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Abstract—Effective search in structured information based
on textual user input is of high importance in thousands of
applications. Query expansion methods augment the original
query of a user with alternative query elements with similar
meaning to increase the chance of retrieving appropriate re-
sources. In this work, we introduce a number of new query
expansion features based on semantic and linguistic inferencing
over Linked Open Data. We evaluate the effectiveness of each
feature individually as well as their combinations employing
several machine learning approaches. The evaluation is carried
out on a training dataset extracted from the QALD question
answering benchmark. Furthermore, we propose an optimized
linear combination of linguistic and lightweight semantic features
in order to predict the usefulness of each expansion candidate.
Our experimental study shows a considerable improvement in
precision and recall over baseline approaches.

I. INTRODUCTION

With the growth of the Linked Open Data cloud, a vast
amount of structured information was made publicly available.
Querying that huge amount of data in an intuitive way is
challenging. SPARQL, the standard query language of the
semantic web, requires exact knowledge of the vocabulary and
is not accessible by laypersons. Several tools and algorithms
have been developed that make use of semantic technologies
and background knowledge [10], such as TBSL [17], SINA [16]
and Wolfram|Alpha1. Those tools suffer from a mismatch
between query formulation and the underlying knowledge
base structure that is known as the vocabulary problem [8].
For instance, using DBpedia as knowledge base, the query
“Who is married to Barack Obama?” could fail, because the
desired property in DBpedia is labeled “spouse” and there is
no property labeled “married to”.

Automatic query expansion (AQE) is a tried and tested
method in web search for tackling the vocabulary problem by
adding related words to the search query and thus increase
the likelihood that appropriate documents are contained in
the result. The query is expanded with features such as
synonyms, e.g. “spouse” and “married to” in the example
above, or hyponym-hypernym relations, e.g. “red” and “color”.
We investigate, which methods semantic search engines can
use to overcome the vocabulary problem and how effective
AQE with the traditional linguistic features is in this regard.
Semantic search engines can use the graph structure of RDF
and follow interlinks between datasets. We employ this to

1http://www.wolframalpha.com

generate additional expansion features such as the labels of
sub- and superclasses of resources. The underlying research
question is whether interlinked data and vocabularies provide
features which can be taken into account for query expan-
sion and how effective those new semantic query expansion
features are in comparison to traditional linguistic ones.

We do this by using machine learning methods to gen-
erate a linear combination of linguistic and semantic query
expansion features with the aim of maximizing the F1-score
and efficiency on different benchmark datasets. Our results
allow developers of new search engines to integrate AQE with
good results without spending much time on its design. This
is important, since query expansion is usually not considered
in isolation, but rather as one step in a pipeline for question
answering or keyword search systems.

Our core contributions are as follows:
• Definition of several semantic features for query expan-

sion.
• Creation of benchmark test sets for query expansion.
• Combining semantic and linguistic features in a linear

classifier.
• An analysis of the effect of each feature on the classifier

as well as other benefits and drawbacks of employing
semantic features for query expansion.

The paper is structured as follows: In section II, the overall
approach is described, in particular the definition of features
and the construction of the linear classifier. Section III provides
the experiment on the QALD-1, QALD-2 and QALD-3 test
sets and presents the results we obtained. In the related work
in section IV, we discuss in which settings AQE is used.
Finally, we conclude and give pointers to future work.

II. APPROACH

In document retrieval, many query expansion techniques are
based on information contained in the top-ranked retrieved
documents in response to the original user query, e.g. [6].
Similarly, our approach is based on performing an initial
retrieval of resources according to the original keyword query.
Thereafter, further resources are derived by leveraging the
initially retrieved ones. Overall, the proposed process depicted
in the Figure 1 is divided into three main steps. In the first step,
all words closely related to the original keyword are extracted
based on two types of features – linguistic and semantic. In
the second step, various introduced linguistic and semantic
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Fig. 1. AQE Pipeline.

features are weighted using learning approaches. In the third
step, we assign a relevance score to the set of the related words.
Using this score we prune the related word set to achieve a
balance between precision and recall.

A. Extracting and Preprocessing of Data using Semantic and
Linguistic Features

For the given input keyword k, we define the set of all
words related to the keyword k as Xk = {x1, x2, ..., xn}.
The set Xk is defined as the union of the two sets LEk and
SEk. LEk (resp. SEk) is constructed as the collection of all
words obtained through linguistic features (resp. semantic).
Linguistic features extracted from WordNet are:

• synonyms: words having a similar meanings to the input
keyword k.

• hyponyms: words representing a specialization of the
input keyword k.

• hypernyms: words representing a generalization of the
input keyword k.

The set SE comprises all words semantically derived from the
input keyword k using Linked Data. To form this set, we match
the input keyword k against the rdfs:label property of all
resources available as Linked Open Data2. It returns the set
APk = {r1, r2, ..., rn} as APk ⊂ (C ∪I ∪P ) where C, I and
P are the sets of classes, instances and properties contained
in the knowledge base respectively, whose labels contain k as
a sub-string or are equivalent to k. For each ri ∈ APk, we
derive the resources semantically related to ri by employing
a number of semantic features. These semantic features are
defined as the following semantic relations:

• sameAs: deriving resources having the same identity as
the input resource using owl:sameAs.

• seeAlso: deriving resources that provide more information
about the input resource using rdfs:seeAlso.

• class/property equivalence: deriving classes or
properties providing related descriptions for the
input resource using owl:equivalentClass and
owl:equivalentProperty.

• superclass/-property: deriving all super classes/properties
of the input resource by following the
rdfs:subClassOf or
rdfs:subPropertyOf property paths originating
from the input resource.

2via http://lod.openlinksw.com/sparql

• subclass/-property: deriving all sub resources of the input
resource ri by following the rdfs:subClassOf or
rdfs:subPropertyOf property paths ending with the
input resource.

• broader concepts: deriving broader concepts related to
the input resource ri using the SKOS vocabulary proper-
ties skos:broader and skos:broadMatch.

• narrower concepts: deriving narrower concepts related
to the input resource ri using skos:narrower and
skos:narrowMatch.

• related concepts: deriving related concepts to the
input resource ri using skos:closeMatch,
skos:mappingRelation and skos:exactMatch.

Note that on a given ri only those semantic features are
applicable which are consistent with its associated type. For
example, sameAs only. For instance, super/sub class/property
relations are solely applicable to resources of type class or
property.

For each ri ∈ APk, we derive all the related resources
employing the above semantic features. Then, for each derived
resource r′, we add all the English labels of that resource
to the the set SEk. Therefore, SEk contains the labels of
all semantically derived resources. As mentioned before, the
set of all related words of the input keyword k is defined as
Xk = LEk ∪ SEk. After extracting the set Xk of related
words, we run the following preprocessing methods for each
xi ∈ Xk:

1) Tokenization: extraction of individual words, ignoring
punctuation and case.

2) Stop word removal: removal of common words such as
articles and prepositions.

3) Word lemmatisation: determining the lemma of the
word.

Vector space of a word: A single word xi ∈ Xk may
be derived via different features. For example, as can be
observed in Figure 2, the word “motion picture” and “film”
is derived by synonym, sameAs and equivalent relations.
Thus, for each derived word xi, we define a vector space
representing the derived features resulting in including that
word. Suppose that totally we have n linguistic and semantic
features. Each xi ∈ Xk is associated with a vector of size n
as Vxi

= [α1, α2, . . . , αn]. Each αi represents the presence or
absence of the word xi in the list of the words derived via the
feature fi. For instance, if we assume that f1 is dedicated to
the synonym feature, the value 1 for α1 in the Vxi means that
xi is included in the list of the words derived by the synonym
feature. There are features and those features generate a set of
expansion words.

B. Feature Selection and Feature Weighting

In order to distinguish how effective each feature is and to
remove ineffective features, we employ a weighting schema
ws for computing the weights of the features as ws : fi ∈
F → wi. Note that F is the set of all features taken into
account. There are numerous feature weighting methods to
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Fig. 2. Exemplary expansion graph of the word movie using semantic
features.

assign weight to features like information gain [7], weights
from a linear classifier [15], odds ratio, etc. Herein, we
consider two well-known weighting schemas.

1) Information Gain (IG): Information gain is often used
(see section IV) to decide which of the features are the most
relevant. We define the information gain (IG) of a feature as:

IG(fi) =
∑

c∈{+,−}
fi∈{present,absent}

Pr(c, fi) ln
Pr(c, fi)

Pr(fi)Pr(c)

In our approach, we used the ID3 decision tree algorithm with
information gain.

2) Feature weights from linear classifiers: Linear classi-
fiers, such as for example SVMs, calculate predictions by
associating the weight wi to the feature fi. Features whose
wi is close to 0 have a small influence on the predictions.
Therefore, we can assume that they are not very important for
query expansion.

C. Setting the Classifier Threshold

As a last step, we set the threshold for the classifiers above.
To do this, we compute the relevance score value score(xi) for
each word xi ∈ Xk. Naturally, this is done by combining the
feature vector Vxi

= [α1, α2, . . . , αn] and the feature weight
vector W = [w1, w2, . . . , wn] as follows:

score(xi) =
∑
i=1:n

αiwi

.
We can then compute a subset Yk of Xk by selecting all

words, which are above a threshold θ:

Yk = {y|y ∈ Xk ∧ score(y) ≥ θ}

.
This reduces the set of query expansion candidates Xk to

a set Yk containing only the words in Xk above threshold θ.
Since we use a linear weighted combination of features, words
which exhibit one or more highly relevant features are more
likely to be included in the query expansion set Yk. Thus,
the threshold can be used to control the trade-off between
precision and recall. A high threshold means higher precision,
but lower recall whereas a low threshold improves recall at
the cost of precision.

To sum up, Yk is the output of the AQE system and provides
words semantically related to the input keyword k. Retrieval
of resources from the underlying knowledge base is based
on the match of a given keyword with the rdfs:label
of resources. Thus, this expansion increases the likelihood of
recognizing more relevant resources. Because in addition to
resources matching their rdfs:label to the input keyword
k, we take into account resources having match of their
rdfs:label with the words contained in Y . Subsequently,
this causes an increase in recall. On the contrary, it may
result in loss of precision by including resources which may
be irrelevant. A severe loss in precision significantly hurts
retrieval performance. Therefore, we investigate a moderate
tradeoff between speed and accuracy, although the final result
highly depends on requirements of the search service( preci-
sion is more important or recall). Herein, the set Y includes all
xi ∈ X with a high relevance likelihood and excludes those
with a low likelihood.

III. EXPERIMENT AND RESULT

A. Experimental Setup

The goal of our evaluation is to determine (1) How effec-
tive linguistic as well as semantic query expansion features
perform and (2) How well a linear weighted combination of
features performs. To the best of our knowledge, no bench-
mark has been created so far for query expansion tasks over
Linked Data. Thus, we created one benchmark dataset. This
dataset called QALD benchmark contains 37 keyword queries
obtained from the QALD-1 and QALD-2 benchmarks3. The
QALD-1 and QALD-2 benchmarks are essentially tailored to-
wards comparing question answering systems based on natural
language queries. We extracted all those keywords contained in
the natural language queries requiring expansion for matching
to the target knowledge base resource.

An example are the keywords “wife” and “husband” which
should be matched to dbpedia-owl:spouse. Note that in
the following all experiments are done on the dataset except
the last experiment.

B. Results

Generally, when applying expansion methods, there is a
risk of yielding a large set of irrelevant words, which can
have a negative impact on further processing steps. For this
reason, we were interested in measuring the effectiveness of all

3http://www.sc.cit-ec.uni-bielefeld.de/qald-n for n = 1, 2.
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Features derived words matches

synonym 503 23
hyponym 2703 10
hypernym 657 14
sameAs 2332 12
seeAlso 49 2
equivalent 2 0
super class/property 267 4
sub class/property 2166 4
broader concepts 0 0
narrower concepts 0 0
related concepts 0 0

TABLE I: Number of the words derived by each feature and
their associated matches.

linguistic as well as semantic features individually in order to
decide which of those are effective in query expansion. Table I
shows the statistics over the number of derived words and the
number of matches per feature. Interestingly, sameAs has even
more matches than synonym, but also leads to a higher number
of derived words. The hyponym and sub class/property return
a huge number of derived words while the number of matches
are very low. The features hypernym and super class/property
in comparison to the rest of the features result in a considerable
number of matches. The features broader concepts, narrower
concepts and related concepts provide a very small amount of
derived words and zero number of matches. Thus, we exclude
the skos features in the later experiments.

In continuation, we investigate the accuracy of each in-
dividual feature. Thus, we employ an svm classifier and
individually make an evaluation over the accuracy of each
feature. This experiment was done on the dataset with 10
fold cross validation. Table IV presents the results of this
study. In this table, the precision, recall and F-Measure for the
positive (+), negative(-) and all (total) examples are shown. In
addition, six separate evaluations are carried out over a subset
of features which are semantically close to each other e.g.
hyponym+sub class/property.

In the following, we only mention the most prominent
observations of this study. The features hyponym, super
class/property and sub class/property have the highest value
for F-Measure. The precision of sameAs is the same as for
synonym. The feature equivalent has a high precision although
the recall is very low. The precision of the sub class/property
and hyponym is high for negative examples. At last, the
combined features always behave better than the individual
features.

The second goal of our experimental study is how well
a linear weighted combination of features can predict the
relevant words? To do that, firstly we employed two weighting
schemas as described in the approach, i.e. information gain
(IG) and the weighting of the linear classifier svm. Secondly,
these computed weights are used for reformulating the input

Feature GR SVM IG

synonym 0.920 0.400 0.300
hyponym 0.400 0.810 0.490
hypernym 1 0.400 0.670
sameAs 0.400 0.800 0.490
seeAlso 0.400 1.360 0.300
equivalent 0.300 0.490 0.300
super class/property 0.450 1.450 0.700
sub class/property 1.500 0.670 1.120

TABLE II: Computed weights of the features using the
schemas Gain Ratio (GR), Support Vector Machines (SVM)
and Information Gain (IG).

keyword.

Table II shows the weights computed by SVM schemas. The
feature super class/property is ranked as the highest distin-
guishing feature. The computed value of Hyponym is relatively
high but this feature has a negative influence on all examples.
Interestingly, in SVM schema sameAs and seeAlso as well as
synonym are acquired the equal values. This may result in
that sameAs and seeAlso can be a comparable alternative for
synonym. Furthermore, subproperty and subclass are excluded
in this schema.

Thereafter, we scored all the derived words according to
the beforehand computed weights. We set up two different
settings. In each setting, respectively, only linguistic features
and only semantic features are taken into account. A separate
evaluation is carried out for each setting with respect to the
computed weights SVM.

Table III shows the results of this study. Interestingly, the
setting with only semantic features result in an accuracy at
least as high as the setting with only linguistic features. This
observation is an important finding of this paper that semantic
features appear to be competitive with linguistic features.

Features Weighting P Recall F-Score

Linguistic SVM 0.730 0.650 0.620
Semantic SVM 0.680 0.630 0.600
Linguistic Decision Tree / IG 0.588 0.579 0.568
Semantic Decision Tree / IG 0.755 0.684 0.661

TABLE III: Accuracy results of predicting the relevant derived
words.



Features P Recall F-Score

synonym 0.440 0.680 0.540 −
0.330 0.150 0.210 +
0.390 0.420 0.370 total

hyponym 0.875 0.368 0.519 −
0.600 0.947 0.735 +
0.737 0.658 0.627 total

hypernym 0.545 0.947 0.692 −
0.800 0.211 0.333 +
0.673 0.579 0.513 total

sameAs 0.524 0.579 0.550 −
0.529 0.474 0.500 +
0.527 0.526 0.525 total

seeAlso 0.471 0.842 0.604 −
0.250 0.053 0.087 +
0.360 0.447 0.345 total

equivalent 0.480 0.890 0.630 −
0.330 0.053 0.091 +
0.410 0.470 0.360 total

super class/property 0.594 1 0.745 −
1 0.316 0.480 +
0.797 0.658 0.613 total

sub class/property 0.480 0.890 0.630 −
0.330 0.050 0.090 +
0.520 0.410 0.470 total

sameAs, seeAlso, equivalent 0.500 0.579 0.530 −
0.500 0.420 0.450 +
0.500 0.500 0.490 total

synonym, sameAs, seeAlso,
equivalent

0.470 0.579 0.520 −
0.460 0.360 0.410 +
0.470 0.470 0.460 total

hyponym, subresource 0.875 0.368 0.519 −
0.600 0.947 0.735 +
0.737 0.658 0.627 total

hypernym, superresource 0.594 1 0.745 −
1 0.316 0.480 +
0.797 0.658 0.613 total

TABLE IV: Separate evaluations of the precision, recall and
f-score of each individual feature.

IV. RELATED WORK

Automatic Query Expansion (AQE) is a vibrant research
field and there are many approaches that differ in the choice

and combination of techniques.

A. Design choices for query expansion

In the following, we describe the most important choices
of data sources, candidate feature extraction methods and
representations, feature selection methods and expanded query
representations (cf. [5] for a detailed survey).

a) Data sources: are organized collections of words or
documents. The choice of the data source is crucial because it
influences the size of the vocabulary as well as the available
relations; and thus possible expansion features. Furthermore,
a data source is often restricted to a certain domain and thus
constitutes a certain context for the search terms. For example,
corpora extracted from newspapers yield good results when
expanding search queries related to news but are generally
less suited for scientific topics. Thus a search query with the
keyword “fields” intended for electromagnetic fields could be
expanded to “football fields” and yield even worse results then
the original query.

Popular choices for data sources are text corpora, WordNet
synsets, hyponyms and hypernyms, anchor texts, search engine
query logs or top ranked documents. Our approach uses both
WordNet as a source for synonyms, hyponyms and hypernyms
as well as the LOD cloud to obtain labels of related classes
or properties, such as equivalent, sub- and super-resources (cf.
section II). WordNet is used frequently but it suffers from two
main problems [5]:

1) There is a lack of proper nouns which we tackle by
using the LOD cloud including DBpedia which contains
mainly instances.

2) The large amount of ambiguous terms leads to a dis-
ambiguation problem. However, this does not manifest
itself in the relatively small models of the benchmarks
we used (cf. section III). Disambiguation is not the focus
of this work but may need to be addressed separately
when our approach is used in larger domains.

b) Feature selection: [13] consists of two parts: (1)
feature weighting assigns a scoring to each feature and (2) the
feature selection criterion determines which of the features to
retain based on the weights. Some common feature selection
methods are mutual information, information gain, divergence
from randomness and relevance models. A framework for
feature weighting and selection methods is presented in [13].
The authors compare different feature ranking schemes and
(although not the primary focus of the article) show that SVMs
achieve the highest F1-score of the examined methods. We
use information gain and SVMs separately and compare the
results. To learn the feature rankings we use the data mining
software Weka [12].

c) Expanded query representation: can take the form of
a Boolean or structured query, vectors of concept types or
unweighted terms and many others. Because our query is a
set of keywords, our extended query is an extended set of
keywords and thus consists of unweighted terms.



B. Semantic Search and Question Answering Engines

While AQE is prevalent in traditional web search engines,
the semantic search engines we examine in the following either
do not address the vocabulary problem or tackle it in a different
way.

Table V shows how the participants of the QALD/ILD 2012
workshop and selected other approaches tackle the vocabulary
problem. Interestingly, two of the three considered approaches
did not use any kind of query expansion, relying instead only
on exact string matching between the query keyword and the
label of the associated resource. Alexandria [18] uses Freebase
to include synonyms and different surface forms.

MHE4 combines query expansion and entity recognition by
using textual references to a concept and extracting Wikipedia
anchor texts of links. For example, when looking at the
following link:

<a href="http://en.wikipedia.org/
wiki/United_Nations">UN</a>

Here the word “UN” is mapped to the concept United_Nations.
This approach takes advantage of a large amount of hand-made
mappings that emerge as a byproduct. However, this approach
is only viable for Wikipedia-DBpedia or other text corpora
whose links are mapped to resources.

Engine Method

TBSL [17] WordNet synonyms and BOA pattern library [9]
Power-
Aqua [14]

WordNet synonyms and hypernyms,
owl:sameAs

Eager [11] resources of the same type using Wikipedia
categories

Alexan-
dria [18]

alternative names (synonyms and different
surface forms) from Freebase [3]

Sem-
SeK [1]

no AQE

QAKiS [4] no AQE
MHE Wikipedia anchor texts from links pointing to

the concept

TABLE V: Prevalence of AQE in RDF based search or
question answering engines.

Eager [11] expands a set of resources with resources of the
same type using DBpedia and Wikipedia categories (instead
of linguistic and semantic features in our case). Eager extracts
implicit category and synonym information from abstracts and
redirect information, determines additional categories from
the DBpedia category hierarchy and then extracts additional
resources which have the same categories in common.

PowerAqua [14] is an ontology-based system that answers
natural language queries and uses WordNet synonyms and
hypernyms as well as resources related with the owl:sameAs
property.

4http://ups.savba.sk/~marek

A prerequisite of feature-based Query Expansion is,
that the data about the features used, i.e. the pairs con-
tained in the relations, is available. Relation equivalency
(owl:equivalentProperty) links in particular are often
not, or not completely, defined for a knowledge base. There
is however an approach for mining equivalent relations from
Linked Data, that relies on three measures of equivalency:
triple overlap, subject agreement and cardinality ratio. [19]

An approach similar to ours is [2], however it relies on
supervised learning and uses only semantic expansion features
instead of a combination of both semantic and linguistic ones.

V. CONCLUSIONS

Semantic search is one of the most important applications
for demonstrating the value of the semantic web to real
users. In the last years, a number of approaches for semantic
search have been introduced. However, other than in traditional
search, the effect of query expansion has not yet been studied.
With semantically structured knowledge, we can also employ
additional semantic query expansion features. In this work, we
performed a comprehensive study of semantic query expan-
sion. We compared the effectiveness of linguistic and semantic
query expansion as well as their combination. Based on a
query expansion benchmark we created, our results suggest
that semantic features are at least as effective as linguistic
ones and the intelligent combination of both brings a boost in
precision and recall.
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