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Abstract— Ultrasound (US) imaging is widely used in di-
agnosing and staging abdominal diseases due to its lack of
non-ionizing radiation and prevalent availability. However,
significant inter-operator variability and inconsistent image
acquisition hinder the widespread adoption of extensive screen-
ing programs. Robotic ultrasound systems have emerged as a
promising solution, offering standardized acquisition protocols
and the possibility of automated acquisition. Additionally,
these systems enable access to 3D data via robotic tracking,
enhancing volumetric reconstruction for improved ultrasound
interpretation and precise disease diagnosis.

However, the interpretability of 3D US reconstruction of
abdominal images can be affected by the patient’s breathing
motion. This study introduces a method to compensate for
breathing motion in 3D US compounding by leveraging im-
plicit neural representations. Our approach employs a robotic
ultrasound system for automated screenings. To demonstrate
the method’s effectiveness, we evaluate our proposed method
for the diagnosis and monitoring of abdominal aorta aneurysms
as a representative use case.

Our experiments demonstrate that our proposed pipeline
facilitates robust automated robotic acquisition, mitigating
artifacts from breathing motion, and yields smoother 3D
reconstructions for enhanced screening and medical diagnosis.

I. INTRODUCTION

Medical ultrasound (US) is widely employed in clinical
settings to diagnose conditions of internal tissues and organs.
Its real-time imaging offers clinicians instant feedback. In
comparison to other imaging methods like X-ray or CT, US
presents several advantages: it’s radiation-free, portable, and
cost-effective [1]. This, combined with its high soft-tissue
contrast, ensures both safety and efficiency in patient care
[2]. Ultrasound has become an essential tool for screening
and monitoring of the abdominal region [3], [4]. In particular,
for individuals aged 50 and above, routine US screening of
aorta is recommended, as they might be at risk of developing
aneurysms while being asymptomatic. Abdominal Aortic
Aneurysm (AAA) is a condition marked by an enlargement
in the aorta, which can lead to serious health implications
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Fig. 1. Overview of the proposed system: a) we use a robotic arm
manipulator with a convex ultrasound probe attached to the end-effector
to scan the patient, b) Live B-mode, c) Intermediate image, d) Aorta
segmentation, e) 3D Reconstruction.

if left untreated [5]. If an enlargement is detected, the
frequency of follow-up screens increases based on its growth
rate, ensuring timely interventions [6]. Consistent ultrasound
screenings have shown a significant reduction of premature
death from AAA in men aged 65 and older [7]. The primary
goal of these screenings is to accurately measure and assess
the aneurysm’s size and dimensions.

However, the repeatability of image acquisitions can vary
largely between clinicians [8] as image quality is strongly
based on clinician experience and factors such as probe
placement and contact during scanning can reduce inter-
acquisition consistency. These constraints highlight the
necessity to automate US acquisitions. Recent works have
exploited the use of robotic systems for manipulating the US
probe autonomously, thus providing standardized imaging
results and reducing operator dependency [9], [10]. Solutions
for automating US acquisitions have been a focus of study
for more than two decades, ranging from the creation of
customized end-effectors for guiding US probes to the intro-
duction of complete imaging and navigation systems [11].

Recent work demonstrates an automated workflow for
screening of tubular structures using a robotic US system
[12]. It is based on real-time image feedback and employs
active perception to control robotic motion. They estimate
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Fig. 2. Overview of the pipeline. Phase 1: Robotic ultrasound acquisition with real-time image segmentation; the robot’s trajectory is adjusted based on the
segmentation. Phase 2: The acquired sweep and segmentation train the INR model, which is sampled to produce a dense aorta point cloud. Post-processing
of this cloud yields the final mesh.

the centerline and radius of a tubular structure and perform
robotic control in real-time in response to the incoming US
images. In addition, they extract the 3D point cloud of the
segmented tube and calculate its centerline. However, the
method lacks generalizability on in-vivo images.

Furthermore, employing robotic ultrasound enables 3D
reconstruction of the aorta. Access to three-dimensional
representation can help clinicians compare the progression
of aneurysms. Without explicit access to 3D information,
physicians need to mentally reconstruct the 3D anatomy,
which is a demanding and challenging task, especially for
less experienced ones. Having a 3D reconstruction of the
aorta volume can give more insights to clinicians and help
them to evaluate the diameter of the aneurysm not only in
the axial 2D plane but also in any arbitrary tilted plane.

However, creating a consistent US compounding faces hur-
dles like patient breathing motion. Virga et al. [13] proposed
solutions to automate trajectory planning and address motion
from breathing. Despite the strides, motion artifacts remain
unresolved. In robotics, breathing compensation remains a
prominent topic, with gating control techniques and user-in-
the-loop systems ensuring stable acquisitions [14], [15].

Lately, the rise of implicit neural representation (INR)
stands out, especially for rendering continuous 3D vol-
ume representations. In medical imaging, INRs encapsulate
anatomical data compactly while preserving resolution. Typ-
ically, a Multilayer Perceptron (MLP) in INRs infers pixel
or voxel intensity based on their position. Adding to the
advancements in this domain, Sitzmann et al.’s SIREN [16],
which uses periodic functions over traditional activations,
has achieved impressive results in capturing scene nuances.
Khan et al. [17] utilized SIREN to obtain a segmentation
mask that converges quickly and, by definition, supports
super-resolution. Gu et al. [18] employed SIREN for US
imaging by integrating the SIREN-based representation with
meta-learning. This approach facilitates learning an INR for
a new patient using a set of sparse inputs. Continuing the

application of SIREN in US imaging, Song et al. [19] aimed
to enhance the segmentation of the carotid artery in US
images. They hypothesized that given an US sweep and the
segmentation output from a trained 2D U-net, the MLP could
infer both pixel intensity and label. Their findings suggest
that an INR trained in this manner can produce smoother
label maps, preserving the curvature of the carotid artery,
even with tracking data errors. In our work, we also delve
into INR’s capabilities to enhance our robotic US acquisition
and segmentation. In a recent work, exploiting the power
of INRs combined with a physics-based rendering module,
Wysocki et al. [20] showed how Ultra-NeRF can generate
highly accurate B-mode ultrasound images through learn-
ing US-specific parameter maps which account for view-
dependent variations inherent to ultrasound imaging.

In this work, we present a robotic US system for au-
tonomous aortic scan with breathing compensation for im-
proved 3D US volume reconstruction. The robot control
strategy does not require pre-operative registration with other
imaging modalities in order to perform the navigation, nor
external tracking systems or cameras, but only a single
manual initialization step by the medical personnel. Once
the probe is placed such that the aorta is visible in the
US image, it can follow it to cover the whole region of
interest without further intervention. By leveraging a recent
method for aorta segmentation incorporating the concept of
intermediate representation [21], it can be directly applied to
real US images, while being trained only on simulated ones.

Our key contribution is the development of a breathing-
compensated US reconstruction method. This technique har-
nesses an INR model, trained using the gathered tracked
US images and their respective segmentation masks. This
network not only crafts a patient-tailored continuous 3D
function from a subset of the images but also compensates for
noisy or missing segmentation frames to generate a smooth,
finely detailed 3D aorta reconstruction.



II. METHODOLOGY

The proposed robotic ultrasound screening system is com-
posed of a robotic manipulator and a convex US probe rigidly
attached to the robot’s end-effector, see Fig 1. The overall
workflow setup of the method consists of two main steps:
robotic ultrasound sweep and 3D reconstruction, as shown
in Fig. 2, which are explained in detail below.

A. Image acquisition and segmentation
Prior to beginning the acquisition procedure, the probe

must be manually placed on top of the patient’s abdomen,
usually in the upper part, where the aorta is visible in the US
image. Our navigation during the acquisition depends on ro-
bust real-time segmentation of the aorta. To achieve this, we
utilize a recently proposed pipeline called CACTUSS [21],
which is tailored for the task of aorta segmentation in
US images. CACTUSS proposes a novel concept of IR
between CT and US, and it is trained on a large set of
simulated intermediate images from CT labelmaps. IR space
is introduced to transfer both simulated and real images to
this space by using a domain adaptation network. Then, a
segmentation network is trained on the transferred simulated
images in the IR space. Training in the IR space allows
for direct segmentation of real US images, even though the
network has been trained only on simulated ones, and it
shows great generalization capabilities across patients.

As depicted in Fig. 2 each US B-mode image is first passed
through the pre-trained image-to-image translation network,
which translates it to the IR image space. The translated
image is then passed to the second network, which gives the
segmentation result. Finally, the prediction output is used to
control the robot’s movement in real-time, enabling visual
servoing and autonomous US acquisition.

B. Navigation pipeline
Along the anteroposterior axis, the position of the end-

effector is controlled using a constant force, ensuring that
the probe maintains a consistent connection to the skin for
optimal image quality. For longitudinal and transverse axes,
a visual-based control pipeline is used to update the position
of the robot’s end-effector. During the scan, a sequence of
two-dimensional B-mode frames is collected from the US
machine, and the pose is updated in real-time based on the
output of the segmentation algorithm.

To avoid navigating to a wrong position as a result of
incorrect segmentation output, we ensure that the aorta is
always maintained in the center of the image. We keep track
of the center of the previous segmentations, and the robot
moves along the transverse axis to ensure that the aorta is
always centered. Consequently, a step on the longitudinal
axis is performed, and the robot moves until no aorta is
visible, allowing a complete sweep to be obtained. To enable
our control pipeline, it is necessary that the images are
transformed into the coordinate frame of the robot. For every
image frame, the full chain of transformations from robot
base to image frame is calculated (see Fig. 3):

WTI = WTE · ETP · PTI (1)

where PTI maps from the origin of the image to the
probe by converting image pixels to millimeters, ETP is the
transformation from the tip of the probe to the end effector,
which is known from the 3D model of the mount, WTE is
the transformation from the robot’s end-effector to the robot
base and is calculated using the robot’s kinematic model,
which is given by the manufacturer.

θ
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Fig. 3. Robot transformations.

Calibration To map between pixels and millimeters, we
use the dimensions of the image in pixels (W ×H) and the
opening angle of the probe θ. The imaging depth d in mm
is typically specified by the user only once in the beginning.
The mapping can be calculated by the matrix WTI :

WTI =


w
W 0 0 −w

2
0 0 −1 0
0 d

H 0 −y
0 0 0 1

 (2)

where W and H are the width and height of the image in
pixels, w is the corresponding offset in mm along the width
of the image, derived by w = 2R sin(θ/2), where R = d+r
is the radius defined as the sum of the depth of the image
d and the radius r from the origin of the probe to its tip.
Additionally, a small offset h along the height of the image
is calculated from the tip of the probe to the origin of the
image: h = r − cos(θ/2)r.

C. 3D Volume Reconstruction via the INR Model

To utilize INR-based models for volume reconstruction,
we first acquire a set of observations from the 3D space,
along with their corresponding poses. In our study, the
observation refers to the US sweep, while the pose is derived
from the robotic tracking stream. The aim of our INR model
is not just to encode the anatomical intensity values but also
the semantic label of the aorta. Analogous to our obser-
vation in the intensity domain, we utilize the segmentation
results obtained during the data acquisition phase (refer to
section II-A) as our observations from the semantic domain.
Similar to [19], our INR model has been adapted to produce
both volume intensity and semantic attributes. Through this
approach, we ensure the learning of a continuous smooth
function in the semantic domain, which solidifies attributes
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Fig. 4. Schematic of the INR model. The model accepts a normalized 3D voxel position (ranging from −1 to 1) as input and produces two outputs:
the intensity and the semantic label of the voxel. For training, we leverage the ultrasound (US) sweep alongside its corresponding segmentation. During
inference, we sample across all points, yielding a dense point cloud from the semantic results. This is subsequently post-processed to generate the final
mesh.

vital for vessel segmentation. The INR model produces the
output:

y = (s, i) ∈ Y ⊆ RM+1 (3)

where s ∈ S = RM represents the semantic vector and M
denotes the number of semantic classes. i ∈ R stands for
the volume intensity. An INR model is trained to infer y for
each given position in the 3D domain. In particular, if we
define a location vector as:

x = (x, y, z) ∈ X ⊆ R3, (4)

The trained INR is function that maps x to our desired output:

y = fΘ(x) (5)

Here, fΘ designates the overall INR model, with Θ repre-
senting its trained weights. When trained, fΘ encodes the
entire intensity and semantic information as a continuous
function that can be sampled at any resolution. The design
of our network can be found in Fig. 4.

To preserve the high-frequency information of the volume
intensity, we apply Position Encoding (PE) [16], which maps
each 3D coordinate into a more expansive dimensional space.
The encoding of x can be achieved with the function ϕ :
R → R2L:

γ(p) =(sin(20πp), cos(20πp), . . . , (6)

sin(2L−1πp), cos(2L−1πp))

Where p refers to the normalized values (ranging from −1
to 1) of the 3D positions (x, y, z) respectively.

The main component of fΘ is an MLP. In this MLP,
the path for achieving the two desired outputs from fΘ,
meaning the intensity and the semantic information are
shared except for the last linear layer. As in [16], to depict
the high-frequency domain, the SIREN activation function is
employed. Further, we define the volume intensity loss as Li

and the semantic loss as Ls:

Li =
∑
x∈X

||̂i(x)− i(x)||2 (7)

Ls = −
∑
x∈X

[
M∑

m=1

sm(x) log ŝm(x)

]
. (8)

In the above, X represents the input location space,
and î(x) and i(x) denote the predicted and ground truth
volume intensities, respectively. Similarly, ŝl(x) and sl(x)
indicate the semantic probability for class l in the predictions
and ground truth, respectively. Combining these losses, the
overall training loss can be defined as:

L = Li + Ls (9)

During training, our semantic observations are derived
from the CACTUSS segmentation pipeline. However, due to
breathing motions and inaccuracies in translating to the IR
space, some slices might contain erroneous segmentations.
Including these in training could compromise the accuracy
of our INR model. To mitigate this, for each slice, we
retain only the largest connected component, setting all else
to zero. Moreover, by monitoring the aorta’s radius across
previous slices and employing a moving average approach,
we obtain an estimated radius for the current slice. If there’s
a significant discrepancy between this estimate and the actual
value, we label the slice as incorrectly segmented.

For each slice determined to be correctly labeled, both
semantic and intensity losses are calculated for its respective
voxels. For those identified as mislabeled, only the intensity
loss is computed. This strategy harnesses valuable geometric
information from correct slices while sidestepping potential
pitfalls posed by erroneous semantic labels.

Once the INR network is trained, inference is performed
as illustrated in Fig. 4 to achieve the final 3D volume
reconstruction. We begin by sampling new points to form



a dense point cloud from our predictions. We then identify
boundary points by fitting a convex hull to each slice. Using
the furthest point sampling method, points are sampled, and
their normals are computed. Lastly, we employ the Poisson
surface reconstruction [22] to produce the final mesh.

III. SETUP

1) Hardware: The system consists of a curvilinear trans-
ducer 5C1 ACUSON Juniper US machine (Siemens Health-
ineers, Germany) which is attached to the end-effector of
a robotic manipulator (KUKA LBR iiwa 14 R820, KUKA
Roboter GmbH, Germany) using a 3D-printed probe holder.
We maintain a constant low force (5N) and stiffness(200
N/m) to allow comfort for the patient during breathing. The
robot is controlled via iiwa stack and ROS. To access the
images, a frame grabber (Epiphan Video, Canada) is used and
visualized in real-time on ImFusion Suite (ImFusion GmbH,
Germany). The image depth is set to 10cm. For working with
the data, ethics approval was obtained.1

2) Training Details: The INR network consists of an MLP
with 6 layers, each of size 256, and employs positional
encoding of length 10. The network is trained for each
dataset individually. The batch size, in our case, is the
number of image slices and is set to 1. We trained for 1000
epochs with a learning rate of 1e-3 and Adam optimizer.

IV. EVALUATION

To achieve an optimal 3D reconstruction free from
breathing-induced distortions, we take into account images
captured during the exhale phase only. Breathing movements
can introduce errors in segmentation masks and generate
noise. The stability of images during exhale allows for more
accurate segmentation prediction. We conducted two primary
experiments: breath-hold and normal breathing, which are
detailed in the subsequent sections. In both experiments, we
compared our novel INR pipeline with conventional tech-
niques. The breath-hold experiment, being user-controlled
to capture images only during the exhale phase, acts as a
reference point for our model evaluation. Fig. 5 illustrates
both modes. Additionally, we compute the Laplacian and
report the overall roughness of the final 3D volume surfaces.

A. Breath-hold with button

In this experiment, a volunteer is instructed to press and
hold a button after a deep exhale. As this action is performed,
the robot moves, and the US images and segmentation masks
are stacked with their 3D location based on the robotic
tracking data. In Fig. 5, the left side shows the trajectory
of the images in 3D, where a straight trajectory is observed
during the button hold. Upon releasing the button, the robot
halts, allowing the volunteer to breathe freely. This pause is
marked by the peaks in the trajectory, and no images are
captured during this time.

We train our INR model using the acquired 2D B-modes,
their corresponding segmentations, and 3D coordinates. For

1Approval was obtained from the ethics committee of the Technical
University of Munich.

this experiment, every third image from the scan is used to
build the training set. We compare the results of our model
to a conventional linear interpolation method, implemented
in ImFusion Suite2.

B. Free breathing

The second experiment is performed during free breathing,
without any restrictions on the user. The right side of
Fig. 5 displays the breathing trajectory. Once the sweep
is completed, the segmentations are again compiled in 3D.
The top of Fig. 7 portrays the 3D volume right after
the acquisition without any breathing adjustments, showing
distortions due to respiratory movements. To derive a high-
quality 3D reconstruction and compare it with the breath-
hold experiment, we subsequently extract images only from
the exhale phase(red). Using the 3D trajectory from the robot,
we identify all local minima, selecting only the images within
a narrow range surrounding each minima. These images are
used as training data for the INR network. The results from
the network are again compared with the conventional linear
interpolation technique.

C. Second volunteer

We demonstrate the generalizability of our algorithm using
a US sweep acquired from a second volunteer. It’s important
to note that INR-based methods are trained specifically for
each patient, necessitating retraining from scratch for every
new individual. Since the INR is patient-specific, the general-
ization of our full pipeline depends on the capabilities of the
underlying segmentation method. Our segmentation method
(CACTUSS) has been tested on multiple subjects, and, as
demonstrated in the original paper, shown to be generalized
to unseen patients. By testing on a second volunteer, we
confirm that while the INR network needs individualized
training, the full pipeline itself is broadly applicable. The
qualitative results for this volunteer, under both breath-hold
and free-breathing scenarios, are presented in Fig. 6 and 7
respectively, and quantitative results are reported in Table I.

V. RESULTS AND DISCUSSION

Fig. 6 illustrates the 3D volumes from the breath-hold
experiment on both volunteers using both conventional and
INR methods. Our technique provides a notably smoother 3D
reconstruction than traditional approaches, which often fails
when interpolating larger gaps. By learning a patient-specific
continuous function, our method smoothly interpolates be-
tween frames, resulting in an enhanced 3D reconstruction.

In Fig. 7, the results from the free-breathing experiment
are presented. The top two volumes show the 3D aorta vol-
ume without any breathing compensation and the parts from
exhale phase only are shown in red. The two lowermost 3D
reconstructions compare traditional linear interpolation with
the result from our network-driven approach. Once again,
our method yields a better reconstruction and smoothly fills
in the gaps. In comparison, the linear interpolation approach

2ImFusion GmbH, Munich, Germany



TABLE I
COMPARISON OF MESH SMOOTHNESS UNDER TWO BREATHING MODES:

”BREATH-HOLD BUTTON” AND ”FREE BREATHING”. RESULTS

INDICATE THAT OUR PIPELINE PRODUCES SMOOTH OUTPUTS FOR BOTH

MODES. FURTHER, UTILIZING THE INR WITH FILTERED INPUT

ENHANCES THE FINAL OUTPUT’S SMOOTHNESS.

Breath-Hold Button Free breathing
Method no INR with INR no INR with INR

Laplacian average V1 0.627 0.296 0.517 0.251

Laplacian median V1 0.452 0.298 0.396 0.247

Laplacian average V2 0.639 0.432 0.641 0.424

Laplacian median V2 0.460 0.430 0.506 0.416

Fig. 5. Left:breath-hold mode, right: free breathing mode.

struggles with larger gaps, resulting in pronounced step edges
in the final reconstruction.

Table I provides a quantitative assessment of mesh
smoothness under the two breathing modes: breath-hold
button and free breathing. The metrics used are the average
and median magnitudes of the Laplacian vectors over the
entire mesh, which serve as indicators of the overall sur-
face roughness or smoothness. Notably, for both breathing
modes, the output of the INR model has lower Laplacian
roughness values for both volunteers, indicating smoother
meshes. Specifically, under the breath-hold mode of the
first volunteer, the average roughness decreased from 0.627
without INR to 0.296 with INR, and similarly, for the free-
breathing mode, from 0.517 to 0.251. The results for the
second volunteer follow a similar trend. Moreover, both the
average and median roughness values are similar, which
suggests a more uniform curvature distribution across the
mesh. These findings highlight the efficacy of our INR
pipeline in enhancing the smoothness of the reconstructed
meshes, irrespective of the breathing mode.

From our evaluation, it’s evident that prioritizing images
from the exhale phase significantly enhances the quality
of 3D reconstructions, mitigating the distortions and noise
introduced by breathing movements. Our innovative INR
pipeline, when compared to traditional methods, consistently
showcased superior performance in both the breath-hold
and free-breathing experiments. The breath-hold experiment,
which closely mirrors an idle state, served as an effec-
tive benchmark, reinforcing the efficacy of our approach.
Particularly in the free-breathing experiment, our method
adeptly handled the challenges posed by respiratory move-
ments, producing smoother reconstructions and effectively
interpolating missing gaps. In contrast, conventional linear

Fig. 6. 3D volumes from two volunteers from conventional (top) and INR
method (bottom) from the Breath-Hold Button experiment. Conventional
methods fail in interpolating larger gaps, while our INR-based approach
offers smoother interpolation between frames.

Fig. 7. Top image: the 3D volumes acquired after the free breathing
experiment from two volunteers, showing distortions due to respiratory
movements. Red: images only from the exhale phase, used for training of
the INR. Bottom image: 3D volume generated with conventional method,
3D volume reconstruction result from our network.

interpolation techniques exhibited limitations, especially in
handling larger gaps, leading to pronounced step edges in
the reconstructions. These findings underscore the potential
of our INR pipeline in advancing the field of 3D ultrasound
imaging, especially in scenarios where breathing-induced
distortions are a concern. Future work aims to enhance the
pipeline’s adaptability to diverse anatomical variations and its
compatibility with various ultrasound probes and machines,
broadening its applicability in clinical settings.

VI. CONCLUSIONS

The advancements in ultrasound imaging and its advan-
tages over other imaging modalities have led to its wide
usage in diagnostics and screening. However, challenges such
as inter-operator variability and breathing-induced motion
limit its applications. In this work, we introduced a novel
approach leveraging INRs to effectively counteract the dis-
tortions caused by breathing when constructing a 3D volume.
Furthermore, we combined this method with a robotic ultra-
sound system, allowing for standardized acquisitions. The
screening of the abdominal aorta is targeted as a use case to
verify the efficacy of the approach. The resultant smoother
3D reconstructions, as showcased by our experiments, can
help clinicians visualize and inspect the progression of a
disease and perform diameter measures more easily. The
findings from our experiments underscore the potential of our
approach to enhance clarity and improve diagnostic accuracy
using 3D ultrasound images.
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