).

VI. CONCLUSIONS

In this work, we proposed an autonomous real-time nav-
igation framework for ASVs through ice-covered waters.
Our method tailored well-known lattice-based path planning
and receding horizon-based planning to produce an effective
navigation strategy for this environment. A key component of
our framework is the proposed cost function, which captures
the energy lost by the ship during a collision and heavily
penalizes head-on collisions with larger ice floes. Our planner
achieved better overall performance than existing planning
solutions designed for navigation in icy waters. In future
work, we intend to incorporate a predictive ice-motion model
into our planner.
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