
SG-Bot: Object Rearrangement via
Coarse-to-Fine Robotic Imagination on Scene Graphs

Guangyao Zhai1, Xiaoni Cai1, Dianye Huang1, Yan Di1,†

Fabian Manhardt2, Federico Tombari1,2, Nassir Navab1 and Benjamin Busam1

https://sites.google.com/view/sg-bot

Unknown

 Observation

Plate

Fork

Knife

Teapot

Pitcher

Behind

Left of

Right of; Close by

Front of

Right of

Front of; Right of

According to the rules,
the objects should have relationships shown above...

How does this scene look like?

Plate Teapot Fork

Knife Pitcher

Initial

Initial

Goal Imagination

Matching

Okay, I need to remove the
unknown object, and then put the
knife to the right of the plate...

They now look tidy!

Initial

Goal

I observe a plate
with a fork and a knife,

a teapot, a pitcher, and an unknown object.

Unknown

 Imagination Execution

Fig. 1. SG-Bot workflow. SG-Bot designs a three-fold procedure for robotic rearrangement. The cluttered initial scene is first perceived and processed
into individual object nodes in Observation. Then, these objects are transitioned into the Imagination phase, where scene graph representation is adopted to
facilitate the coarse-to-fine goal scene imagination, fusing all available priors and user commands. Finally, robotic action policies are generated in Execution
by matching the initial and goal scenes. SG-Bot is lightweight, real-time, and controllable.

Abstract— Object rearrangement is pivotal in robotic-
environment interactions, representing a significant capabil-
ity in embodied AI. In this paper, we present SG-Bot, a
novel rearrangement framework that utilizes a coarse-to-fine
scheme with a scene graph as the scene representation. Unlike
previous methods that rely on either known goal priors or
zero-shot large models, SG-Bot exemplifies lightweight, real-
time, and user-controllable characteristics, seamlessly blending
the consideration of commonsense knowledge with automatic
generation capabilities. SG-Bot employs a three-fold procedure–
observation, imagination, and execution–to adeptly address the
task. Initially, objects are discerned and extracted from a
cluttered scene during the observation. These objects are first
coarsely organized and depicted within a scene graph, guided
by either commonsense or user-defined criteria. Then, this scene
graph subsequently informs a generative model, which forms a
fine-grained goal scene considering the shape information from
the initial scene and object semantics. Finally, for execution,
the initial and envisioned goal scenes are matched to formulate
robotic action policies. Experimental results demonstrate that
SG-Bot outperforms competitors by a large margin.

I. INTRODUCTION

Object rearrangement is an essential but challenging task
in robot-environment interaction, marking a crucial capa-
bility in embodied AI [1]. This interactive ability attains
its zenith of automation by synergizing vision [2], [3], [4],
[5], textual insights from sources [6], [7], [8], and strategic
motion planning [9], [10]. Together, these elements culminate
in a sophisticated physical embodiment for robots.

Robotic rearrangement refers to the process wherein a
robotic agent, starting from an initial configuration within a

1 Technical University of Munich. 2 Google. † Corresponding author.

scene, re-positions objects according to specific rules or in-
structions. The purpose is to achieve desired goal states, rely-
ing solely on sensory data and onboard perceptions. Recently
proposed vision-based solutions to this task can be catego-
rized into three approaches: utilizing known geometric and
semantic goal states, sequential object pose estimation,
and zero-shot rearrangement with large models. Typically,
for goal-guided methods [11], [12], the quality of such priors
significantly affects the accuracy of the rearrangement. When
the goal state is unavailable, such methods become inappli-
cable for real-world use. Moreover, for pose estimation based
approaches [13], while the sequential design aligns well with
robotic manipulations, it can be affected by cumulative errors
in autoregressive predictions. The last type of methods [14],
[15], [16], [17], [18] tap into commonsense knowledge stored
in zero-shot models. They necessitate either intricate post-
filter procedures or prompt template designs, which tend to
overlook scene-specific contextual cues and result in diverse
undesired outcomes.

Orthogonal to the above methodologies, we explore a
novel rearrangement routine embodied as SG-Bot, using
goal imagination on scene graphs and goal-guided object
matching as shown in Fig. 1. SG-Bot stacks three stages for
the task, which are observation, imagination, and execution.
Specifically, in the first stage, it processes initial scenes to
extract objects by semantic instance segmentation. The imag-
ination stage follows a coarse-to-fine solution, where objects
are firstly treated as semantic nodes in a constructed goal
scene graph. This graph is either directed by commonsense
reasoning or user-defined rules, serving as coarse goal states.
For a finer generation, the goal scene graph can already be
decoded to an actual scene using a scene generative model,

ar
X

iv
:2

30
9.

12
18

8v
2

 [
cs

.R
O

]
 2

4
M

ar
 2

02
4

https://sites.google.com/view/sg-bot

Graph-to-3D [19]. However, inherited from the features of
generative models, Graph-to-3D can produce diverse gen-
eration results inconsistent with the observation, potentially
affecting the precision of subsequent object matching. We
control the generation process by enriching the graph with
shape priors to make a shape-aware graph, equipping the
initial shape knowledge. Next, SG-Bot performs finer goal
scene imagination conditioned on this graph, ensuring that
the imagined shapes are coherent with the initial observation.
Finally, in the execution stage, the imagined objects serve as
anchors to guide the object matching by point cloud registra-
tion during the scene transformation. At each transformation
step, we check occupancy between objects in the current
observation and the imagination for safe rearrangement. The
uniqueness of SG-Bot manifests in three aspects: First, SG-
Bot does not need known goal priors but can self-generate
goal scenes exclusively for the initial scenes, compared to
the goal-required methods, e.g., [11], [12]. Second, SG-Bot
decouples the transformation policy using per-object match-
ing to decrease the risk of error accumulation, compared to
autoregressive methods, e.g., [13]. Third, the concrete goal
states and the closed-loop rearrangement strategy guaran-
tee the rearrangement performance, compared to the loose-
coupled zero-shot methods, e.g., [16].

Our contributions are summarized as:
• We present SG-Bot, a new paradigm for the object rear-

rangement. The goal states are coarse-to-fine generated
on the rules represented as scene graphs, with which
goal-guided matching defines our motion policies.

• Ambiguous goal scene generation is alleviated by ex-
tracting shape priors from the initial observation. This
leads to improved rearrangement performance.

• Experimental results in simulation show that SG-Bot
can achieve competitive performance with state-of-the-
art methods. Moreover, the rearrangement performance
remains consistent in real-world scenarios.

II. RELATED WORK

A. Scene Graph

Scene graphs offer a rich symbolic and semantic rep-
resentation of scenes [20], [21]. They can reason about
objects and their relationships more explicitly than lan-
guage [22]. This compact relationship description can be
obtained through spatial grounding [23], [24], predicted from
images [25], [26], [27], or even a GUI [28]. Scene graphs
have applications in numerous computer vision areas such as
2D image generation [29], [22], manipulation [25], caption
generation [30], camera localization [31], and 3D scene syn-
thesis [32], [19], [33]. Recent robotics manipulation research
also leverages scene graphs in planning [34], [35], [36]. In
the context of this work, scene graphs serve to generate
scenes, acting as anchors that guide the rearrangement.

B. Object Rearrangement

The task necessitates that an embodied agent transition
from initial states to goal states, adhering to specific rules
based on perception and planning [1], as indicated by earlier

works [37], [38], [39], [40], [41]. By leveraging the develop-
ment of visual perception [42], [43], [44], [45], [46], robotic
grasping [47], [48], [49], motion planning [50], [51], [52],
and research platforms [53], [54], [55], [56], [57], [58], a
number of related methods have emerged. Solutions for this
task fall into two categories. First, the goal states are given to
the embodied agent, subsequently solving the problem by ob-
ject matching, for example, using optical flow [11] or feature
cosine similarity [12]. However, deriving such configurations
can be challenging in real-world scenarios. Secondly, the
goal states can be generated conditioned on the initial states.
These goal states can be implicitly represented, such as by
gradient fields [59], scene distributions [60], or sequential
reasoning on the observation [13]. Alternatively, goals can be
explicit in various formats, such as images [14] on prompts,
bounding boxes [61] or poses [62] on descriptions, and
direct language instructions [15], [63], [64], leveraging recent
off-the-shelf large language models [65], [6], [66]. More
powerful models even treat the initial-goal transformation
as an end-to-end problem [67], [17], building on the large
resource consumption. In this work, we generate the goal in a
two-stage fashion, where coarse relationships are symbolized
as a scene graph and finer concrete goals as the imagined
scene given by the scene graph.

III. PRELIMINARY

Scene Graph. The scene graph we use is semantic scene
graph [20], denoted as G = {V, E}, which serves as a
structured representation of a visual scene. In such repre-
sentation, V = {vi | i = 1, . . . , N} refers to the set of
object nodes, while E = {ei→j | i, j = 1, . . . , N, i ̸= j}
represents the set of directed edges connecting each pair of
nodes vi → vj . As structured in the left of Fig. 3.b, each
node vi can encompass various extensible attributes, e.g.,
object category information oi ∈ O, with O containing all
categories. As same as the node representation, each edge
ei→j is associated with a class label γi→j ∈ Γ. In this paper,
Γ contains all pre-defined edge types, i.e., {left/right,
front/behind, standing on, close by}.

IV. SG-BOT: OVERVIEW

A. Problem Definition

From an initial layout state S0, the embodied agent is
tasked with a sequential transformation of objects towards
a desired goal state S∗. This transformation is achieved by
utilizing sequential motion policies P , guided by sensory
observations.

B. Inference workflow

Observation. Given an RGB-D image capturing the initial
object layout state S0, as shown in Fig. 2.a, SG-Bot first
extracts all target objects as nodes V(O) via an arbitrary
object detector, e.g., MaskRCNN [68].
Imagination. The extracted object nodes are constructed as
a scene graph G according to commonsense or user-defined
rules, as shown in Fig. 2.b and explained in Sec. V-B. Next,
we evolve G to a latent shape-aware scene graph Gβ

z with

Segmentation Graph Constructor
and Embedding

Semantic Nodes

Shape Priors

c) Execution: Matching and Rearrangementb) Imagination: Coarse-to-Fine Goal Scene Generationa) Observation: Initial Scene Processing

Latent Shape-aware
Scene Graph

RGB

CupFork PlateKnife

Shape Codes

Point Cloud Normalization

Current Observation

Goal Scene
Occupancy Check

Intermediate State

Update

Code Decoder

Layout DecoderDepth

Fig. 2. SG-Bot pipeline. a) SG-Bot segments the input RGB image via MaskRCNN [68] to obtain individual object nodes vi. Then, the corresponding
point cloud of vi is obtained via back-projecting the depth map with camera intrinsics K. b) Coarse: the graph constructor connects each pair of nodes
according to commonsense or user-defined rules, yielding scene graph G. Fine: G is embedded and enhanced to Gβ

z by combining estimated shape priors
β∗ extracted from the normalized point clouds using the trained encoder BE and latent code z sampled from the learned layout-shape distribution. Gβ

z

then informs ΦD and LD of Graph-to-3D [19] to generate shape codes α∗ and the scene layout respectively. α∗ are decoded as shapes via AD , which
are then populated in the layouts to form the goal scene. c) SG-Bot matches the initial and envisioned goal using point cloud registration and performs an
occupancy check to determine the final movement in each step, as illustrated in V-E. The robot iteratively executes the action, transforming scenes into
intermediate states and updating the observation until it reaches the goal state.

shape priors β from the initial scene and learned layout-
shape distribution Z mentioned in Sec. V-C. Finally, SG-Bot
imagines a goal scene S∗ conditioned on Gβ

z via the shape
decoder ΦD and layout decoder LD of a scene generative
model Graph-to-3D [19], where S∗ comprises of dense point
cloud and corresponding bounding box for each object.

Execution. Each target object in S0 is first extracted and
represented as the back-projected point cloud from the depth
map. Then, as shown in Fig. 2.c and explained in Sec. V-E,
these objects are matched with the corresponding dense point
clouds in S∗ through iterative registration, e.g., ICP [69],
[70]. Based on the outcomes of this registration process,
SG-Bot generates per-object manipulation policies Pt filtered
and refined by object occupancy checking at each action step
t. SG-Bot continues to iteratively reposition objects in S0

towards S∗ until all objects are effectively rearranged.

V. SG-BOT: METHODOLOGY

A. Object Extraction

Given a cluttered scene S0 as the initial state, SG-Bot
first performs semantic instance segmentation to segment all
target objects, as shown in Fig. 2.a. Specifically, we adopt
MaskRCNN to jointly predict the object masks and category
labels. Then, each object is represented as the back-projected
point cloud from the depth map. These objects, denoted as
V(O) = {vi(oi) | i = 1, . . . , N}, are further collected and
processed in the following Imagination module. This module
aims to generate the desired goal scene by treating these
objects as individual scene graph nodes.

After obtaining target objects V(O), we follow a coarse-
to-fine scheme to generate the desired goal scene, which is
leveraged to guide the object action.

B. Coarse Stage: Goal Scene Graph Construction

SG-Bot establishes a goal scene graph G = {V(O), E(Γ)}
via determining the edge type γi→j ∈ Γ for each edge in
E(Γ), as shown in Fig. 2.b. In this paper, two modes are
supported to define edges between nodes:

Commonsense mode. Following the recent trend of knowl-
edge representation with graphs [71], we represent common

human knowledge in the form of edge attributes Γ within
a scene graph. For instance, for the scene containing a
plate, the fork and knife are typically placed to the left
and right of the plate. Additionally, the spoon needs
to be placed in front of the plate if it exists. For the
case without a plate, the spoon tends to be placed close
by the bowl or cup. Moreover, other objects need to be
placed in front of the plate, bowl, and cup, etc. Any
unusual objects that appear on the table will be identified
as obstacles and subsequently removed, which makes the
final M nodes from N elements, M ≤ N . Similar rules are
naturally introduced based on the category of the object and
commonsense. One way to achieve this is to use LLM to
choose the optimal relationship according to the provided Γ.

User-defined mode. In contrast to the uncontrollable Com-
monsense mode, we demonstrate that one of the main ad-
vantages of introducing the scene graph representation is
that it enables the controllable User-defined mode. Users can
manipulate the scene graph from a long-term perspective,
e.g., using a GUI, by directly editing the edges and nodes in
G to interact with the edge database Γ and nodes.

C. Fine Stage: Graph to Scene Generation

SG-Bot stacks the architecture of Graph-to-3D [19] to gen-
erate a plausible goal scene. Graph-to-3D conditions on the
latent shape-aware scene graph denoted as Gβ

z , which evolves
from G and ensures the coherent shape transformation from
the initial scene to the goal scene.

Shape auto-encoders. For this purpose, we first train two
shape auto-encoder entities A,B of AtlasNet [72] for differ-
ent usages, as shown in Fig. 3.a. We train A(AE ,AD) with
full points under canonical view, whose encoder AE offers
shape codes α for training Graph-to-3D after. B(BE ,BD) is
trained with normalized object points under camera view in
initial scenes to have initial shape priors β. The encoder BE

of B is preserved to produce β during the training of Graph-
to-3D and the final SG-Bot workflow. The training process
of A,B aligns with the original AtlasNet.

Scene generative model. After obtaining α and β, the
training of Graph-to-3D starts with embedding G shown

in Fig. 3.b. The category information ci ∈ Cnode for i-
th node is obtained by passing its textual information oi
through node embedding layers MO, while ci→j ∈ Cedge is
obtained by edge embedding layers MΓ with γi→j . Based on
G 7→ G =

{
V(Cnode), E(Cedge)

}
, Graph-to-3D, a subsequent

dual-branch GCN architecture, is trained by modeling the
layout-shape joint distribution Z of goal scenes. As shown in
Fig. 3.c, in training, the shape branch Φ(ΦE ,ΦD) requires
the graph to be augmented with ground truth shape codes
α in goal scenes as input, whose output α̂ is supervised
by the same shape codes. In the meantime, the layout
branch L(LE ,LD) takes the scene graph with ground truth
bounding boxes B = {bi | i = 1, ..,M} as input and the
supervision labels. The two branches interact with each other
in the bottleneck to model a latent graph Gz , which shares the
same idea of the concept of the latent code in the VAE [73].
Gz = {V(z, Cnode), E(Cedge)}, consisting of G with sampled
z code from the modeled Z. More details can be found
in [19]. Here, we change Gz as Gβ

z by offering each node
its shape prior β extracted from its counterpart in the initial
scene, i.e., Gβ

z = {V(z, β, Cnode), E(Cedge)}, to make α̂ and
b̂ aware of initial shapes.
Controllable scene imagination. After training, we sub-
sequently engage in the process of generating the desired
goal scene S∗ conditioned on Gβ

z , shown in Fig. 2.b. This
is accomplished through combination of code decoder ΦD,
shape decoder AD, and layout decoder LD:

S = AD(α̂), α̂ = ΦD(Gβ
z), α̂ = {α̂i | i = 1, ...,M}, (1a)

B̂ = LD(Gβ
z), B̂ = {b̂i | i = 1, ...,M}, (1b)

where α̂ denotes the set of estimated shape codes, and S is
the set of normalized shapes decoded from α̂. B̂ denotes the
layout of object bounding boxes in the desired scene S∗. S
then is transformed and populated into B̂ to synthesize S∗.

D. Advantages of Coarse-to-Fine Scheme

SG-Bot features three key advantages: First, in the coarse
stage, it utilizes a scene graph as an intermediary form of
the target scene. This graph allows for multiple relationships
between any two objects and enhances natural and intuitive
human-computer interaction. Users can intuitively perceive
the spatial distribution of objects within the scene through a
2D graphical scene graph, enabling direct editing through a
GUI. Second, leveraging the scene graph as an intermediate
representation allows for the seamless integration of com-
monsense knowledge, enabling automated scene rearrange-
ment. Third, in the fine stage, we introduce the generative
model to supplement missing fine-grained details, such as
object shapes and poses, in the scene graph representation.
This guides the robot in performing precise operations.

E. Goal-Guided Object Matching and Manipulation

After obtaining S∗, SG-Bot performs object matching by
point cloud registration and rearranges objects after occu-
pancy check in each round, as shown in Fig. 2.c, transferring
S0 to S∗. We illustrate the process with the first round:

Full Shape

Partial Shape
a) Shape AEs

c) Graph-to-3D training on

Shape Codes

Layouts

Code Graph Encoder

Layout Graph Encoder

Code Decoder

Layout Decoder
Layout

Scene Graph

Code
Scene Graph

Reconstruction

Reconstruction
b) Graph Embedding

Node and Edge Embedding Layers

Plate

Fork

Right of

Fig. 3. Modular Training. a) AE ,AD are trained using full shapes in
the canonical view to have the shape code α, while BE ,BD are trained on
partial shapes in the initial scenes under the camera view to have the shape
priors β. AD and BE are retained during inference. b) A scene graph with
textual information is processed through embedding layers MO,MΓ to
have implicit class features ci, ci→j on each node and edge. c) For training
Graph-to-3D on goal scenes, the processed scene graph is first concatenated
with α and bounding box parameters B on the shape branch Φ(ΦE ,ΦD)
and layout branch L(LE ,LD) respectively. Φ and L jointly model the
layout-shape distribution Z [19]. This model incorporates β from initial
scenes to create Gβ

z , subsequently estimating α̂ and B̂. Modules in b) and
c) are jointly trained, with MO,MΓ, ΦD and LD used during inference.

Object matching. SG-Bot compares S∗ with the initial scene
S0 to calculate the necessary transformation T = [R|t] for
each object, where R ∈ R3×3 and t ∈ R3 represent rotation
and translation respectively. Therefore, in this module, the
objective can be defined as,

[R∗, t∗] = argmin
R,t

NP∑
i=1

(min
q∈Q

||Rpi + t− q||2) + ISO(3)(R), (2)

where R∗ and t∗ represent the optimal rotation and trans-
lation parameters we aim to find. pi denotes one of the NP

points in object P of initial scene S0. After transforming
pi from S0 to the goal scene S∗ with R, t, its correspond-
ing nearest point in S∗ is denoted as q inside object Q.
ISO(3)(R) enforces R should lie in the special orthogonal
group SO(3) [74]. Since the generated objects in the goal
scene are dense and complete, we observe that vanilla ICP
can effectively solve the problem in Eq. 2 when provided
with a well-suited initialization.

Given an object P from the initial scene S0, its goal
location is indicated by the generated object Q in S∗. We
initialize the pose T by first centralizing each point cloud and
then uniformly generating candidate rotations. We represent
rotation using angles around the x, y, and z axes, dividing the
interval of each axis’s rotation angle [-π, π] into n segments,
resulting in a total of n3 candidate rotations, where n = 5
in the implementation. Finally, we apply ICP to estimate
R∗, t∗, where t is initialized with 0 vector, while R is
initialized with each candidate rotation. This will result in
n outcomes from ICP. We select the solution that minimizes
Eq. 2 as the final result.
Object manipulation. To determine the final robot action,

Fig. 4. Visualization results in simulation. We compare SG-Bot with state-of-the-art methods StructFormer [13] and Socratic Models [16]. We highlight
the superiority of SG-Bot via rectangles.

TABLE I
PERFORMANCE EVALUATION ON THREE ASPECTS – ERRORS (rad, cm), SUCCESS RATE (%) AND FIDELITY.

Method Rearrangement Errors (↓) Success Rate (↑) Scene Fidelity (↓)

Re te Rf tf IoU0.25 IoU0.50 FID FID-CLIP

StructFormer [13] 0.28 10.58 0.18 11.17 28.03 14.01 91.46 6.32
Socratic Models [16] – 12.09 – 13.36 43.71 36.58 86.46 6.96
SG-Bot (Ours) 0.38 4.49 0.09 4.61 53.92 34.20 58.29 3.91

we select an object P from S0 and check for occupancy: We
measure the point-wise L2 distance between its counterpart
Q in S∗, and all objects in S0. If the shortest distance d is
smaller than a set threshold σ, it implies a potential collision.
We then bypass moving P and evaluate the next object. This
continues until an object with d > σ is found, which is then
moved to the target pose by its T.

The rearrangement ends in this manner when all objects
are in their ideal poses.

VI. EXPERIMENT

A. Implementation Details

Dataset. We collect a synthetic dataset containing 1,042 real-
istic initial-goal RGB-D scene pairs with scene graph labels.
First, we mix the meshes in Google Scanned Objects [75] and
HouseCat6D [76] as the object database. Then, we randomly
place objects on the tables to render the initial scenes into
images using NVISII [77]. The goal scenes are set up using
the rules mentioned in Sec. V-B. Then, we construct scene
graph labels by comparing the spatial relations of the objects
following [23], [33]. We define six types of relations as
the edge class database Γ, including spatial, proximity, and
support information, representing the User-defined mode.
Trainval setup. We use 952 scenes as the training split and
90 scenes as the validation (test) split. All modules in our

pipeline are trained on a single NVIDIA 3090 GPU. We
adopt the Adam optimizer with an initial learning rate of
1e-4 to train each module. A is trained for 500 epochs on
the meshes in the training split. B is trained for 5 epochs in
terms of all partial points of each object in the training split.
MO,MΓ,Φ,L are jointly trained for 600 epochs.

B. Evaluation Protocols

Baselines. We reproduce two methods representing different
routines on the dataset for the comparison: First, Struct-
Former [13], a transformer-based method that autoregres-
sively transforms objects to the goal state based on the
current observation and previous states, is fully trained on our
dataset. Second, Socratic Models [16], a LLM-based method
that connects an object detection module [2], GPT [6], and
a motion planning method CLIPort [78] in a series, where
we use text-davinci-002 for LLM and train CLIPort solely
using our dataset. All training and evaluation procedures use
the same trainval splits as our method. More details about
the reproduction can be found on our project website.

Metrics. First, for evaluating the rearrangement accuracy, we
report the errors of estimated rotation Re and translation te
comparing final positions with ground truth following [13].
We also report the errors of final poses (Rf, tf), as the final

Fig. 5. Real-world experiment. a) We tested unseen cross-category objects with a physical manipulator. b) Action decomposition of one trial during the
rearrangement.

SG-BotSG-Bot-dummy Test Goal Scene

Fig. 6. Functional shape priors. Without shape priors, SG-Bot-dummy
generates inconsistent shapes (left). SG-Bot controls the generated shapes
close to the ground truth (right) with the help of initial shape priors (middle).

states of rearrangement are slightly different from the pre-
dicted ones because of the table-object physical interaction.
Second, for the rearrangement success rate, we calculate
the IoU between the bounding boxes of rearranged and
ground truth objects. If IoU > σ, it counts as a success,
σ = 0.25, 0.50. Note that this is a strict metric, as objects
tend to be tiny, where even a small misalignment can cause
failure. Additionally, inspired by some research on indoor
scene synthesis [79], [80], [33], we believe that measuring
the fidelity of the rearranged scene is critical for evaluating
global performance. For this, we render rearranged scenes of
all methods and ground truth scenes under a specific view-
point, and then we employ the commonly adopted Fréchet
Inception Distance (FID) [81] and recent FID-CLIP [82].

C. Simulation Experiments

We import meshes with their initial poses to a PyBullet
environment [41] to evaluate each method. In the simulation,
we leverage ground truth instance masks and remove the
effect of the robotic low-level control.
Quantitative results. As shown in Table I, our method
surpasses the previous approaches on most metrics by a large
margin. SG-Bot obtains lower rearrangement errors on the
final states and yields competitive success rates, indicating
that SG-Bot shows more accurate object-level rearrangement.
For instance, SG-Bot decreases 50.0% on Rf and 58.7% on
tf compared with StructFormer [13]. When using IoU0.25,
SG-Bot increases 10.21% on success rate compared with
Socratic Models [16]. On the scene-level comparison, SG-
Bot shows more fidelity in rearranged scenes than other
methods, modeling a more similar scene distribution to
ground truth supported by lower FID and FID-CLIP.
Qualitative results. We show several qualitative compar-
isons of rearranged scenes in Fig. 4, where our method shows
clear advantages against others. For example, in the first

TABLE II
ABLATION – ERRORS (rad, cm), SUCCESS RATE (%) AND FIDELITY.

Method Errors (↓) Success Rate (↑) Scene Fidelity (↓)

Rf tf IoU0.25 IoU0.50 FID FID-CLIP

SG-Bot-dummy 0.09 4.86 46.32 27.08 64.28 4.20
SG-Bot 0.09 4.61 53.92 34.20 58.29 3.91

scene, the rearranged knife collides with the plate or the
cup in StructFormer and Socratic Models, which is better
placed with our method. In the last scene, our method can
separate objects at a sensible distance while others make
them unevenly distributed.

Ablation study. We ablate the shape priors, resulting in SG-
Bot-dummy, a framework only taking the original latent scene
graph Gz . As shown in Fig. 6, SG-Bot powered by Gβ

z has
more controllable ability than SG-Bot-dummy, generating
more consistent shapes to the objects in the scenes. We also
report quantitative comparisons in Table II.

D. Real-world Experiments

We test SG-Bot in real-world scenarios using a 7-DoF
Franka Panda robot with a parallel-jaw gripper as the end-
effector. The sensor mounted on the gripper base is a
RealSense L515 RGB-D camera. The framework is run on
an NVIDIA 3080 laptop GPU. Different from the strategy
in the simulation, we use Contact-GraspNet [48] to generate
appropriate grasps on each masked object and rearrange them
by reasoning the relative pose and executing the best grasp
with Moveit! [83]. We show an example work stream in
Fig. 5 out of 5 rounds where we test with unseen objects.
More trials can be found on the project website. Our method
can still maintain the rearrangement performance consistent
with the one in the simulation.

VII. CONCLUSIONS

In this paper, we present a novel robotic rearrangement
framework, SG-Bot, which follows a three-phase procedure:
observation, imagination, and execution to handle this task.
With its unique coarse-to-fine design, SG-Bot embraces the
synergy of commonsense priors and dynamic generation
capabilities, all within a lightweight, real-time, and cus-
tomizable pipeline. Extensive experiments on both simula-
tion and real-world datasets demonstrate the superiority of
SG-Bot. Future work will explore deformable point cloud
matching for enhanced accuracy or accelerated point cloud
alignment [84].

ACKNOWLEDGEMENT

We are truly grateful for the reviews provided!
Due to the page limit, we are not able to add more
content, but we are very open to and feel excited for
further discussions! We would like to thank Mr. Shun-
Cheng Wu for the early discussion. We also would like to
thank Ms. Chang Gao (open to graphic design jobs, email:
gaochang960605@gmail.com) for the teaser design.

REFERENCES

[1] D. Batra, A. X. Chang, S. Chernova, A. J. Davison, J. Deng,
V. Koltun, S. Levine, J. Malik, I. Mordatch, R. Mottaghi et al.,
“Rearrangement: A challenge for embodied ai,” 2020. [Online].
Available: https://arxiv.org/abs/2011.01975

[2] X. Gu, T.-Y. Lin, W. Kuo, and Y. Cui, “Open-vocabulary object
detection via vision and language knowledge distillation,” in ICLR,
2022.

[3] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in
ECCV, 2020.

[4] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo et al., “Segment
anything,” in ICCV, 2023.

[5] Y. Di, F. Manhardt, G. Wang, X. Ji, N. Navab, and F. Tombari, “So-
pose: Exploiting self-occlusion for direct 6d pose estimation,” in ICCV,
2021.

[6] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language
models are few-shot learners,” in NeurIPS, 2020.

[7] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra,
A. Roberts, P. Barham, H. W. Chung, C. Sutton, S. Gehrmann et al.,
“Palm: Scaling language modeling with pathways,” 2022. [Online].
Available: https://arxiv.org/abs/2204.02311

[8] Y. Jiang, A. Gupta, Z. Zhang, G. Wang, Y. Dou, Y. Chen, L. Fei-
Fei, A. Anandkumar, Y. Zhu, and L. Fan, “Vima: General robot
manipulation with multimodal prompts,” in ICML, 2023.

[9] C. Li, R. Zhang, J. Wong, C. Gokmen, S. Srivastava, R. Martı́n-Martı́n,
C. Wang, G. Levine, M. Lingelbach, J. Sun et al., “Behavior-1k: A
benchmark for embodied ai with 1,000 everyday activities and realistic
simulation,” in CoRL, 2023.

[10] Y. Ding, X. Zhang, C. Paxton, and S. Zhang, “Task and motion
planning with large language models for object rearrangement,” 2023.
[Online]. Available: https://arxiv.org/abs/2303.06247

[11] A. Goyal, A. Mousavian, C. Paxton, Y.-W. Chao, B. Okorn, J. Deng,
and D. Fox, “Ifor: Iterative flow minimization for robotic object
rearrangement,” in CVPR, 2022.

[12] W. Goodwin, S. Vaze, I. Havoutis, and I. Posner, “Semantically
grounded object matching for robust robotic scene rearrangement,”
in ICRA, 2022.

[13] W. Liu, C. Paxton, T. Hermans, and D. Fox, “Structformer: Learning
spatial structure for language-guided semantic rearrangement of novel
objects,” in ICRA, 2022.

[14] I. Kapelyukh, V. Vosylius, and E. Johns, “Dall-e-bot: Introducing web-
scale diffusion models to robotics,” RA-L, vol. 8, no. 7, pp. 3956–3963,
2023.

[15] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David,
C. Finn, C. Fu, K. Gopalakrishnan, K. Hausman et al., “Do as i can,
not as i say: Grounding language in robotic affordances,” in CoRL,
2022.

[16] A. Zeng, M. Attarian, K. M. Choromanski, A. Wong, S. Welker,
F. Tombari, A. Purohit, M. S. Ryoo, V. Sindhwani, J. Lee et al.,
“Socratic models: Composing zero-shot multimodal reasoning with
language,” in ICLR, 2023.

[17] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choro-
manski, T. Ding, D. Driess, A. Dubey, C. Finn et al., “Rt-2: Vision-
language-action models transfer web knowledge to robotic control,”
in CoRL, 2023.

[18] D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter,
A. Wahid, J. Tompson, Q. Vuong, T. Yu et al., “Palm-e: An embodied
multimodal language model,” in ICML, 2023.

[19] H. Dhamo, F. Manhardt, N. Navab, and F. Tombari, “Graph-to-3d:
End-to-end generation and manipulation of 3d scenes using scene
graphs,” in ICCV, 2021.

[20] X. Chang, P. Ren, P. Xu, Z. Li, X. Chen, and A. Hauptmann, “A
comprehensive survey of scene graphs: Generation and application,”
T-PAMI, vol. 45, no. 1, pp. 1–26, 2021.

[21] J. Johnson, R. Krishna, M. Stark, L.-J. Li, D. Shamma, M. Bernstein,
and L. Fei-Fei, “Image retrieval using scene graphs,” in CVPR, 2015.

[22] J. Johnson, A. Gupta, and L. Fei-Fei, “Image generation from scene
graphs,” in CVPR, 2018.

[23] J. Wald, H. Dhamo, N. Navab, and F. Tombari, “Learning 3d semantic
scene graphs from 3d indoor reconstructions,” in CVPR, 2020.

[24] I. Armeni, Z.-Y. He, J. Gwak, A. R. Zamir, M. Fischer, J. Malik, and
S. Savarese, “3d scene graph: A structure for unified semantics, 3d
space, and camera,” in ICCV, 2019.

[25] H. Dhamo, A. Farshad, I. Laina, N. Navab, G. D. Hager, F. Tombari,
and C. Rupprecht, “Semantic image manipulation using scene graphs,”
in CVPR, 2020.

[26] S.-C. Wu, J. Wald, K. Tateno, N. Navab, and F. Tombari, “Scenegraph-
fusion: Incremental 3d scene graph prediction from rgb-d sequences,”
in CVPR, 2021.

[27] D. Xu, Y. Zhu, C. B. Choy, and L. Fei-Fei, “Scene graph generation
by iterative message passing,” in CVPR, 2017.

[28] M. Fessenden, “Scenegraph,” https://github.com/mfessenden/
SceneGraph, 2017.

[29] L. Yang, Z. Huang, Y. Song, S. Hong, G. Li, W. Zhang, B. Cui,
B. Ghanem, and M.-H. Yang, “Diffusion-based scene graph to image
generation with masked contrastive pre-training,” 2022. [Online].
Available: https://arxiv.org/abs/2211.11138

[30] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz,
S. Chen, Y. Kalantidis, L.-J. Li, D. A. Shamma et al., “Visual genome:
Connecting language and vision using crowdsourced dense image
annotations,” IJCV, vol. 123, pp. 32–73, 2017.

[31] A. Rosinol, A. Violette, M. Abate, N. Hughes, Y. Chang, J. Shi,
A. Gupta, and L. Carlone, “Kimera: From slam to spatial perception
with 3d dynamic scene graphs,” IJRR, vol. 40, no. 12-14, pp. 1510–
1546, 2021.

[32] A. Luo, Z. Zhang, J. Wu, and J. B. Tenenbaum, “End-to-end opti-
mization of scene layout,” in CVPR, 2020.

[33] G. Zhai, E. P. Örnek, S.-C. Wu, Y. Di, F. Tombari, N. Navab,
and B. Busam, “Commonscenes: Generating commonsense 3d indoor
scenes with scene graphs,” in NeurIPS, 2023.

[34] B. Tang and G. S. Sukhatme, “Selective object rearrangement in
clutter,” in CoRL, 2023.

[35] Y. Zhu, J. Tremblay, S. Birchfield, and Y. Zhu, “Hierarchical planning
for long-horizon manipulation with geometric and symbolic scene
graphs,” in ICRA, 2021.

[36] K. Rana, J. Haviland, S. Garg, J. Abou-Chakra, I. Reid, and N. Suen-
derhauf, “Sayplan: Grounding large language models using 3d scene
graphs for scalable task planning,” CoRL, 2023.

[37] A. Cosgun, T. Hermans, V. Emeli, and M. Stilman, “Push planning
for object placement on cluttered table surfaces,” in IROS, 2011.

[38] J. E. King, M. Cognetti, and S. S. Srinivasa, “Rearrangement planning
using object-centric and robot-centric action spaces,” in ICRA, 2016.

[39] J. E. King, V. Ranganeni, and S. S. Srinivasa, “Unobservable monte
carlo planning for nonprehensile rearrangement tasks,” in ICRA, 2017.

[40] J. Lee, Y. Cho, C. Nam, J. Park, and C. Kim, “Efficient obstacle re-
arrangement for object manipulation tasks in cluttered environments,”
in ICRA, 2019.

[41] E. Coumans and Y. Bai, “Pybullet, a python module for physics sim-
ulation for games, robotics and machine learning,” http://pybullet.org,
2016–2021.

[42] C. Wang, D. Xu, Y. Zhu, R. Martı́n-Martı́n, C. Lu, L. Fei-Fei, and
S. Savarese, “Densefusion: 6d object pose estimation by iterative dense
fusion,” in CVPR, 2019.

[43] S. Peng, Y. Liu, Q. Huang, X. Zhou, and H. Bao, “Pvnet: Pixel-wise
voting network for 6dof pose estimation,” in CVPR, 2019.

[44] F. Manhardt, D. M. Arroyo, C. Rupprecht, B. Busam, T. Birdal,
N. Navab, and F. Tombari, “Explaining the ambiguity of object
detection and 6d pose from visual data,” in ICCV, 2019.

[45] R. Zhang, Y. Di, F. Manhardt, F. Tombari, and X. Ji, “Ssp-pose:
Symmetry-aware shape prior deformation for direct category-level
object pose estimation,” in IROS, 2022.

https://arxiv.org/abs/2011.01975
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2303.06247
https://github.com/mfessenden/SceneGraph
https://github.com/mfessenden/SceneGraph
https://arxiv.org/abs/2211.11138
http://pybullet.org

[46] Y. Di, R. Zhang, Z. Lou, F. Manhardt, X. Ji, N. Navab, and F. Tombari,
“Gpv-pose: Category-level object pose estimation via geometry-guided
point-wise voting,” in CVPR, 2022.

[47] G. Zhai, Y. Zheng, Z. Xu, X. Kong, Y. Liu, B. Busam, Y. Ren,
N. Navab, and Z. Zhang, “Da2 dataset: Toward dexterity-aware dual-
arm grasping,” RA-L, vol. 7, no. 4, pp. 8941–8948, 2022.

[48] M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox, “Contact-
graspnet: Efficient 6-dof grasp generation in cluttered scenes,” in
ICRA, 2021.

[49] G. Zhai, D. Huang, S.-C. Wu, H. Jung, Y. Di, F. Manhardt, F. Tombari,
N. Navab, and B. Busam, “Monograspnet: 6-dof grasping with a single
rgb image,” in ICRA, 2023.

[50] R. Wang, K. Gao, D. Nakhimovich, J. Yu, and K. E. Bekris, “Uniform
object rearrangement: From complete monotone primitives to efficient
non-monotone informed search,” in ICRA, 2021.

[51] S. H. Cheong, B. Y. Cho, J. Lee, C. Kim, and C. Nam, “Where to
relocate?: Object rearrangement inside cluttered and confined environ-
ments for robotic manipulation,” in ICRA, 2020.

[52] K. Gao, D. Lau, B. Huang, K. E. Bekris, and J. Yu, “Fast high-quality
tabletop rearrangement in bounded workspace,” in ICRA, 2022.

[53] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain,
J. Straub, J. Liu, V. Koltun, J. Malik et al., “Habitat: A platform for
embodied ai research,” in ICCV, 2019.

[54] A. Szot, A. Clegg, E. Undersander, E. Wijmans, Y. Zhao, J. Turner,
N. Maestre, M. Mukadam, D. S. Chaplot, O. Maksymets et al.,
“Habitat 2.0: Training home assistants to rearrange their habitat,” in
NeurIPS, 2021.

[55] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti,
M. Deitke, K. Ehsani, D. Gordon, Y. Zhu et al., “Ai2-thor: An
interactive 3d environment for visual ai,” 2017. [Online]. Available:
https://arxiv.org/abs/1712.05474

[56] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison, “Rlbench: The robot
learning benchmark & learning environment,” RA-L, vol. 5, no. 2, pp.
3019–3026, 2020.

[57] F. Xiang, Y. Qin, K. Mo, Y. Xia, H. Zhu, F. Liu, M. Liu, H. Jiang,
Y. Yuan, H. Wang et al., “Sapien: A simulated part-based interactive
environment,” in CVPR, 2020.

[58] B. Shen, F. Xia, C. Li, R. Martı́n-Martı́n, L. Fan, G. Wang, C. Pérez-
D’Arpino, S. Buch, S. Srivastava, L. Tchapmi et al., “igibson 1.0: A
simulation environment for interactive tasks in large realistic scenes,”
in IROS, 2021.

[59] M. Wu, F. Zhong, Y. Xia, and H. Dong, “Targf: Learning target
gradient field to rearrange objects without explicit goal specification,”
in NeurIPS, 2022.

[60] Q. A. Wei, S. Ding, J. J. Park, R. Sajnani, A. Poulenard, S. Sridhar,
and L. Guibas, “Lego-net: Learning regular rearrangements of objects
in rooms,” in CVPR, 2023.

[61] N. Gkanatsios, A. Jain, Z. Xian, Y. Zhang, C. Atkeson, and K. Fragki-
adaki, “Energy-based models as zero-shot planners for compositional
scene rearrangement,” in RSS, 2023.

[62] I. Kapelyukh, Y. Ren, I. Alzugaray, and E. Johns, “Dream2real: Zero-
shot 3d object rearrangement with vision-language models,” in ICRA,
2024.

[63] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay,
D. Fox, J. Thomason, and A. Garg, “Progprompt: Generating situated
robot task plans using large language models,” in ICRA, 2023.

[64] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence,
and A. Zeng, “Code as policies: Language model programs for
embodied control,” in ICRA, 2023.

[65] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen,
“Hierarchical text-conditional image generation with clip latents,”
2022. [Online]. Available: https://arxiv.org/abs/2204.06125

[66] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating
large language models trained on code,” 2021. [Online]. Available:
https://arxiv.org/abs/2107.03374

[67] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn,
K. Gopalakrishnan, K. Hausman, A. Herzog, J. Hsu et al., “Rt-1:
Robotics transformer for real-world control at scale,” 2022. [Online].
Available: https://arxiv.org/abs/2212.06817

[68] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in ICCV,
2017.

[69] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,”
in Sensor fusion IV: control paradigms and data structures, vol. 1611.
Spie, 1992, pp. 586–606.

[70] Z. Zhang, “Iterative point matching for registration of free-form curves
and surfaces,” IJCV, vol. 13, no. 2, pp. 119–152, 1994.

[71] X. Chen, S. Jia, and Y. Xiang, “A review: Knowledge reasoning over
knowledge graph,” Expert Systems with Applications, vol. 141, p.
112948, 2020.

[72] T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and M. Aubry, “A
papier-mâché approach to learning 3d surface generation,” in CVPR,
2018.

[73] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in
ICLR, 2014.

[74] J. Zhang, Y. Yao, and B. Deng, “Fast and robust iterative closest point,”
T-PAMI, vol. 44, no. 7, pp. 3450–3466, 2021.

[75] L. Downs, A. Francis, N. Koenig, B. Kinman, R. Hickman, K. Rey-
mann, T. B. McHugh, and V. Vanhoucke, “Google scanned objects: A
high-quality dataset of 3d scanned household items,” in ICRA, 2022.

[76] H. Jung, G. Zhai, S.-C. Wu, P. Ruhkamp, H. Schieber, P. Wang,
G. Rizzoli, H. Zhao, S. D. Meier, D. Roth, N. Navab et al.,
“Housecat6d–a large-scale multi-modal category level 6d object
perception dataset with household objects in realistic scenarios,”
2022. [Online]. Available: https://arxiv.org/abs/2212.10428

[77] N. Morrical, J. Tremblay, S. Birchfield, and I. Wald, “NVISII:
Nvidia scene imaging interface,” 2020, https://github.com/owl-project/
NVISII/.

[78] M. Shridhar, L. Manuelli, and D. Fox, “Cliport: What and where
pathways for robotic manipulation,” in CoRL, 2022.

[79] D. Ritchie, K. Wang, and Y.-a. Lin, “Fast and flexible indoor scene
synthesis via deep convolutional generative models,” in CVPR, 2019.

[80] D. Paschalidou, A. Kar, M. Shugrina, K. Kreis, A. Geiger, and S. Fi-
dler, “Atiss: Autoregressive transformers for indoor scene synthesis,”
in NeurIPS, 2021.

[81] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“Gans trained by a two time-scale update rule converge to a local nash
equilibrium,” in NeurIPS, 2017.

[82] T. Kynkäänniemi, T. Karras, M. Aittala, T. Aila, and J. Lehtinen, “The
role of imagenet classes in fréchet inception distance,” in ICLR, 2023.

[83] D. Coleman, I. Sucan, S. Chitta, and N. Correll, “Reducing the
barrier to entry of complex robotic software: a moveit! case study,”
2014. [Online]. Available: https://arxiv.org/abs/1404.3785

[84] E. Malis, “Complete closed-form and accurate solution to pose esti-
mation from 3d correspondences,” RA-L, vol. 8, no. 3, pp. 1786–1793,
2023.

https://arxiv.org/abs/1712.05474
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2212.06817
https://arxiv.org/abs/2212.10428
 https://github.com/owl-project/NVISII/
 https://github.com/owl-project/NVISII/
https://arxiv.org/abs/1404.3785

	Introduction
	Related Work
	Scene Graph
	Object Rearrangement

	Preliminary
	SG-Bot: Overview
	Problem Definition
	Inference workflow

	SG-Bot: Methodology
	Object Extraction
	Coarse Stage: Goal Scene Graph Construction
	Fine Stage: Graph to Scene Generation
	Advantages of Coarse-to-Fine Scheme
	Goal-Guided Object Matching and Manipulation

	Experiment
	Implementation Details
	Evaluation Protocols
	Simulation Experiments
	Real-world Experiments

	CONCLUSIONS
	References

