
Reinforcement Learning in a Safety-Embedded MDP with Trajectory
Optimization

Fan Yang1, Wenxuan Zhou1, Zuxin Liu1, Ding Zhao1, David Held1

Abstract— Safe Reinforcement Learning (RL) plays an im-
portant role in applying RL algorithms to safety-critical real-
world applications, addressing the trade-off between maximiz-
ing rewards and adhering to safety constraints. This work
introduces a novel approach that combines RL with trajectory
optimization to manage this trade-off effectively. Our approach
embeds safety constraints within the action space of a modified
Markov Decision Process (MDP). The RL agent produces a
sequence of actions that are transformed into safe trajectories
by a trajectory optimizer, thereby effectively ensuring safety
and increasing training stability. This novel approach excels in
its performance on challenging Safety Gym tasks, achieving
significantly higher rewards and near-zero safety violations
during inference. The method’s real-world applicability is
demonstrated through a safe and effective deployment in a real
robot task of box-pushing around obstacles. Further insights
are available from the videos and appendix on our website:
https://sites.google.com/view/safemdp.

I. INTRODUCTION

Reinforcement Learning (RL) has seen tremendous suc-
cess in solving sequential decision-making problems [1], [2],
[3], [4], [5], [6]. However, deploying these algorithms in
real-world robotic systems raises safety concerns, particu-
larly in safety-critical applications like obstacle avoidance,
autonomous driving, and human-robot interactions. A com-
mon approach to tackle safety in RL is to define the task
under the Constrained Markov Decision Process (CMDP)
framework, which defines a constrained optimization in
which the agent must maximize the reward while satisfying
safety constraints [7], [8], [9], [10]. Unfortunately, most
constrained optimization-based methods struggle with the
delicate balance between reward maximization and con-
straint satisfaction during the learning process [9], [11],
often leading to unstable training. Underestimates of safety
cost values can lead to the convergence of unsafe policies.
Conversely, overestimates of the safety cost values may result
in conservative exploration and suboptimal task performance.

To address this challenge, we propose a novel approach
that incorporates trajectory optimization within an RL frame-
work, providing a powerful tool for handling safety con-
straints defined around obstacle avoidance. The RL agent
operates in a modified MDP, embedded with a trajectory
optimization algorithm to ensure safety. Specifically, the RL
agent outputs actions in a high-level action space, which

1All authors are with Carnegie Mellon University, Pittsburgh, PA 15213,
USA. fanyangr@umich.edu

This material is based upon work supported by the National Science
Foundation under Grant No. IIS-1849154 and the United States Air Force
and DARPA under Contract No. FA8750-18-C-0092.

subgoal

reward

Traj
opt action EnvRL

agent

Safety-embedded MDP

cost

action

reward, cost

RL
agent Env

Original MDP

subgoal

Fig. 1: Compared to previous methods, in which the RL agent
optimizes the reward and safety constraints simultaneously
(left), our method operates in a modified MDP (right). The
modified MDP is embedded with a trajectory optimizer to
ensure constraint satisfaction. The RL agent outputs a sub-
goal for the safe trajectory optimizer and hence the RL agent
only needs to optimize explicitly for the reward, leading to
much better performance with fewer safety violations.

are transformed into low-level actions via a trajectory op-
timizer which is restricted to generating safe trajectories.
The trajectory optimizer is treated as part of the transition
dynamics of the modified MDP. This approach allows the RL
agent to optimize an unconstrained objective in the modified
MDP, leading to faster and more stable training, improved
performance, and better safety constraint satisfaction. The
framework of our method is shown in Fig. 1.

We demonstrate the efficacy of our method through com-
prehensive experimentation, greatly outperforming previous
approaches in terms of both reward maximization and safety
constraint satisfaction in complex contact-rich simulated and
real-world settings. We focus on the very challenging block-
pushing task from Safety Gym [9], in which the goal is to
train an agent to push a block to a goal while avoiding
obstacles. Previous safe RL methods have failed to make
reasonable progress on this task; this work represents the
first safe RL method to achieve a high level of task success
and constraint satisfaction at this difficult task which involves
both long-horizon reasoning as well as reasoning about both
contacts and obstacle avoidance.

Notably, our method achieves over 50% success rate in
challenging PointPush2 and CarPush2 tasks, which is about
20 times higher than the strongest baselines with a similar

ar
X

iv
:2

31
0.

06
90

3v
2

 [
cs

.R
O

]
 1

4
Ju

l 2
02

4

https://sites.google.com/view/safemdp

safety performance, while maintaining very low levels of cost
violation.

II. RELATED WORK

Safe Reinforcement Learning: Safe reinforcement learn-
ing (RL) methods can be generally categorized into model-
based and constrained optimization approaches. The former,
including methods proposed by Pham et al. [12] and Dalal
et al. [13], employ a combination of model-free methods
with safety checks to achieve constrained exploration. Other
methods reframe safety constraints by shielding functions
to monitor and correct policy action output [14], [15].
However, these often require substantial domain knowledge
which creates difficulties in scaling with the number of tasks
that we want robots to perform [16], [17].

Another approach is to use constrained optimization meth-
ods like primal-dual approaches [18], [19], [9], [10] alternat-
ing between policy parameter optimization and dual variable
updating. Despite their intuitiveness, these techniques suffer
from training instabilities [20], [21]. Attempts to improve
these, such as introducing a KL-regularized policy improve-
ment mechanism, often lead to high sample complexity or
poor constraint satisfaction performance [8], [22], [11]. Our
method attempts to address these challenges by utilizing
trajectory optimization in the modified MDP to enhance
performance and safety during both training and deployment.

Trajectory Optimization: In our method, the trajectory
optimizer is used to solve a path-planning problem with
obstacle avoidance. Path planning with obstacle avoidance
is a canonical problem in motion planning [23], [24], [25].

When it comes to object interactions, such as pushing a
box, the nonlinear dynamics involved in such interactions
make trajectory optimization more challenging, although
some trajectory optimization methods based on Model Pre-
dictive Control (MPC) can be applied to contact-rich tasks
as well [26], [27], [28]. However, when it comes to long-
horizon tasks, significant time and computing resources are
usually needed to compute effective solutions.

Combining Learning with Trajectory Optimization:
Trajectory optimization has been combined with learning
in various ways. For example, previous work has proposed
to use imitation learning to learn the hyperparameters for
a motion planner [29], [30], [31] . Vlastelica et al. [32]
combine motion planning and RL to differentiate epistemic
and aleatoric uncertainty in a probabilistic setting with safety
constraints. Schrum et al. [33] combine meta-learning into
trajectory optimization to increase its adaptability. Several
other works have proposed to combine RL and motion
planning similar to our work [34], [35]. In contrast to
these approaches, our method combines RL and trajectory
optimization for safety-critical tasks by separating the CMDP
objectives into a hierarchical structure.

III. BACKGROUND: CONSTRAINED MARKOV DECISION
PROCESS

A Constrained Markov Decision Process (CMDP) [7] is
formulated as a tuple (S,A, P, r, γ, c), which includes states

s ∈ S, actions a ∈ A, transition function p(s′, a, s) ∈ P :
S ×A× S → [0, 1], reward functions r, the discount factor
γ, and the cost function c that defines the safety constraint.
The training objective of a CMDP is defined as

max
θ

Jr(πθ) := Eτ∼πθ
[

∞∑
t=0

γtr(st,at)]

s.t. Jc(πθ) := Eτ∼πθ
[

∞∑
t=0

γtc(st,at)] ≤ C,

(1)

where C is a cost threshold, πθ is the policy with parameters
θ, and τ denotes a trajectory.

IV. PROBLEM STATEMENT AND ASSUMPTIONS

In this work, we focus on the specific problem in which
the safety constraints are defined by obstacles that we want
to avoid. Specifically, all constraints are of the form:

||st,x − xobs
j || > ϵ ∀t, j (2)

where st,x is the location of the robot at the tth time step,
xobs
j is the location of the jth obstacle, and ϵ is a safety

margin that determines how far the robot needs to stay
away from the obstacles. We also assume access to a sensor
that allows us to obtain noisy measurements of the location
of the obstacles xobs

j . Additionally, in our environments,
some objects might be acceptable to interact with (such
as a box that we want the robot to push) and others will
occur a collision cost c(st,at); we assume that the robot
knows the type of each object and whether there will be a
collision cost for interacting with that object. In addition, we
assume that the obstacles are static; we leave the extension
of our framework to dynamic obstacles for future work.
Despite these assumptions, solving such a CMDP is still a
challenging task because of the difficulty in balancing the
objective with the constraints, the difficulty of long-horizon
reasoning, and the difficulty of reasoning about contacts such
as safely pushing a box to a goal while avoiding obstacles.

V. METHOD: REINFORCEMENT LEARNING WITH
SAFETY-EMBEDDED MDP

Overview: We propose a method that combines reinforce-
ment learning and trajectory optimization in a hierarchical
structure. Instead of training an RL policy in the original
action space, we propose to learn the policy in a modified ac-
tion space defined by the parameters of a trajectory optimizer.
Using the parameters from the policy output, the trajectory
optimizer will plan a path for the agent while taking into
account the safety constraints. The optimized trajectory will
then be sent to a trajectory-following module that chooses
robot actions to follow the path.

Our method consists of three layers: A high-level RL
agent that outputs parameters for the trajectory optimizer, a
mid-level trajectory optimizer that outputs a safe trajectory,
and a low-level trajectory-following module that executes the
trajectory. A summary of our method is shown in Fig. 2 and
the pseudo-code is shown in Alg. 1 in Appendix. K. We will
explain below how this approach significantly reduces safety

Trajectory
Optimizer

…
Subgoal

(x,y)
Trajectory

Raw
obs

RL policy Traj-following
module

Robot
action

Start End

Fig. 2: An illustration of our method: in the Safety Gym
Push task, the objective of the agent (red) is to push the
box (yellow) to a goal (green) while avoiding obstacles
(purple). Our method embeds safety constraints into the low-
level trajectory optimizer to generate a safe trajectory (the
dark green dots) leading toward the subgoal. The high-level
RL policy outputs a subgoal (the red flag). The RL policy
continually updates the subgoal output to achieve the task.

violations while also enabling our agent to learn contact-rich
policies.

A. Safety-Embedded Markov Decision Process

In order to optimize the CMDP (Section III), we propose
to train an RL policy over a “Safety-Embedded Markov
Decision Process” (SEMDP). In the SEMDP, the state space
S remains the same as in the original MDP. We define a
modified action space A′ to be a set of parameters that will
be input into the trajectory optimizer. Specifically, we use a
subgoal position for the agent as the action space of the RL
agent in our experiments, which is the desired location of the
“root node” of the agent (see Appendix L for the definition of
the “root node”). The trajectory optimizer (described below)
will then find a safe trajectory for the agent to reach the
subgoal.

Based on this new RL action space A′ (defined as a
subgoal or parameters of the trajectory optimizer), we define
a new transition function P ′ : S × A′ × S → [0, 1]
which depends on the trajectory optimizer and the trajectory
following module. Given the current state st and action
a′t ∈ A′, the trajectory optimizer (details below) will plan a
safe trajectory to reach the subgoal. The trajectory-following
module will then take k actions in the original MDP to follow
the trajectory. Thus, the state st+1 that is reached after taking
action a′t depends on the operation of the trajectory optimizer
and the trajectory-following module. From the perspective
of the RL agent, this transition is recorded as the tuple
(st,a

′
t, st+1). Because the SEMDP is operating over k time

steps in the original MDP, the reward function r′(st,at) is
modified to be the accumulated reward over k steps.

Importantly, the SEMDP does not need to be a CMDP,
e.g. it does not include an explicit cost constraint. This is
because the cost is accounted for in the modified transition
function, which uses a trajectory optimizer to find a safe

trajectory to reach the subgoal. If the trajectory optimizer
finds a safe trajectory and if the trajectory-following module
correctly follows the trajectory, then all states visited by
the agent will be safe (i.e. they will have 0 costs). As we
will see, this change makes the RL optimization significantly
easier. Because the SEMDP does not need an explicit cost
constraint, we train the RL agent in the SEMDP with a
standard method for model-free reinforcement learning, i.e.
SAC [36] (details in Appendix J)

B. Trajectory Optimizer

The goal of the trajectory optimizer is to find a safe and
feasible trajectory to reach the subgoal a′t. In this work,
we discretize the trajectory into N waypoints, denoted as
X := {x1,x2, ...,xN}, in which xi defines the position of
the “root node” of the agent. We also define the velocity at
each waypoint as V := {v1,v1, ...,vN}.

Mathematically, we define the following constrained opti-
mization problem for the trajectory optimizer:

min
X,V

fgoal(X,a′t) s.t. hinit(X, st,x) ≤ δinit

hsmooth(X,V) ≤ δsmooth∑
i,j

hcost(xi,x
obs
j) ≤ 0,

(3)

in which st,x is the position of the root node of the agent at
time step t and δinit and δsmooth are constants that define
the constraint limits. We define each component of this
optimization problem below:

Subgoal-reaching Objective: The optimization objective
encourages the final waypoint of the trajectory to align with
the subgoal location a′t that was output by the RL policy:
fgoal(X,a′t) := ||xN − a′t||2 in which || · || denotes the
L2 distance. Note that subgoal reaching is in the objective
of this optimization but is not enforced as a constraint.
Thus, occasionally the trajectory optimizer will fail to find a
trajectory that reaches the subgoal a′t in order to satisfy the
safety constraints.

Initial position Constraint: The first constraint enforces
that the initial waypoint needs to be located at the current
position of the root node of the robot, st,x. The corresponding
cost function is defined as: hinit(X, st,x) := ||x1 − st,x||2.

Smoothness Constraint: The second constraint enforces
that the trajectory must be smooth. We assume that a
sufficiently smooth trajectory can be followed by the robot;
we leave for future work to incorporate a robot-specific feasi-
bility function based on the robot dynamics. We optimize for
the location of the waypoints and the corresponding velocity
at these waypoints. Non-smooth locations and changes in the
velocities are penalized. The smoothness cost is defined as:

hsmooth(X,V) :=
∑N−1

i=1

∥∥∥∥ xi+1 − xi − vi∆t
vi+1 − vi

∥∥∥∥2
K

in

which || · ||K is the Mahalanobis distance with a metric
given by K and ∆t is the time interval between two adjacent
waypoints; this smoothness cost is derived from a constant
velocity GP prior with an identity cost-weight; see prior
work [37], [38] for details.

Collision-avoidance Constraint: The last set of con-
straints enforces that the trajectory needs to avoid collisions
with obstacles. The cost of the ith waypoint with the jth
obstacle is defined as:

hcost(xi,x
obs
j) :=

{
0 if di,j > ϵ′

(ϵ′ − di,j)
2 otherwise , (4)

in which xobs
j denotes the location of the jth obstacle, di,j :=

||xi − xobs
j || denotes the distance between the ith waypoint

and the jth obstacle, and ϵ′ denotes a distance threshold.
We choose ϵ′ such that ϵ′ ≥ ϵ, in which ϵ is the distance
threshold specified by the problem definition in Equation 2,
to account for perception noise and errors in the trajectory-
following module.

We solve the constrained optimization problem in Equa-
tion 3 using the method of dual descent:

max
λ≥0

min
X,V

fgoal(X,a′t)+λT

 hinit(X, st,x)− δinit
hsmooth(X,V)− δsmooth∑

i,j hcost(xi,x
obs
j)

 .

(5)
The inner loop is optimized using a trajectory optimizer;
in practice, we use the Levenberg-Marquardt algorithm [39]
implemented in Theseus [40]. The outer loop is optimized
using gradient descent on λ. Please see Appendix O for more
implementation details about the trajectory optimizer.

C. Trajectory-Following Module

The trajectory optimizer outputs a set of waypoint lo-
cations; we ignore the velocities output by the trajectory
optimizer in the trajectory-following module, since their pur-
pose was only to define the smoothness cost hsmooth(X,V).
Next, we use a trajectory-following module that operates
in the original robot action space to track the waypoints.
Given the trajectory X := {x1,x2, ...,xN}, the trajectory-
following module selects the next waypoint xi and inputs the
waypoint to the goal-following agent to generate low-level
robot actions at = πϕ(st,xi).

Our overall system is agnostic to the form of the goal-
following agent; in our experiments, we train the goal-
following agent using reinforcement learning in an obstacle-
free environment with only the robot and a randomly sam-
pled goal. The goal-following agent is goal-conditioned
πϕ(st,g) and is trained to reach a goal g that is randomly
sampled around the robot. More implementation details
about the trajectory-following module are in Appendix N.

VI. EXPERIMENTS

We evaluate our method on Safety Gym simulation bench-
marks [9]. We also transfer the policy to a real-world task
of pushing a box around obstacles to a goal in Sec. VI-D.

A. Safety Gym Setup

Safety Gym [9] is a set of benchmark environments that
can be used to evaluate methods under a CMDP framework.
In our experiments, we focus on the challenging “Push”
tasks of Safety Gym, in which the robot has to push a
box towards a goal and avoid obstacles. The Push tasks

require reasoning about rich contacts between the robot
and the environment, while also reasoning about safety;
this environment is challenging for previous methods, which
would run into obstacles (high cost) or get stuck and cannot
finish the task (low reward). Previous work on Safety Gym
used a cost threshold of C=25 [9]; in contrast, we use a
stricter cost threshold of C=0 in our experiments for purposes
of evaluation. We evaluate our method with four different
robot morphologies: Point, Car, Mass, and Ant. Please refer
to Appendix R for details.

We compare our method to the state-of-the-art safe RL
methods: CPO [8], PPO-Lagrangian (PPO Lag), TRPO-
Lagrangian [9] (TRPO Lag), Safety Editor [41] (SE) and
Constrained Variational Policy Optimization [11] (CVPO)
using the author-provided code. Additionally, we also com-
pare to a safe exploration method [13], whose results are
shown in Appendix. D. Four seeds are used for each method
during training.

B. Safety Gym Results

The results during training are shown in Fig. 3. The results
in more difficult level 2 tasks PointPush2 and CarPush2 are
shown in Fig. 5 in Appendix. C. We smooth the curves
for better visualization. As shown, our method achieves
a much higher reward than the baselines with very little
incurred cost. We use a fixed λ during training to speed
up computation and to encourage exploration, which leads to
some safety violations during training; at test time, we adjust
λ to optimize Equation 5, leading to fewer safety violations.

We evaluate the converged policy at the final iteration of
training. Mean actions are chosen instead of sampled actions
from the policy. Each policy is evaluated for 50 episodes
and the average results are shown in Table I. An additional
analysis showing reward rather than success rate as the metric
is shown in Table IV in Appendix. A. The number of safety
errors from our method is reduced compared to training
because we adjust λ, unlike in training when λ is held fixed.

As noted previously, in prior work on Safety Gym, a cost
threshold of 25 was used [9]; in our experiments, we use a
stricter cost threshold of 0. This leads to significantly worse
performance for the Lagrangian methods, which are unable
to achieve a reasonable reward due to training instability.

C. Ablations and Additional Analysis

We perform additional ablation experiments to understand
the reason behind our method’s strong performance.

How much of our improvement over the baselines is
attributed to using a learned trajectory-following mod-
ule? First, note that we do not train a trajectory-following
module for the Mass agent, since we can directly command
this agent to any local delta position using its low-level
action space. As shown in the “MassPush1” experiments in
Fig. 3 and Table I, our method still significantly outperforms
the baselines. This demonstrates that the benefits of our
method are not from using a learned trajectory-following
module. We believe that the benefits come from training
an RL agent in a Safety-Embedded MDP defined by a safe

Fig. 3: Training curves of our method compared to the baseline methods. The shadow region denotes the standard error of
different seeds. Our method starts from 1e6 steps instead of 0 to denote the training of the goal-reaching policy. In these
experiments, the cost is defined as the total number of time steps for which the agent violates the safety constraints within
an episode. Our method achieves a lower cost than the baselines. It still incurs some cost during training because, during
training time, we are using a fixed Lagrangian parameter for computation reasons and to encourage exploration.

TABLE I: Evaluation results of the final converged policies; see text and Appendix. P for details. Experiments with a cost
exceeding 10 are marked in gray to indicate that they are not safe. See Table IV for the reward instead of the success rate.

SEMDP (ours) CPO [8] PPO Lag [9] TRPO Lag [9] SE[41] CVPO[11]
MassPush1 success rate 0.55 0.11 0.01 0.05 0.02 0

cost 0.00 28.00 1.41 0.00 3.01 0.80
PointPush1 success rate 0.84 0.77 0.00 0.08 0.03 0.00

cost 0.00 5.04 8.34 1.39 4.03 4.90
CarPush1 success rate 0.88 0.83 0.02 0.11 0.05 0.01

cost 0.00 14.44 2.28 3.64 0.47 23.5
AntPush1 success rate 0.79 0.02 0.00 0.00 0.00 0.00

cost 0.48 9.35 0.00 0.00 0.00 0.00
PointPush2 success rate 0.57 0.40 0.03 0.02 0.01 0.00

cost 0.00 27.40 4.81 4.73 0.44 17.60
CarPush2 success rate 0.58 0.38 0.01 0.00 0.01 0.00

cost 0.25 41.58 54.02 7.28 1.29 43.62

TABLE II: Evaluation results of our method and ablations.
Each method was trained for 1e7 environment interaction
steps. Experiments with a cost exceeding 10 are marked in
gray to indicate that they are not safe.

SEMDP (ours) SAC + PPO Lag
MassPush1 reward 4.31 14.62

cost 0.00 40.25
PointPush1 reward 5.69 -0.87

cost 0.00 24.16
CarPush1 reward 4.57 0.18

cost 0.00 6.75

trajectory optimizer. We also perform an experiment in which
we modify PPO Lagrangian to incorporate a trained goal-
reaching low-level agent (which we still outperform); see
details in Appendix F.

Do we need a trajectory optimizer? In this ablation, we

attempt to replace the safe trajectory optimizer with a learned
“safe” goal-reaching policy. Instead of using an optimization-
based trajectory optimizer, we use PPO Lagrangian to train
a low-level “safe goal reaching” policy with a reward of
reaching a randomly sampled goal and a cost constraint
of avoiding obstacles. The high-level policy is trained with
SAC, the same as in our method, to output subgoals for
the low-level goal-reaching agent. The intention of this
experiment is to be as similar to our method as possible
but replace the trajectory optimizer with a low-level goal-
reaching agent trained with safe RL. The results of this
experiment can be found in Table II, referred to as “SAC +
PPO Lag.” As can be seen, this method also performs poorly,
demonstrating that a safe trajectory optimizer is needed to
ensure safety; training a cost-aware low-level agent with PPO
Lagrangian is not sufficient to obtain safe performance.

Ours

TRPO Lag

Ours

TRPO Lag

t

Fig. 4: We set up a real-robot environment similar to the Safety Gym Push task. The fingertip of the Franka robot (pink) is
used to push the box (black) toward the goal (green). It needs to avoid hazards (red) and avoid getting stuck at the pillar
(blue). Each row shows four frames of a single episode. We compare our method with TRPO Lagrangian, which has the
best performance among the baselines based on the simulation experiments.

TABLE III: Results of the real robot experiment. While both
methods have 0 cost in the real world, our method achieves
a higher success rate and reward than the baseline.

Method Succ rate reward cost
SEMDP (ours) 8/10 1.33 0

TRPO Lag 0/10 0.22 0

D. Real-Robot Experiments

We use a real-robot version of the Push task for evaluation,
using a Franka Panda gripper. The details of the experiments
are shown in Appendix. R. In this experiment, the fingertip
of the gripper moves in a plane to push the box toward the
goal. As in the simulation setup, the robot also needs to avoid
hazards and try not to get stuck by the pillar. The real robot
experiment is shown in Fig. 4. An episode is considered
successful if the robot is able to push the box into the goal
region within 60 time steps.

We compare our method with TRPO Lagrangian. We
evaluate each method with 10 different layouts; evaluating
each layout with both our method and the baseline. The
results are shown in Table III. Both methods are safe in
the real world, but our method has a much higher success
rate and reward. The reasons for the failure of our method
include timing out or getting stuck around the obstacles. For
the TRPO Lagrangian baseline, the robot is able to move
towards the box but is not successful in pushing the box to

the goal, which also matches its performance in simulation.

VII. LIMITATIONS AND CONCLUSIONS

The main limitations of our system are the assumptions
mentioned in Sec. IV. Further, even with a safe trajectory
optimizer, it is still hard to guarantee safety in practice, due
to perceptual errors or modeling inaccuracies. In our case, we
also use a learned trajectory-following module which might
not follow the trajectory perfectly; a model-based trajectory
optimizer that takes into account the agent dynamics could
be used here to ensure feasible trajectories. We leave such
an extension of our method for future work.

In conclusion, we propose a hierarchical framework, in
which the RL agent optimizes the reward in a modified MDP
which is embedded with a trajectory optimization algorithm
to ensure safety. We test our method on Safety Gym bench-
marks and a real-robot pushing task, demonstrating better
performance than the baselines in terms of both rewards
and costs. In future work, our framework can be generalized
in that the RL agent can output any parameters that define
the objective for the trajectory optimizer, and the trajectory
optimizer can take any form as long as it is compatible
with the output of the RL policy. We believe our work will
contribute to the field of safe robot learning by demonstrating
the importance of combining RL and trajectory optimization
in safety-constrained optimization tasks.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013.

[2] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew,
A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas, et al., “Solving
rubik’s cube with a robot hand,” arXiv preprint arXiv:1910.07113,
2019.

[3] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. Mc-
Grew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray, et al.,
“Learning dexterous in-hand manipulation,” The International Journal
of Robotics Research, vol. 39, no. 1, pp. 3–20, 2020.

[4] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yo-
gamani, and P. Pérez, “Deep reinforcement learning for autonomous
driving: A survey,” IEEE Transactions on Intelligent Transportation
Systems, vol. 23, no. 6, pp. 4909–4926, 2021.

[5] H. A. Pierson and M. S. Gashler, “Deep learning in robotics: a review
of recent research,” Advanced Robotics, vol. 31, no. 16, pp. 821–835,
2017.

[6] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” The Journal of Machine Learning
Research, vol. 17, no. 1, pp. 1334–1373, 2016.

[7] E. Altman, Constrained Markov decision processes: stochastic mod-
eling. Routledge, 1999.

[8] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy
optimization,” in International Conference on Machine Learning.
PMLR, 2017, pp. 22–31.

[9] A. Ray, J. Achiam, and D. Amodei, “Benchmarking safe exploration in
deep reinforcement learning,” arXiv preprint arXiv:1910.01708, vol. 7,
2019.

[10] Y. As, I. Usmanova, S. Curi, and A. Krause, “Constrained
policy optimization via bayesian world models,” arXiv preprint
arXiv:2201.09802, 2022.

[11] Z. Liu, Z. Cen, V. Isenbaev, W. Liu, S. Wu, B. Li, and D. Zhao,
“Constrained variational policy optimization for safe reinforcement
learning,” in International Conference on Machine Learning. PMLR,
2022, pp. 13 644–13 668.

[12] T.-H. Pham, G. De Magistris, and R. Tachibana, “Optlayer-practical
constrained optimization for deep reinforcement learning in the real
world,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 6236–6243.

[13] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and
Y. Tassa, “Safe exploration in continuous action spaces,” arXiv
preprint arXiv:1801.08757, 2018.

[14] A. K. Jayant and S. Bhatnagar, “Model-based safe deep reinforcement
learning via a constrained proximal policy optimization algorithm,”
arXiv preprint arXiv:2210.07573, 2022.

[15] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and
U. Topcu, “Safe reinforcement learning via shielding,” in Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

[16] F. Berkenkamp, M. Turchetta, A. P. Schoellig, and A. Krause, “Safe
model-based reinforcement learning with stability guarantees,” arXiv
preprint arXiv:1705.08551, 2017.

[17] T. Koller, F. Berkenkamp, M. Turchetta, and A. Krause, “Learning-
based model predictive control for safe exploration,” in 2018 IEEE
Conference on Decision and Control (CDC). IEEE, 2018, pp. 6059–
6066.

[18] D. Ding, K. Zhang, T. Basar, and M. Jovanovic, “Natural policy
gradient primal-dual method for constrained markov decision pro-
cesses,” Advances in Neural Information Processing Systems, vol. 33,
pp. 8378–8390, 2020.

[19] S. Bohez, A. Abdolmaleki, M. Neunert, J. Buchli, N. Heess, and
R. Hadsell, “Value constrained model-free continuous control,” arXiv
preprint arXiv:1902.04623, 2019.

[20] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh,
“A lyapunov-based approach to safe reinforcement learning,” arXiv
preprint arXiv:1805.07708, 2018.

[21] T. Xu, Y. Liang, and G. Lan, “Crpo: A new approach for safe
reinforcement learning with convergence guarantee,” in International
Conference on Machine Learning. PMLR, 2021, pp. 11 480–11 491.

[22] T.-Y. Yang, J. Rosca, K. Narasimhan, and P. J. Ramadge,
“Projection-based constrained policy optimization,” arXiv preprint
arXiv:2010.03152, 2020.

[23] M. Likhachev, G. J. Gordon, and S. Thrun, “Ara*: Anytime a* with
provable bounds on sub-optimality,” Advances in neural information
processing systems, vol. 16, 2003.

[24] S. Koenig and M. Likhachev, “Dˆ* lite,” Aaai/iaai, vol. 15, pp. 476–
483, 2002.

[25] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” The international journal of robotics re-
search, vol. 17, no. 7, pp. 760–772, 1998.

[26] T. Howell, N. Gileadi, S. Tunyasuvunakool, K. Zakka, T. Erez, and
Y. Tassa, “Predictive sampling: Real-time behaviour synthesis with
mujoco,” arXiv preprint arXiv:2212.00541, 2022.

[27] T. A. Howell, S. L. Cleac’h, K. Tracy, and Z. Manchester, “Calipso:
A differentiable solver for trajectory optimization with conic and
complementarity constraints,” arXiv preprint arXiv:2205.09255, 2022.

[28] T. A. Howell, S. Le Cleac’h, S. Singh, P. Florence, Z. Manchester,
and V. Sindhwani, “Trajectory optimization with optimization-based
dynamics,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp.
6750–6757, 2022.

[29] M. Bhardwaj, B. Boots, and M. Mukadam, “Differentiable gaussian
process motion planning,” in 2020 IEEE international conference on
robotics and automation (ICRA). IEEE, 2020, pp. 10 598–10 604.

[30] K. Li and J. Malik, “Learning to optimize,” arXiv preprint
arXiv:1606.01885, 2016.

[31] B. Amos, I. Jimenez, J. Sacks, B. Boots, and J. Z. Kolter, “Differen-
tiable mpc for end-to-end planning and control,” Advances in neural
information processing systems, vol. 31, 2018.

[32] M. Vlastelica, S. Blaes, C. Pinneri, and G. Martius, “Risk-averse zero-
order trajectory optimization,” in 5th Annual Conference on Robot
Learning, 2021.

[33] M. Schrum, M. J. Connolly, E. Cole, M. Ghetiya, R. Gross, and
M. C. Gombolay, “Meta-active learning in probabilistically safe opti-
mization,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp.
10 713–10 720, 2022.

[34] F. Xia, C. Li, R. Martı́n-Martı́n, O. Litany, A. Toshev, and S. Savarese,
“Relmogen: Integrating motion generation in reinforcement learning
for mobile manipulation,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2021, pp. 4583–4590.

[35] Y. Jiang, F. Yang, S. Zhang, and P. Stone, “Integrating task-motion
planning with reinforcement learning for robust decision making in
mobile robots,” arXiv preprint arXiv:1811.08955, 2018.

[36] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning. PMLR,
2018, pp. 1861–1870.

[37] T. D. Barfoot, C. H. Tong, and S. Särkkä, “Batch continuous-time
trajectory estimation as exactly sparse gaussian process regression.”
in Robotics: Science and Systems, vol. 10. Citeseer, 2014, pp. 1–10.

[38] M. Mukadam, J. Dong, X. Yan, F. Dellaert, and B. Boots, “Continuous-
time gaussian process motion planning via probabilistic inference,”
The International Journal of Robotics Research, vol. 37, no. 11, pp.
1319–1340, 2018.

[39] S. Wright, J. Nocedal, et al., “Numerical optimization,” Springer
Science, vol. 35, no. 67-68, p. 7, 1999.

[40] L. Pineda, T. Fan, M. Monge, S. Venkataraman, P. Sodhi, R. Chen,
J. Ortiz, D. DeTone, A. Wang, S. Anderson, et al., “Theseus:
A library for differentiable nonlinear optimization,” arXiv preprint
arXiv:2207.09442, 2022.

[41] H. Yu, W. Xu, and H. Zhang, “Towards safe reinforcement learning
with a safety editor policy,” arXiv preprint arXiv:2201.12427, 2022.

[42] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 5026–5033.

APPENDIX

A. Evaluation with Reward

In Sec. VI-B, we evaluated each method in terms of
success rate. In Table IV we present an additional analysis
in terms of the sum of rewards in each episode. Note that,
to compute the success rate for Table I, we terminate each
episode when the box reaches the goal; on the other hand,
in this experiment, we continuously sample a new goal until
it reaches 1000 steps. As a result, the cost in Table IV is
slightly different than the cost in Table I since the episode
termination criteria is defined differently. In the Ant agent
environment, we also terminate the episode when the agent
flips over and cannot recover.

B. Time Used for Inference

Adding an additional layer of trajectory optimization does
require more time during inference. For example, The av-
erage time for inference in our method is 0.083 seconds.
The inference time used in CPO, PPO Lagrangian, and
TRPO Lagrangian is all 0.00017 seconds. Specifically, in
our method, the trajectory optimization module contributes
most to the inference time. the trajectory optimization re-
plans every 10 time steps, while the average time used for
trajectory optimization itself is 0.76 seconds.

The inference for the baselines mentioned above is very
fast since there is no planning during the inference. Instead,
observations are passed into a three-layer neural network to
obtain low-dimensional actions.

C. Additional Training Curves

The training curves of our method and the baseline meth-
ods in PointPush2 and CarPush2 are shown in Fig. 5. These
two tasks are harder than PointPush1 and CarPush1 since
they have more obstacles in their environment.

D. Safe Exploration Experiments

Safe exploration, which is considered another line of work
in safe RL, also focuses on satisfying safety constraints for
reinforcement learning agents. Compared to the safe RL
methods mentioned in the main text, additional information
such as an explicit dynamics models used to predict the
future states given the action sequence,is usually assumed to
be given. Still, we compare our method with the Safety Layer
method [13]. In the Safety Layer method, we first randomly
sampled actions for 1e6 time steps to train the cost function
which is used to set up the safety layer. Then the safety
layer is combined with SAC to train a safe RL agent. We
compare it with our method in the PointPush1 environment.
The results are shown in Fig. 6, with our method shown in
blue and the baseline shown in orange. This result shows
that Safety Layer cannot outperform our method in terms of
either reward or cost. It is generally hard to train an accurate
cost function in practice, leading to poor performance by this
method.

E. Adjusting the Trade-off between Reward and Cost

We can adjust the trade-off between the reward and the
cost during test time in the proposed method. Specifically,
we can adjust the threshold ϵ′ defined in Equation 2. The
results are summarized in Fig. 7. As a comparison, we also
include three baselines: CPO, PPO-Lagrangian, and TRPO-
Lagrangian.

From Fig. 7, smaller ϵ′ might lead to a less conservative
agent with higher reward and higher cost. Nonetheless, our
method has the higher reward and lower cost compared to
the baselines across different values of ϵ′.

F. How much of our improvement over the baselines is
attributed to using a learned trajectory-following module

As an additional experiment to understand the effects of a
trajectory-following module, we modify two of the baselines
to incorporate a trained goal-reaching low-level agent. It is
trained in the same way as the goal-reaching agent for our
method except that the subgoal is randomly sampled to match
the inference distribution. Note that this goal-reaching agent
does not incorporate any safey constraints. Thus for this
baseline, we use PPO Lagrangian to train a high-level policy
that outputs a (hopefully safe) subgoal. The results of this
experiment can be found in Table V, referred to as “PPO
Lag + SAC.” The results for the Mass agent are left blank
since the Mass agent does not require learning a low-level
goal-reaching policy. As can be seen, “PPO Lag + SAC”
performs poorly, incurring a low reward and many safety
violations. Though “PPO Lag + SAC” performs slightly
better than the PPO Lagrangian method, there is still a huge
performance gap compared to our method. This demonstrates
that the benefits of our method do not come directly from the
trajectory-following module; incorporating such a module
into the baselines still leads to poor performance.

G. How much is our performance affected by perceptual
errors?

As noted, some of the errors in our system come from
perceptual errors, in which the location of the obstacles is
perturbed by some noise in the Safety Gym. To measure the
effect of these errors, we perform an experiment in which we
allow our trajectory optimizer to have access to the ground-
truth location of the obstacles, while the RL agent still takes
in the noisy LiDAR observations as input. The results can
be found in Table V and it is denoted as “SEMDP w/ gt”.
As expected, the performances for all the environments have
increased. The MassPush1 task has the greatest improvement
in reward by switching to ground-truth locations. This is
because perception errors are the major source oferrors for
the Mass agent, for which the agent dynamics are relatively
simple.

H. Experiments with Safety Gym Goal Tasks

We evaluate our method with an additional task, the
“Goal” task in SafetyGym [9]. In the Goal task, the robot
itself needs to go to a specific goal and avoid obstacles
instead of moving an object to the goal. The results are

0 2 4 6 8
 1e6

2

0

2

4

6

8

Re
wa

rd

PointPush2

0 2 4 6 8
 1e6

2

0

2

4

6

8

CarPush2

0 2 4 6 8
TimeInteractions 1e6

0

20

40

60

Co
st

0 2 4 6 8
TimeInteractions 1e6

0

20

40

60

TRPO Lag PPO Lag CPO Safety Editor CVPO Ours

Fig. 5: Additional training curves of our method compared to the baseline methods. The shadow region denotes the standard
error of different seeds. Our method starts from 1e6 steps instead of 0 to denote the training of the goal-reaching policy.
Our method achieves a lower cost than the baselines. It still incurs some cost during training because, during training time,
we are using a fixed Lagrangian parameter for computation reasons and to encourage exploration.

0.0 0.2 0.4 0.6 0.8 1.0
TimeInteractions 1e7

2

0

2

4

6

8

Re
wa

rd

PointPush1
method_id

Safety Layer
Ours

0.0 0.2 0.4 0.6 0.8 1.0
TimeInteractions 1e7

0

10

20

30

40

50

Co
st

PointPush1
method_id

Safety Layer
Ours

Fig. 6: Comparison between our method and the Safety Layer method. [13].

PointPush1 CarPush1

0.3

0.4
0.50.60.7

0.3

0.40.50.6

Fig. 7: Trade-off between the reward and the cost for different methods. The blue dots represent our method with different
ϵ′. The numbers above the blue dots denote the value of ϵ′.

TABLE IV: Evaluation results of the final policy, using an adaptive Lagrangian parameter for our method. See text and
Appendix. P for details.

SEMDP (ours) CPO [8] PPO Lag [9] TRPO Lag [9] SE [41] CVPO [11]
MassPush1 reward 4.18 0.78 -2.26 -0.39 0.36 -1.95

cost 0.00 31.48 2.6 0.05 10.43 2.75
PointPush1 reward 5.29 5.47 -5.61 0.68 0.62 -0.12

cost 0.00 16.45 6.61 0.45 5.16 0.00
CarPush1 reward 6.47 4.4 -2.34 0.45 0.58 5.34

cost 0.03 30.35 3.17 1.46 0.92 22.00
AntPush1 reward 6.55 0.12 0.24 -0.02 0.01 0.05

cost 0.48 0.01 0.00 0.00 0.85 0.00
PointPush2 reward 3.47 2.05 -7.62 0.18 0.22 0.85

cost 0.08 32.63 11.95 4.20 0.01 11.25
CarPush2 reward 4.22 2.92 0.24 0.18 -0.55 -7.45

cost 0.29 52.40 4.16 3.29 1.49 51.13

TABLE V: Evaluation results of our method and ablations. Each method was trained for 1e7 environment interaction steps..

SEMDP (ours) PPO Lag + SAC SEMDP w/ gt
MassPush1 reward 4.31 10.00

cost 0.00 0.00
PointPush1 reward 5.69 0.16 5.70

cost 0.00 1.41 0.00
CarPush1 reward 4.57 0.15 5.33

cost 0.00 5.58 0.00

shown in Fig. 8. Our method still achieves the lowest cost
and a relatively high reward during training.

I. Analyzing the Ablations

In Section VI-C, we discussed an ablation called “SAC
+ PPO Lag” in which we train a low-level policy to safely
reach goals with PPO Lagrangian, and then we use SAC to
output subgoals (see Section VI-C for further discussion). In
this section, we analyze why this method appears to perform
so poorly in Table I.

The training curves for the low-level safe goal-reaching
policy trained with PPO Lagrangian are shown in Fig. 9. As
can be seen, these policies do not learn to be safe and the
cost during training is always above 0. Hence, integrating
such a low-level policy with a high-level SAC agent leads
to poor overall performance for “SAC + PPO Lag” baseline.
This experiment highlights the difficulties of training even a
safe short-horizon policy with PPO Lagrangian.

J. Training Curves of the Ablations

The training curve of ablation methods are shown in
Fig. 10 which corresponds to the results in Table I. The
ablations have much higher cost than our method during
training and significantly higher cost than our method during
inference (in which our method obtains 0 cost) as shown in
Table I.

K. Pseudocode

The pseudocode for our method can be found in Algo-
rithm 1.

Algorithm 1 Reinforcement Learning in a Safety-Embedded
MDP with Trajectory Optimization

Require: RL policy output interval k, goal-following agent
πϕ.
Initialize the replay buffer D, high-level RL policy πθ.
for each episode do

for each environment step do
Select subgoal: a′t ∼ πθ(st).
Input the subgoal a′t to the trajectory optimizer to

obtain a safe trajectory: X← TrajOpt(st,a′t).
Initialize cumulative reward rt ← 0.
Initialize the initial state st,i ← st.
for i = 1 to k do

Follow the trajectory:
at,i ← TrajFollow(st,i,X, πϕ).
Execute at,i and observe reward rt,i and st,i.
Sum the reward rt ← rt + rt,i.

end for
Save the final state: st+1 ← st,k.
Store the transition (st,a

′
t, st+1, rt) into D.

Update the policy πθ on data from D.
end for

end for

L. Definition of “Root” Node

In MuJoCo, a robot is defined in a tree structure. Specif-
ically, a robot is usually defined by mounting the adjacent
link onto the previous link. The root node of the robot is
the root body of the tree structure. In our experiments, it
is usually the body of the robot. Thus the location of the

0.0 0.2 0.4 0.6 0.8 1.0
 1e7

0

5

10

15

20

25

Re
wa

rd

PointGoal1

0.0 0.2 0.4 0.6 0.8 1.0
 1e7

0

5

10

15

20

25

CarGoal1

0.0 0.2 0.4 0.6 0.8 1.0
TimeInteractions 1e7

10

0

10

20

30

40

50

60

Co
st

0.0 0.2 0.4 0.6 0.8 1.0
TimeInteractions 1e7

10

0

10

20

30

40

50

60

Ours TRPO Lag PPO Lag CPO

Fig. 8: Training curves of our methods compared to the baseline methods in the Goal environment. The curves have been
smoothed for better visualization. Our method starts from 1e6 steps instead of 0 to denote the training of the goal-reaching
policy. Our method achieves the lowest cost among all the baseline methods.

0.0 0.5 1.0 1.5 2.0
TimeInteractions 1e7

0

2

4

6

8

Re
wa

rd

Reward

0.0 0.5 1.0 1.5 2.0
TimeInteractions 1e7

0

20

40

60

80

100

Co
st

Cost
Mass Point Car

Fig. 9: Training curves of the goal-reaching policies used in “SAC + PPO Lag”.

root node can be interpreted as the center of the robot. The
position of the root node is shown in Fig. 11. The small blue
sphere inside the robot denotes the position of the root node.

M. Implementation Details about the RL policy

We use Soft Actor-Critic (SAC) [36] to train the high-level
policy. The actor network and the critic network are three-
layer neural networks with a hidden size of 256. The learning
rate for training is set to be 3e−4. The agent interacts with
the environment for 1e7 time steps to ensure it has fully
converged.

N. Additional Details about the Trajectory-following Module

Training of the goal-following agent: The goal xi is
sampled uniformly from a range of dmin to 2dmin away from
the robot to match the input distribution during inference, in
which dmin is a distance threshold. The reward function used
for training the goal-following agent is defined as the change
in distance between the robot and the goal:

rgt := ||st−1,x − g|| − ||st,x − g||. (6)

SAC is used to train the goal-following agent. The actor net-
work and the critic network are three-layer neural networks
with a hidden size of 256. dmin is set to be 0.2m. The agent
interacts with the environment for 1e6 time steps to ensure

0.0 0.2 0.4 0.6 0.8 1.0
 1e7

0

2

4

6

8

10

12

14

Re
wa

rd

MassPush1

0.0 0.2 0.4 0.6 0.8 1.0
 1e7

0

2

4

6

8

10

12

14

PointPush1

0.0 0.2 0.4 0.6 0.8 1.0
 1e7

0

2

4

6

8

10

12

14

CarPush1

0.0 0.2 0.4 0.6 0.8 1.0
TimeInteractions 1e7

10

0

10

20

30

40

50

60

70

Co
st

0.0 0.2 0.4 0.6 0.8 1.0
TimeInteractions 1e7

10

0

10

20

30

40

50

60

70

0.0 0.2 0.4 0.6 0.8 1.0
TimeInteractions 1e7

10

0

10

20

30

40

50

60

70

Ours SAC+PPO_Lag PPO_Lag+SAC

Fig. 10: Training curves of our method and 2 ablations (see Section VI-C for details on these methods).

(a) Point and Mass (b) Car

(c) Ant

Fig. 11: Root node position of different robots shown by the
location of the small blue sphere.

it has fully converged.
Choosing a waypoint to follow: In the trajectory-

following module, the trajectory is represented as a set of
waypoints. However, the goal-following agent only takes in
a single goal as input. Thus, we use the following procedure
to select a waypoint from the set for the goal-following agent:

1) The agent keeps track of the waypoint that is input
into the goal-following agent (“tracking point”). The
tracking point is initialized as the first waypoint of the

trajectory.
2) At each time step, the agent searches from the tracking

point to the end of the trajectory until it finds a
waypoint that is at least dmin away from the current
robot root position. It sets the point as the tracking
point for the current time step. It is possible that the
tracking point is the same as the previous time step.

O. Additional Details about the Trajectory Optimizer
Hyperparameters: The distance threshold ϵ′ is set to

be 0.5m during training for all of the robots. The number
of waypoints is set to be 30. The maximum time step for
optimizing the trajectory is set to be 10 steps during training.
If the robot is currently within ϵ′ of some obstacle, we would
manually set λ to be the maximum value λmax to encourage
the robot to escape the unsafe region as quickly as possible.

Accelerate the training: In practice, since the Lagrangian
method adds computational overhead, we use a fixed λ
during training, which speeds up training time and also
encourages exploration (although this leads to some safety
violations during training). At test time, we update λ as
mentioned previously, which ensures safety at test time.

Implementation simplifications: In our experiments, in-
stead of using three distinctive Lagrangian values for the
three constraints mentioned in equation 3 respectively, we
use a single Lagrangian value λ for all 3 constraints, to
simplify our implementation.

To solve the dual problem mentioned in Equation 5,
instead of using gradient descent to update λ, in practice,
we follow a simpler procedure of increasing λ if the obstacle
constraints are violated until the optimizer returns a feasible
solution. This is effective since the cost function is always
greater than or equal to 0.

P. Training Details in the Evaluation Experiment

For each experiment, we train four different seeds to
account for randomness.

For our method, we train it for 9e6 steps in all the en-
vironments. For CPO, PPO Lagrangian, TRPO Lagrangian,
we train them for 6e7 in MassPush1, PointPush1, CarPush1,
PointPush2, and CarPush2, and we train them for 1e7 in
AntPush1. For Safety Editor and CVPO, we train them for
1e7 for all the environments. The baseline methods have
more time steps to ensure convergence.

Q. Implementation Details of Training the Goal-reaching
Policy

For our method and the “PPO Lag + SAC” ablation, we
use SAC to train the goal-reaching policy. In our method, we
sample the goal from a range of dmin to 2dmin. Specifically,
dmin is set to be 0.2m in our experiment to match the
average distance between waypoints in the trajectory. For the
“PPO Lag + SAC” ablation, we sample the goal randomly
from a 2m× 2m area to match the distribution of subgoals
output from the high-level PPO Lagrangian agent.

R. Real-robot Experiment Details

In the real-robot experiment, the fingertip of the gripper
moves in a plane to push the box towards the goal (the large
green circle). As in the simulation setup. the robot also needs
to avoid hazards (the small red circle) and try not to get stuck
by the pillar (blue).

In order to match the observation distribution seen during
training, we convert the location of the objects into LiDAR
readings in a similar format to the Safety Gym Pseudo
LiDAR.

In this experiment, we first train the policy in simulation.
We modify the simulation environment to match the setup
in the real world, e.g., we change the size of objects and
the shape of the robot in the simulation. Then we directly
transfer the policy to the real robot without any finetuning.

S. Safety Gym Objects

The following types of objects exist in the environments
for the Push tasks:

1) Goal indicates where the robot needs to reach. As long
as the robot is within a specific range of the goal, the
task is considered successful.

2) Hazard denotes circular regions that the robot should
not enter. It is a virtual region and does not interact
with the robot. The robot entering such a region will
incur the cost. It is defined as obstacles in our method.

3) Pillar is a fixed cylinder; contact with the pillar will
not incur any cost. Though contacting with pillar might
now incur cost, the robot might get stuck. Thus, it is
also defined as an obstacle in our method.

4) Box is an object that the robot can (and must) interact
with: the goal is for the agent to push the box towards
the goal. If the box enters the hazard regions, it will
not incur any cost.

T. Safety Gym agent

There are four different kinds of agents in our Safety Gym
experiments: Point, Car, Mass, and Ant. The Point and Car
are two default agents from the Safety Gym benchmark;
the Point agent is a robot with one actuator for turning
and another actuator for moving forward or backward. The
Car agent is a robot with two independently driven wheels.
We created the Mass agent, which is an omnidirectional
agent; the action space of the Mass agent is defined as a
delta movement of the agent position. The Ant agent is a
quadrupedal agent with eight joints, similar to the Ant agent
from MuJoCo [42].

U. Reward Function

The reward function for the “Push” task is defined as the
change in the distance between the robot and the box and
between the box and the goal:

rpt := ||xb
t−1−g||−||xb

t−g||+||st−1,x−xb
t−1||−||st,x−xb

t ||,
(7)

in which xb
t denotes the location of the center of the box at

the t th step, and g denotes the location of the final goal that
the box needs to reach.

V. Cost Function

The cost function is defined as:

cpt := 1(min
j
||st,x − xobs

j || < ϵ), (8)

in which 1 is the indicator function, and ϵ is a distance
threshold. The cost function will return 1 if the “root” of the
robot is within ϵ of any obstacle.

W. Observation Space

The observation space of the Safety Gym environment
consists of LiDAR observation and robot states. The LiDAR
observation returns an approximate position of the objects,
due to the limited LiDAR resolution. The robot states consist
of robot velocity, acceleration, and orientation.

X. Reasons of Safety Violations

Though our trajectory optimizer is formulated to com-
pletely avoid obstacles, in practice, the executed trajectory
might not be perfectly safe, due to perception errors or
errors with the trajectory-following module. Specifically,
there might be errors in practice due to a number of factors:

1) Localization errors in estimating the robot position st,x
2) Perception errors in estimating the locations of the

obstacles xobs
j

3) Errors in following the planned trajectory
4) Discretization errors: since the planned trajectory is

a discrete set of waypoints X := {x1,x2, ...,xN},
it is possible that the agent will encounter an unsafe
state in between the trajectory waypoints that was not
accounted for in the trajectory optimization.

5) It is possible that no safe trajectory exists from the
robot’s current state.

Y. Additional Limitations for SEMDP

The cost function is given: The cost function needs to be
known a priori for SEMDP, which is an additional strong as-
sumption compared to the other safe RL and safe exploration
methods. We argue that we focus on tasks which require
avoiding obstacles. Obstacle avoidance is a very common
safety criterion in robotics tasks and assuming knowing the
requirement a prior will not lose much generality.

How can SEMDP generalize beyond navigation tasks:
We evaluate our algorithm on goal-reaching tasks and box-
pushing tasks in our paper. Those tasks are essentially
navigation tasks. Our algorithm framework is designed to
generalize to any tasks that can be decomposed into a
sequence of subgoals. The subgoal does not have to be a
3-D position where the robot root needs to reach. It can also
be the end effector position that the robot needs to reach.
Moreover, subgoals can also be defined as joint angles, which
can be applied to manipulation tasks. The application of the
framework in manipulation tasks will be left for future work.

Z. Code Release

Our code is available at
https://github.com/safetyembedded/SafetyEmbeddedMDP.

https://github.com/safetyembedded/SafetyEmbeddedMDP

	INTRODUCTION
	RELATED WORK
	Background: Constrained Markov Decision Process
	Problem Statement and Assumptions
	Method: Reinforcement Learning with Safety-embedded MDP
	Safety-Embedded Markov Decision Process
	Trajectory Optimizer
	Trajectory-Following Module

	Experiments
	Safety Gym Setup
	Safety Gym Results
	Ablations and Additional Analysis
	Real-Robot Experiments

	Limitations and Conclusions
	References
	Appendix
	Appendix
	Evaluation with Reward
	Time Used for Inference
	Additional Training Curves
	Safe Exploration Experiments
	Adjusting the Trade-off between Reward and Cost
	How much of our improvement over the baselines is attributed to using a learned trajectory-following module
	How much is our performance affected by perceptual errors?
	Experiments with Safety Gym Goal Tasks
	Analyzing the Ablations
	Training Curves of the Ablations
	Pseudocode
	Definition of ``Root'' Node
	Implementation Details about the RL policy
	Additional Details about the Trajectory-following Module
	Additional Details about the Trajectory Optimizer
	Training Details in the Evaluation Experiment
	Implementation Details of Training the Goal-reaching Policy
	Real-robot Experiment Details
	Safety Gym Objects
	Safety Gym agent
	Reward Function
	Cost Function
	Observation Space
	Reasons of Safety Violations
	Additional Limitations for SEMDP
	Code Release

