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Abstract—A recent survey conducted among developers of
the Apache, Eclipse, and Mozilla projects showed that the
ability to recreate field failures is considered of fundamental
importance when investigating bug reports. Unfortunately, the
information typically contained in a bug report, such as memory
dumps or call stacks, is usually insufficient for recreating the
problem. Even more advanced approaches for gathering field
data and help in-house debugging tend to collect either too little
information, and be ineffective, or too much information, and
be inefficient. To address these issues, we present BUGREDUX, a
novel general approach for in-house debugging of field failures.
BUGREDUX aims to synthesize, using execution data collected
in the field, executions that mimic the observed field failures.
We define several instances of BUGREDUX that collect different
types of execution data and perform, through an empirical study,
a cost-benefit analysis of the approach and its variations. In
the study, we apply BUGREDUX to 16 failures of 14 real-world
programs. Our results are promising in that they show that it is
possible to synthesize in-house executions that reproduce failures
observed in the field using a suitable set of execution data.

I. INTRODUCTION

Quality-assurance activities, such as software testing and
analysis, are notoriously difficult, expensive, and time-
consuming. As a result, software products are typically re-
leased with faults or missing functionality. The characteristics
of modern software are making the situation even worse.
Because of the dynamic nature, configurability, and portability
of today’s software, deployed applications may behave very
differently in house and in the field. In some cases, these
different behaviors may be totally legitimate behaviors that
simply were not observed during in-house testing. In other
cases, however, such behaviors may be anomalous and result
in field failures, failures of the software that occur after
deployment, while the software is running on user machines.

Field failures are both difficult to foresee and difficult, if not
impossible, to reproduce outside the time and place in which
they occurred. In fact, a recent survey among developers
of the Apache, Eclipse, and Mozilla projects revealed that
most developers consider information on how to reproduce
failures (e.g., stack traces, steps to follow, and ideally even
inputs) to be the most valuable and difficult to obtain piece
of information in a bug report [1]. This pressing need is
demonstrated by the emergence, in the last decade, of several
reporting systems that collect information (e.g., stack traces
and register dumps) when a program crashes and send it back
to the software producer (e.g., [2], [3]]). Although useful, the
information collected by these systems is often too limited
to allow for reproducing a failure and is typically used to

identify correlations among different crash reports or among
crash reports and known failures.

Researchers have also investigated more sophisticated tech-
niques for capturing data from deployed applications that
can help debugging (e.g., [4]-[10]). Among these techniques,
some collect only limited amounts of information (e.g., sam-
pled branch profiles for CBI [6], [7]). These techniques have
the advantage of collecting types of data that are unlikely to be
sensitive, which makes them more likely to be accepted by the
user community. Moreover, given the amount of information
collected, it is conceivable for users to manually inspect the
information before it is sent to developers.

Unfortunately, subsequent research has shown that the
usefulness of the information collected for debugging in-
creases when more (and more detailed) data is collected. Re-
searchers have therefore defined novel techniques that gather
a wide spectrum of richer data, ranging from path profiles
to complete execution recordings (e.g., [4], [51, [11], [12]).
Complete execution recordings, in particular, can address the
issue of reproducibility of field failures. User executions,
however, have the fundamental drawbacks that they (1) can
be expensive to collect and (2) are bound to contain sensitive
data. While the former issue can be alleviated with suitable
engineering (e.g., [S]l, [11]]), the latter issue would make the
use of these techniques in the field problematic. Given the
sheer amount of data collected, users would not be able to
manually check the data before they are sent to developers,
and would therefore be unlikely to agree on the collection
of such data. Although some techniques exist whose goal
is to sanitize or anonymize collected data, they are either
defined for a different goal, and would thus eliminate sensitive
data only by chance (e.g., [13], [[14]), or are still in their
early phase of development and in need of a more thorough
evaluation (e.g., [15]], [16]).

The overall goal of this work is to address these limitations
of existing techniques by developing novel approaches for
reproducing field failures in house without imposing too much
overhead on the users and without violating the users’ privacy.
More precisely, we aim to develop a general technique that
can synthesize, given a program P, a field execution £ of P
that results in a failure I, and a set of execution data D for E,
an in-house execution E' as follows. First, E’ should result
in a failure F’ that is analogous to F, that is, F has the same
observable behavior of F'. If F' is the violation of an assertion
at a given location in P, for instance, F’ should violate the
same assertion at the same point. Second, E’ should be an



actual execution of P, that is, the approach should be sound
and generate an actual input that, when provided to P, results
in E'. Third, the approach should be able to generate E’
using only P and D, without the need for any additional
information. Finally, D should not contain sensitive data and
should be collectable with low overhead on E.

As a first step towards our goal, in this paper we present
BUGREDUX, a general technique for (1) collecting different
kinds of execution data and (2) using the collected data to
synthesize in-house executions that can reproduce failures
observed in the field. Intuitively, BUGREDUX can be seen
as a general framework parameterized along two dimensions:
the kind of execution data D collected and the technique used
for synthesizing execution E’. We present four variations, or
instances, of BUGREDUX that all share the same synthesis
technique (i.e., symbolic execution) but differ in the kind
of execution data they use. Specifically, we consider four
types of increasingly rich execution data: points of failure,
call stacks, call sequences, and complete program traces.

We also present an empirical investigation in which we
assess the tradeoffs that characterize the variations of BU-
GREDUX with respect to (1) the cost of the data collection, in
terms of space and time overhead (and, indirectly, likelihood
to contain sensitive data), and (2) the ease of synthesizing a
failing execution starting from such data. In the evaluation,
we used an implementation of BUGREDUX developed for the
C language and applied it to 16 failures of 14 real-world
programs. For each failure, we collected the four different
types of execution data, measured the overhead of the collec-
tion, and tried to synthesize an execution that reproduced the
failure using such data. Interestingly, our results show that the
richest data, beside being the most expensive to collect and
the most problematic in terms of potential privacy violation,
is not necessarily the most useful when used for synthesizing
executions. Our results also confirm that, at least for the cases
we considered, information that is traditionally collected by
crash-report systems, such as the call stack at the point of
failure, is typically not enough for recreating field failures.

For the current incarnation of BUGREDUX, we found that
the best option in terms of cost-benefit ratio is the use
of call sequences. As our study shows, using call-sequence
data BUGREDUX was able to recreate all of the 16 failures
considered, while imposing an acceptable time and space
overhead. We believe that these results, albeit preliminary in
nature, are encouraging and motivate further research in this
direction. In fact, as we discuss in the final part of the paper,
we have already identified several opportunities for further
reducing the cost of the data collection while maintaining the
same ability of recreating field failures.

This paper provides the following novel contributions:

o A general approach for collecting execution data in the
field and using the data to synthesize executions that
reproduce field failures.

o The instantiation of the approach for four different kinds
of execution data and one execution synthesis technique

and its implementation in a freely-available prototype
tool (see http://www.cc.gatech.edu/~orso/software/bugredux.html)).
o An empirical study that performs a cost-benefit analysis
of the approach and its variations in terms of data col-
lection costs and ability to synthesize failing executions.

II. MOTIVATING EXAMPLE

We introduce an example that we use in the rest of the
paper to motivate our work, show the challenges involved in
reproducing observed failures, and illustrate our technique.
Our example, shown in Figure[I] is taken from the Coreutils
library [17]]. Specifically, we selected a piece of code that
contains a fault and simplified it to make it self contained
and easier to understand for the reader.

The program takes a string argument from the com-
mand line and has five functions: main, process, uppercase,
replaceescape, and printresult. Function main first checks
that exactly one command-line argument is present (lines 39—
40) and that the length of the input parameter is less than
256 characters (lines 41-42). It then allocates an array of
256 characters, which will be used to store the result of
the execution, and invokes function process with the input
argument and the newly created array as parameters (line 44).

Function process scans each character in its input string
and adds it to the output string after processing it in one of
three ways. If the character is alphabetical and lower-case, it
is replaced with the corresponding upper-case character using
function uppercase (lines 26-27). If the character is part of an
escape sequence, it is replaced using function replaceescape
(lines 28-30). This function replaces the character with either
a new line or a tab, if the escape sequence is one of
\n or \t, or with null otherwise. All other characters are
copied to the output string unmodified (lines 31-32). After all
input characters have been processed, function process calls
function printresult, which prints out the output string.

The fault in the code is at line 30, in function process.
After processing an escape sequence, the code increments the
index of the output array out instead of that of the input array
in. The first consequence of this fault is that one character is
skipped in the output string, and an extra character is added to
the string. For a sequence “\n”, for instance, both a newline
character and character “n” would be added to the output,
with an undefined character in between. Another effect is that
the index of the output array will grow larger than the index
of the input array by one for each escape character processed.
Therefore, if the number of escape characters plus the length
of the input array were to exceed 256, which is the size of
the output array, this fault will cause a memory error.

This is a simple, yet interesting fault, as the memory error
would be triggered only by an input with the following
characteristics: (1) the input must contain less than 256
characters, to pass the initial test, and (2) the sum of the length
of the input plus the number of escape characters it contains
must be greater than 256. Note that this also implies that the
input must contain at least two escape characters, as the input
string can contain at most 255 characters, whereas the output
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1. char replaceescape (char e) {
2 switch (e) {

3. case 'n’:

4. return 10;

5 case 't’:

6 return 9;

7 default:

8. return 0;

9. }
11. char uppercase(char 1) {
12.  return l-'a’+'A’;

14. void printresult (char str,int length) {
15.  int i;

16. for (i=0;i<length;i++) {

17. if (str[i]!=0)

18. printf ("$c",str[il);

21. void process(char+ source, chars dest) {

22.  int out=0;

23.  int in=0;

24. int srclength = strlen(source);

25. while (in<srclength) {

26. if (source[in]>=’a’&&source[in]<='z") {
27. dest [out]=uppercase (source[in]);

28. } else if (source[in]=="\\") {
29. dest [out]=replaceescape (source[in+1]);
30. out++; // correct version: in++;
31. } else
32. dest [out]=source[in];
33. out++;
34. in++;
35
36.  printresult (dest,out);
37
38. int main(int argc, char xargv[]) {
39. if (argc!=2)
40. exit (0);
41.  if (strlen(argv[1])>=256)
42. exit (0);
43. charx outputstr=malloc(256);
44, process (argv[1],outputstr);
45.
Figure 1. Example of faulty program.

array’s capacity is 256. Because it requires a specially-crafted
input to be triggered, such a fault may not be revealed by an
in-house test suite (even one that covers all branches in the
program) and could therefore result in a field failure.
Assume that the program is released with the fault at line
30 we just discussed, and that a user provides an input that
triggers the fault and results in a memory error at line 27,
when the program tries to write the 257" character in the
output array. In this situation, the runtime system would
generate a crash report such as the one shown in Figure
As the figure shows, the crash report lists the point of failure
(POF) for F (line 27 of example.c), and the call stack at the
moment of failure, with one entry per function on the stack.
A developer who is assigned this bug report and wants
to investigate the problem would likely try to reproduce
the failure, which is far from trivial. It would be unlikely,
for instance, that random testing could generate an input
that satisfies the failing conditions for F' by pure chance.
Even more sophisticate approaches, such as those based on
symbolic execution or some other verification techniques,
would have a hard time triggering the faulty behavior without
any guidance. Given that (1) the length of the input string
plus the number of escape characters should be greater than
256, and (2) the loop in function process increments the
output array’s index by at most two characters per iteration,
the shortest failing path would be one that traverses the loop
128 times and, for all iterations but the last one, follows
path {26, 28,29, 30, 33, 34}. Finding this path using symbolic
execution would not be possible if the number of loop itera-
tions were bounded to some small value, as it is typically the
case to make the exploration feasible (e.g., [[18]-[20]). With
unbounded loop exploration, on the other hand, symbolic

Error: memory error
File: example.c
Line: 27
Stack:

#

o

00000388 in process (source=\\

185417824, dest=186177720) at example.c:27
00000492 in main (argc=\\

2, argv=180717480) at example.c:44

Figure 2. Crash report for our example program.

#
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execution may have to explore three paths for each iteration,
which would result in 3™ paths explored for n iterations—a
number that would quickly grow to impractically large values.

For this example, thus, POF and call stack are unlikely to
provide enough information to help developers reproduce and
debug the reported field failure. To do so, developers would
need additional information about the length of the input
and the number of escape characters in it. This information
could be provided in many ways, and by collecting many
different kinds of data (e.g., profiles, input values, invariants).
Most importantly, the kind of data needed is likely to depend
on the specific failure considered. As a first step towards
defining a technique for reproducing field failures in house, it
is therefore important to understand the usefulness of different
kinds of execution data in this context. To this end, we defined
a general approach for synthesizing executions that (1) mimic
executions that resulted in field failures and (2) reproduce
such failures. We instantiated several variants of our approach
that differ in the kind of execution data they use, and studied
the effectiveness of these different variants. The next sections
discuss our approach and our empirical investigation. Note
that, for space reasons, we do not provide here background
information on some basic program analysis and symbolic
execution concepts used in the discussion of our approach.
Expanded discussions, definitions, and examples appear in
the companion technical report [21].

III. OUR APPROACH FOR RECREATING FIELD FAILURES

As we stated in the Introduction, our overall goal is to
recreate field failures faithfully (i.e., in a way that allows
for debugging them) by using execution data collected in the
field that can be gathered without imposing too much space
and time overhead on field executions. To achieve this goal,
we developed a general approach that we call BUGREDUX.
Intuitively, BUGREDUX operates by (1) collecting different
kinds of execution data and (2) using the collected data
to synthesize in-house executions that reproduce failures
observed in the field. Figure [3] provides a high-level overview
of BUGREDUX and of the scenario we target.

As the figure shows, BUGREDUX consists of two main
components. The first one is the instrumenter, which takes
as input an application provided by a software developer
and generates an instrumented application that can collect
execution data and add such execution data to crash reports
from the field. The second component is the analyzer, which
takes as input a crash report and tries to generate a fest input
that, when provided to the application, results in the same
failure that was observed in the field. A software tester can
then use the generated input to recreate and debug the field
failure. This general approach can be defined in different ways
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depending on the kind of execution data collected and on the
technique used for synthesizing execution.

A. Instrumenter and Analyzer Components

Instrumentation is a well assessed technology, so we do not
discuss this part of the approach further. It suffices to say that
BUGREDUX adds probes to the original program that, when
triggered at runtime, generate the execution data of interest.
Conversely, the analyzer is the core part of the approach and
the most challenging to develop. Figure {i] which provides a
more detailed view of the analysis component of BUGREDUX,
puts the problem in context and lets us discuss how we
addressed this challenge. As the figure shows, the inputs to
the analyzer are an application program P, whose execution
E produces failure F' that we want to reproduce, and a crash
report C' for F'. The goal of the analyzer is to generate a test
input that would result in an execution E’ that “mimics” E
and would fail in the same way.

Given crash report C, the input generator would analyze
program P and try to generate such test input. The exact
definition of mimicking depends on the amount of information
about the failing execution E that is available. If only the POF
were available, for instance, £/ would mimic E if it reaches
the POF. Conversely, if a complete trace were to be used, £’
would have not only to reach the POF but also to follow the
same path as E. This concept of mimicking is defined within
the input generator, which receives the execution data in the
form of a sequence of goals (or statements) to be reached
and tries to generate executions that reach such goals in the
right order. If successful, the input generator would generate
a candidate input, and the oracle would check whether that
input actually fails in the same way as E.

In theory, any automated input generation technique could
be used in this context, as long as it can be guided to-
wards a goal (e.g., the point of failure, the entry point of
a function on the failure’s call stack, or a branch within

Algorithm 1: GenerateInputs

1 icfg : ICFG for program P
goals_list : an ordered list of statements Go, ...Gp,
Output: inputs: candidate input for synthesized run

Input

1 begin
2 sym_stateg <— initial symbolic values of program inputs
3 states_set <+ (icfg.entry, true, sym_stateg, Go)
4 curr_goal < Gy
5 while true do
6 curr_state + null
7 while curr_state == null do
8 curr_state <—
SelNextState(icfg, states_set, curr_goal)
9 if curr_state == null then
10 if curr_goal # Go then
1 curr_goal < previous goal in goals_list
12 continue
13 else
14 |  return null
15 end
16 end
17 end
18 if curr_state.cl == curr_goal then
19 if curr_goal == G,, then
20 inputy <— solver.getSol(curr_state.pc)
21 if inputy is found then
2 | return inputy
23 else
2 remove(curr_state, states_set)
25 continue
26 end
27 else

curr_goal < next target in goals_list
curr_state.goal < curr_goal

30 end
31 else
32 if curr_state.cl € goal_list then
33 remove(curr_state, states_set)
34 continue
35 end
36 end
37 if curr_state.cl is a conditional statement then
38 curr_state.pc <

addConstr(curr_state.pc, pred, true)
39 curr_state.cl < getSucc(curr_state.cl, true)
40 if solver.checkSat(curr_state.pc) == false then
41 remove(curr_state, states_set)
42 end
43 false_pc < addConstr(curr_state.pc, pred, false)
44 false_cl « getSucc(curr_state.cl, false)
45 if solver.checkSat(curr_state.pc) # false then
46 new_state <—

(false_cl, false_pc, curr_state.ss, curr_state.goal)

47 insert(new_state, state_set)
48 end
49 else
50 curr_state.ss <

symEval(curr_state.ss, curr_state.cl)
51 curr_state.cl < getSucc(curr_state.cl)
52 end
53 end
54 end

the program). In this work, we decided to use an approach
based on symbolic execution [18]]. Specifically, we use a
symbolic execution algorithm customized with an ad-hoc
search strategy that leverages the execution data available
expressed as a set of goals. Our algorithm, Generatelnputs, is
shown in Algorithm [T} GenerateInputs takes as input icfg,
the Interprocedural Control Flow Graph (ICFG) [22] for
program P, and goals_list, an ordered list of statements to be
reached during the execution. (We discuss the exact content
of goals_list in Section [[II-B})

Initially, GenerateInputs performs some initializations
(lines 2H4). First, it initializes sym_statey with the initial



symbolic state, where all inputs are marked as symbolic.
Then, it initializes states_set, a set that will be used to store
search states during the execution, with the initial search state.
Entries in states_set are quadruples (cl, pc, ss, goal), where
cl is a code location, pc the Path Condition (PC) for the
path followed to reach location cl, ss the symbolic state right
before cl, and goal the current target for this state (used to
enforce the order in which goals are reached). The initial
search state consists of the entry of the program for c¢l, PC
true, symbolic state sym_statey, and goal Gy. Next, the
algorithm assigns to curr_goal the first goal from goals_list.

The algorithm then enters its main loop. At the beginning
of each loop iteration, Generatelnputs invokes algorithm
SelNextState, shown in Algorithm [2| SelNextState looks for
the most promising state to explore in states_set. (At the
first invocation of SelNextState, only the initial state is in the
states_set. The number of states will increase in subsequent
invocations, when more of the program has been explored
symbolically.) SelNextState selects states based on the mini-
mum distance mindis, computed in terms of number of state-
ments in the ICFG, between each state’s ¢l and curr_goal.
To avoid selecting states that have not reached goals that
precede curr_goal in goals_list, SelNextState only considers
states whose target is curr_goal (line [5] in Algorithm [2). If
none of these states can reach curr_goal (i.e., there’s no
path between the state’s ¢l and curr_goal in the ICFG),
SelNextState returns null to Generatelnputs. Otherwise, the
selected state is returned (line [I5]in Algorithm [2).

When Generatelnputs receives the candidate state from
SelNextState, it first checks whether the returned state is
null, which means that no state in states_set with target
curr_goal can actually reach such target. If so, Generateln-
puts backtracks by updating curr_goal to the previous goal
in the goals_list and looking for another path that can reach
that goal (line . Conversely, if curr_state is not null,
Generatelnputs continues the execution of its main loop.

If curr_state’s code location corresponds to curr_goal,
Generatelnputs updates both global goal curr_goal and local
goal curr_state.goal to the next goal in goals_list (lines 28}
[29). It then continues the symbolic execution. If the last goal
G, is reached, the algorithm stops the symbolic execution,
feeds the current PC to the SMT solver, and asks the solver to
find a solution for the PC (line 20). If a solution is not found,
the generation of the candidate input is deemed unsuccessful.
If curr_state’s code location is not curr_goal but another
goal in goal_list, the algorithm removes curr_state from
state_set and goes back to the beginning of the main loop
(lines 32H34). It does so to avoid that the execution reaches
the goals in the goal list in a different order from the one
observed in the failing execution. If curr_state’s code loca-
tion is a conditional statement pred that involves symbolic
values, the algorithm performs one execution step along both
branches, that is, it updates states’ current location and path
condition, checks the feasibility of both branches using the
SMT solver, and removes (or does not add) infeasible states

Algorithm 2: SelNextState

Input : icfg : ICFG for program P
states_set: set of symbolic states
curr_goal: next goal

Output: ret_state: candidate state for exploration

1 begin

2 mindis < +oo

3 ret_state < null

4 foreach State; € states_set do

5 if State;.goal == curr_goal then

6 if State;.loc can reach curr_goal in IC F'G then

7 nd < shortest distance from State;.loc to curr_goal
in ICFG

8 if nd < mindis then

9 mindis < nd

10 ret_state < State;

1 end

12 end

13 end

14 end

15 return ret_state

16 end

from states_set (lines B8HAT). (If the SMT solver did not
provide an answer for PC, the algorithm would consider
the corresponding state feasible and continue.) Finally, if
curr_state’s code location is any statement other than a
conditional, the algorithm suitably updates the symbolic state
and the current location of states_set (lines [SOHSI).

The algorithm terminates when either there are no more
states to explore (i.e., it tries to backtrace from Gy (line [I4))
or a candidate input is successfully generated (line 22). In
the former case, our algorithm fails to find an input that can
mimic the observed execution. In the latter case, conversely,
the algorithm successfully produces such input.

In summary, our symbolic execution technique has two
key aspects. First, it uses the execution data from the field
to identify a set of intermediate goals that can guide the
exploration of the solution space. Second, it uses a heuristic
based on distance to select which states to consider first when
trying to reach an intermediate goal during the exploration.
In theory, the more data (i.e., number of intermediate goals)
available, the more directed the search, and the higher the
likelihood of synthesizing a suitable execution. On the other
hand, collecting too much data can have negative conse-
quences in terms of overhead and introduce privacy issues. To
study this tradeoff, we define several variants of our approach
that differ on the kind of execution data they consider. We
describe these variants in the next section.

B. Execution Data

In selecting the execution data to consider, we aimed to
cover a broad spectrum of possibilities. To this end, we
selected four kinds of data characterizing a failure: point of
failure (POF), call stack, call sequence, and complete program
trace. These types of data are representative of scenarios
that go from knowing as little as possible about the failing
execution to knowing almost everything about it. In addition,
POFs and call stacks are types of data that are very commonly
available for crashes, as they are normally included in crash
reports. Call sequences, and program traces, on the other
hand, are not normally available and represent data that, if



they were shown to be useful, would require changes in the
way programs are monitored and crash reports are generated.

For each of these four types of execution data, we instan-
tiated a variation of BUGREDUX that collected and used that
type of data. As far as data collection is concerned, the first
two types of execution data do not require any modification
of the program being monitored, as they can be extracted
them from existing reports. The other two types of data can
be collected using well-understood program instrumentation
techniques. To collect call sequences, BUGREDUX instru-
ments all call sites and entry points (these latter to account
for the possible presence of function pointers), whereas to
collect program traces it instrument all branches.

Customizing BUGREDUX so that it uses the different data
is also relatively straightforward, as it amounts to suitably
generating the goals_list set to be passed to BUGREDUX’s
input generator. For POF, goals_list would contain a single
entry—the POF itself. For a failure’s call stack, there would
be an entry in the set for each function on the stack,
corresponding to the first statement of the function, plus an
additional entry for the POF. Call sequences would result in a
goals_list that contains an entry for each call, corresponding
to the call statement. Also in this case, there would be an
additional, final entry for the POF. Finally, the goals_list
for a program trace would consist of an entry per branch,
corresponding to the statements that is the destination of the
branch, and the usual entry for the POF.

In the next section, we discuss how we used these four
variants of BUGREDUX to study the tradeoffs involved with
the use of different kinds of information and assess the general
usefulness of the proposed approach.

IV. EMPIRICAL INVESTIGATION

We investigated the following research questions:

« RQ1: Can BUGREDUX synthesize executions that are
able to reproduce field failures?

« RQ2: If so, which types of execution data provide the
best tradeoffs in terms of cost benefit?

To address these questions, we implemented the four vari-
ants of BUGREDUX discussed in the previous section and
applied them to a set of real-world programs.

A. BUGREDUX Implementation

Our implementation of BUGREDUX works on C programs
and consists of three modules that correspond to the three
components shown in our high-level view of the approach (see
Figures [3] and @): instrumenter, input generator, and oracle.
BUGREDUX’s instrumenter performs static instrumentation
(i.e., probes are added to the code at compile time) by lever-
aging the LLVM compiler infrastructure (http://llvm.org/). The
input generator in BUGREDUX is built on top of KLEE [23], a
symbolic execution engine for C programs. We implemented
Algorithms [I] and [2] as a custom search strategy for KLEE
and also made a few modifications to KLEE’s code. Finally,
BUGREDUX’s oracle module is implemented as a Perl script
that operates as follows: (1) it takes as input program P, an

Table I
SUBJECT PROGRAMS USED IN OUR STUDY.

Name Repository | Description Size (kLOC) | # Faults
sed SIR stream editor 14 2
grep SIR pattern-matching utility 10 1
gzip SIR compression utility 5 2
ncompress BugBench (de)compression utility 2 1
polymorph | BugBench file system “unixier” 1 1
aeon exploit-db mail relay agent 3 1
glftpd exploit-db FTP server 6 1
htget exploit-db file grabber 3 1
socat exploit-db multipurpose relay 35 1
tipxd exploit-db IPX tunneling daemon 7 1
aspell exploit-db spell checker 0.5 1
exim exploit-db message transfer agent 241 1
rsync exploit-db file synchronizer 67 1
xmail exploit-db email server 1 1

input [ for P, and a crash report C' corresponding to failure F';
(2) it runs P against I and collects any crash report generated
as a result of the execution; and (3) if either no report is
generated or the call stack and POF in the generated report
do not match those in C, it reports that the approach failed,
whereas it reports a success otherwise.

B. Programs and Faults Considered

To investigate our research questions in a real(istic) setting,
we used a set of real, non-trivial programs that contained one
or more faults and had test cases that could reveal such faults.
We considered programs from three public repositories that
have been used extensively in previous research: SIR [24],
BugBench [25], and exploit-db [26]. Specifically, we selected
three programs from SIR, two from BugBench, and nine from
exploit-db. Table | shows the relevant information about each
program: name, repository from which it was downloaded,
size, and number of faults it contains. As the table shows,
the program sizes range from 0.5 kKLOC to 241 kLOC, and
each program contains one or two faults. The faults in the
BugBench and exploit-db programs are real faults, whereas
the ones in the programs from SIR are seeded.

We selected these programs because they have been used
in previous research [16], [26] and because of the representa-
tiveness of their faults. The faults in exploit-db and BugBench
are real faults mostly discovered by users in the field, whereas
the faults in SIR are seeded by researchers but are carefully
designed to simulate real faults.

We excluded from our study three programs from SIR and
four from BugBench because the version of KLEE we used
could not handle some of the constructs in these programs
(e.g., complex interactions with the environment and network
inputs). As far as faults are concerned, we selected faults
that caused a program crash, rather than just generating an
incorrect result. This choice was made for convenience and
to minimize experimental bias—with crashes, failures can be
objectively identified and do not require the manual encoding
of the failure condition as an assertion.

We also performed a preliminary check on the programs
and faults that we selected by feeding them to an unmodified
version of KLEE and letting it run for 72 hours. The goal
of this check was to assess whether these faults could have
been discovered by a technique that blindly tries to explore
as much of the programs as possible. If so, this would be
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an indication that the faults are too easy to reveal to be good
candidates for our study. The unmodified KLEE was unable to
reveal the faults in the programs except for one case: iwconfig.
We therefore removed iwconfig from our set of subjects. It
is worth noting that we decided not to use the benchmarks
used in Reference [27] for the same reason—all of those
failures could be recreated through plain, unguided symbolic
execution, as also shown in Reference [23]. (Moreover, the
benchmarks we selected are more representative, as programs
are larger and 9 out of 16 faults are real faults reported by
users, rather than faults found in-house by KLEE.)

C. Experimental Setup

In order to collect the data needed for our investigation,
we proceeded as follows. To simulate the occurrence of
field failures, we used the test cases distributed with our
subject programs as proxies for real users. For each fault f
considered, we ran the test cases until a test case t; failed
and generated a program crash; we associated ¢ to f as its
failing input. We then reran all the failing inputs on all the
corresponding faulty programs three times. The first time,
we ran them on the unmodified programs, the second time
on the programs instrumented by BUGREDUX to collect call
sequences, and the third time on the programs instrumented
by BUGREDUX to collect complete program traces. For each
such execution, we measured the duration of the execution
and the size of the execution data generated.

With this information available, we used the four variants
of BUGREDUX to synthesize a failing execution starting from
a suitable set of goals (i.e., POF, call stack at the time of
failure, call sequence, and complete program trace). For each
run of BUGREDUX, we recorded whether the generation was
successful (i.e., whether a candidate input was generated at
all) and how long it took. We set a timeout of 72 hours for the
generation, after which we marked the run as unsuccessful.
We also recorded whether the candidate input, if one was
generated, could reproduce the original failure according to
BUGREDUX’s oracle.

D. Results and Discussion

This section presents the results of our empirical study and
discusses the implication of the results in terms of our two
research questions. We present the results using two tables,
where the first table contains the data related to the cost of
the approach (i.e., the time and space overhead imposed by
BUGREDUX), and the second table shows the data about the
effectiveness of the approach (i.e., whether BUGREDUX was
able to synthesize an execution and whether such execution
could be used to reproduce an observed failure). These two
tables present the results for each of the 16 failing executions
considered, identified by the name of the failing program
possibly followed by a fault ID, and for each of the variants
of BUGREDUX, identified by the kind of execution data on
which it operates.

Table [lI| shows the time and space overhead imposed by
BUGREDUX on the subjects for each of the four types of
execution data collected. Time overhead is measured as the

Table 11
TIME (%) AND SPACE (KB) OVERHEAD IMPOSED BY BUGREDUX.

Name POF Call stack Call sequence Complete trace
time space time space time space time space
sed.faultl 0% | 0.8 0% | 0.8 4.5% 5.8 27.2% 54.4
sed.fault2 0% | 0.9 0% | 0.9 12.5% 10.2 87.5% 261.9
grep 0% | 0.7 0% | 0.7 47% 3.4 182% 716.1
gzip.faultl 0% | 0.8 0% | 0.8 103% | 2 2% 176
gzip.fault2 0% | 0.8 0% | 0.8 12% 2.5 308% 1784.6
ncompress 0% | 0.7 0% | 0.7 2% 0.9 16% 33.1
polymorph | 0% | 0.5 0% | 0.5 1% 0.7 8% 1.5
aeon 0% 1 0% 1 50% 1.1 1066% | 3
glftpd 0% 1.5 0% 1.5 9% 32 45% 130
htget 0% 0.7 0% 0.7 9% 2.7 287% 2814
socat 0% | 0.8 0% | 0.8 21% 9.6 110% 451
tipxd 0% | 0.6 0% | 0.6 2% 0.7 36% 19
aspell 0% | 0.6 0% | 0.6 18.8% | 30.5 143% 566
rsync 0% 1 0% 1 3% 114 66% 521
xmail 0% | 0.8 0% | 0.8 22.6% | 84.8 290% 2361
exim 0% | 0.9 0% | 0.9 17.4% 100.7 | 389% 14897
percentage increase of the running time due to instrumenta-

tion, whereas space overhead is measured as the size of the
different kinds of execution data collected by BUGREDUX.
We discuss the two types of overheads separately.

Time overhead. Because POFs and call stacks are collected
by the runtime system at the moment of the failure, and do not
require any additional instrumentation, collecting them incurs
no overhead. The situation is different for call sequences
and complete traces, which both require BUGREDUX to
instrument the programs (see Section [[IlI-B)). As expected, the
overhead imposed by complete-trace collection is almost an
order of magnitude higher than that for call sequences. We
also observe that the overhead for collecting call sequences
depends on program size and execution length. To correctly
interpret these results, it is important to consider that this data
was collected with a naive instrumentation that writes events
to the log as soon as they occur; the use of caching techniques
could decrease the overhead dramatically. Because the goal
of this initial investigation was more exploratory, and the
numbers are acceptable, we left optimizations for future work.
Moreover, record-replay techniques (e.g., [5], [11]]) could be
used to (1) efficiently record field executions and (2) collect
execution data while replaying—offline and when free cycles
are available on the user machines.

Space overhead. The data size for POFs and call stacks is
the same because our current implementation of BUGREDUX
extracts both of them from the crash reports generated by
the runtime system. We therefore report the size of the crash
reports for these two types of data. Also in this case, the size
of the complete-trace data is at least an order of magnitude
larger than that of the call-sequence data, and in some cases
the difference is even more extreme. For instance, in the
case of gzip.fault2, the reason for the large gap is that the
number of function calls is low but there is a large number
of loop iterations within functions. Overall, however, for the
executions in this study, the size of the execution data is fairly
contained, and it would be practical to collect them.

Table addresses the core question of the effectiveness
of our approach. The table shows, for each failing execution
fe considered and each type of execution data ed, the time
it took BUGREDUX to generate inputs that mimicked fe



using ed (or “N/A” if BUGREDUX was unable to generate
such inputs in the allotted time) and whether the mimicked
execution reproduced the observed failure (“Y” or “N”).

As expected, symbolic execution guided only by the POF
was unsuccessful for most programs. A manual examination
of the programs for which POFs are enough to reproduce
failures showed that all such failures have two common
characteristics: (1) the POFs are close to the entry of the
programs and are easy to reach; (2) the failures can be
triggered by simply reaching the POFs. For these failures,
developers could easily identify the corresponding faults if
provided with traditional crash reports. As also expected,
the larger the amount of data available (in the form of
intermediate goals) to guide the exploration, the better the
performance of the approach. Using call stacks, BUGREDUX
could mimic 10 out of the 16 failing executions, and using
call sequences, it was able to mimic all failing executions.

We observe that, in some cases (e.g., htget, tipxd), the time
needed to synthesize an execution using call stacks was larger
than the time needed when using call sequences (when they
are both successful). The reason for this behavior is that
the additional information provided by call sequences can
better guide symbolic execution and avoid the exploration
of many irrelevant paths. One surprising finding, however,
is that this trend is not confirmed when complete traces are
used. We further analyzed this result and found that this
happened for two reasons. One reason is that, intuitively,
following complete traces can result in conditions that the
SMT solver is unable to handle. The second reason is a mostly
practical one: KLEE uses a simplified implementation of
the system libraries when symbolically executing a program,
which makes it impossible in some cases to follow exactly
the same path that was followed in the original execution.
Conversely, a looser, yet informative guidance, such as a
call sequence, leaves more degrees of freedom to the input
generator and increases its chances of success. For example,
paths that result in constraints that are beyond the capabilities
of the SMT solver could be dropped in favor of simpler paths
that may still reach the targeted goals. In a sense, among
the execution data we considered, call sequences represent
a sweet spot between providing too little and too much
information to the search.

It is important to stress that the executions synthesized by
BUGREDUX are executions that reach all of the intermediate
goals extracted from the execution data and provided to the
input generator, but they are not guaranteed to reproduce
the observed failure. Consider again our initial example in
Figure [I] It is easy to synthesize an execution that reaches
line 44 in function main and line 27 in function process,
but that execution is unlikely to fail, as we discussed in
Section This is especially true when considering more
limited types of execution data, such as POFs and call stacks,
which provide little guidance to the search. The results in
Table clearly illustrate this issue. As shown in the table,
for the six of the failures in our set, reaching the POF is

Table III
EFFECTIVENESS AND EFFICIENCY OF BUGREDUX IN SYNTHESIZING
EXECUTIONS STARTING FROM COLLECTED EXECUTION DATA.

Name POF Call stack Call sequence | Complete trace
sed.faultl N/A N/A 98s Y N/A
sed.fault2 N/A N/A 17349s Y N/A

grep N/A 16s N | 48s Y N/A
gzip.faultl 3s Y 18s Y 11s Y N/A
gzip.fault2 | 20s N | 28s N | 25s Y N/A
ncompress 155 | 'Y 158s | Y 158s Y N/A
polymorph | 65s Y | 66s Y | 66s Y N/A

aeon Is Y Is Y Is Y Is Y
Tysnc N/A N/A 88s Y N/A

glftpd Ss Y | 5s Y | 4s Y N/A

htget 53s N 53s N | 9s Y N/A

socat N/A N/A 876s Y N/A

tipxd 27s Y | 27s Y | 5s Y N/A

aspell Ss N | 5s N 12s Y N/A

xmail N/A N/A 154s Y N/A

exim N/A N/A 269s Y 5624s Y

enough to trigger the original failure. Conversely, for the
four failures in grep, gzip, htget and aspell, BUGREDUX was
able to synthesize executions that generated the same call
stacks as the failing executions, but such synthetic executions
did not reproduce the considered failures. Finally, all of
the 16 synthetic executions successfully generated from call
sequences were able to reproduce the original failures.

E. Discussion

The results of our investigation, albeit preliminary, let us
address our two research questions and make some observa-
tions. For RQ1, our results show that, for the programs and
failures considered, BUGREDUX can reproduce observed fail-
ures starting from a set of execution data. For RQ2, the results
provide initial but clear evidence that call sequences represent
the best choice, among the ones considered, in terms of cost-
benefit tradeoffs: using call sequences, BUGREDUX was able
to reproduce all of the observed failures; even using an unop-
timized instrumentation, BUGREDUX was able to collect call
sequences with an acceptable time and space overhead; and
we believe that call sequences are unlikely to reveal sensitive
or confidential information about an execution. (Although
this is just anecdotical evidence, we observed that none of
the inputs generated when synthesizing executions from call
sequences corresponded to the original input that caused the
failure.) Unlike complete traces, which may provide enough
information to reverse engineer the execution and identify the
inputs that caused such execution, call sequences are a much
more abstract model of executions.

An additional observation that can be made on the results
is that POFs and call stacks do not seem to be particularly
helpful for reproducing failures. Manual examination of the
faults we considered showed that the points where the failure
is observed tend to be distant from the fault. Therefore, most
such failures are triggered only when the program executes
the faulty code and the incorrect program state propagates to
the POF. In these cases, POFs and call stacks are unlikely to
help because the faulty code may be nowhere near the POF
or the functions on the stack at the moment of the crash.
If confirmed, this would be an interesting finding, as these
are two types of execution data normally collected in crash



Table IV
MINIMAL NUMBER OF ENTRIES IN CALL SEQUENCES THAT ARE NEEDED
TO REPRODUCE OBSERVED FAILURES.

Name Original Length | Minimal Length
sed.faultl 73 12
sed.fault2 146 7
grep 31 2
xmail 1142 363
gzip.fault2 | 27 2
rysnc 23 2
aspell 516 256
socat 62 3
htget 25 2
exim 1029 326

reports. Extending crash reports with additional information
may make them considerably more useful to developers.

As a further step towards understanding the usefulness
of different execution data, we performed an additional ex-
ploratory study in which we removed entries in the collected
call sequences and checked whether the partial sequences still
contained enough information to recreate observed failures.
More precisely, we selected from our original list the ten
failures that could only be reproduced using call sequences.
For each failure and corresponding call sequence, we then
used a straw-man greedy algorithm that considers one entry
in the call sequence at a time, starting from the beginning.
If BugRedux can reproduce the failure without that entry
in the sequence, the entry is removed. Table shows the
result of this study in terms of number of entries in the call
sequences before and after reduction. For example, only 2
of the 31 entries in the original call sequence are needed to
reproduce the observed failure in grep. The results show that,
in most cases, only a small subset of calls in the sequences is
actually necessary to suitably guide the exploration. We can
further observe that the number of entries needed seems to
increase with the complexity of the input needed to trigger
the fault, which makes sense intuitively. For instance, xmail’s
fault can only be triggered by an input file that includes a valid
email address, and aspell’s fault can only be triggered by an
input of a given length. For these two faults, the reduction in
the call sequence is less substantial than for the other faults
considered. These additional results motivate further research
in this direction, as we discuss in Section

F. Limitations and Threats to Validity

The main limitation of BUGREDUX is that it relies on
symbolic execution, an inherently complex and expensive
approach. However, recent results have shown that, if suit-
ably defined, tuned, and engineered, symbolic execution can
scale even to large systems [28]]. Moreover, as we discuss
in future work, BUGREDUX can leverage different input
generation techniques. Another limitation is the potential
overhead involved in collecting field-execution data. For this
reason, as also discussed in future work, we are currently
investigating the use of alternative execution data. One final
limitation is that BUGREDUX currently does not explicitly
handle concurrency and non-determinism. In this initial phase
of the research, we chose to focus on a smaller domain, and
get a better understanding of that domain, before considering
additional issues.

Like for all studies, there are threats to the validity of
our results. To mitigate threats of internal validity related
to errors in our implementation, we tested BUGREDUX on
small examples and spot checked most of the results presented
in the paper. In terms of external validity, our results may
not generalize to other programs and failures. However, we
studied 16 failures and 14 programs from three different
software repositories. The subjects we used are real-world
programs, several of which are widely used both by real
users in the field and by researchers as experimental subjects.
Another issue with the empirical results is that the ultimate
evidence of the usefulness of the technique would require
its use in a real setting and with real users. Although such
an evaluation would be extremely useful, and we plan to do
it in the future as we did for earlier work [29], we believe
that it would be premature at this point. Moreover, when
successful, BUGREDUX would generate an actual execution
that reproduces the observed field failure. We expect such an
execution to be usable, like any other failing execution, to
debug the problem causing the failure.

Overall, we believe that our initial results show that the
approach is promising and identify several research directions
that it would be worth pursuing; directions that could be
investigated by building on the work presented in this paper,
as we discuss in Section [VIl

V. RELATED WORK

Debugging is an extremely prolific area of research, and the
related work is consequently vast. In this section, we focus
on the work that is most closely related to our approach.

Our work is related to automated test-input generation
techniques, such as those based on symbolic execution (e.g.,
(1191, [20], [23], [30]]) and random generation (e.g., [31], [32]).
Generally, these techniques aim to generate inputs to discover
faults, and they are not directly applicable to the problem we
are targeting, as we have discussed in Section [[V-B]

Techniques that capture program behaviors by monitoring
or sampling field executions are also related to ours (e.g., [5]],
[71, [11]). These techniques usually record execution events
and possibly interactions between programs and the running
environment to later replay or analyze them in house. These
approaches tend to either capture too much information,
and thus raise practicality and privacy issues, or too little
information, and thus be ineffective in our context.

More recently, researchers started investigating approaches
to reproduce field failures using more limited information.
For example, some researchers used weakest preconditions
to find inputs that can trigger certain types of exceptions in
Java programs [33]-[35]. These approaches, however, target
only certain types of exceptions and tend to operate locally at
the module level. Another approach, SherLog [36], makes use
of run-time logs to reconstruct paths near logging statements
to help developers to identify bugs. LogEnhancer [37], a
followup work, improves the diagnose ability of SherLog by
adding more information to log messages. These approaches
differ from ours because they do not aim to generate program



inputs, but rather to highlight code areas potentially related
to a failure. Artzi and colleagues present ReCrash [38], a
technique that records partial object states at method levels
dynamically to recreate an observed crash at different levels of
stack depth. Although this approach can help recreate a crash,
the recreated crash can be very different from the original one:
if the stack depth is low, the information is in most cases
too local to help (e.g., a null value passed as a parameter);
conversely, if the stack depth is high, the technique may have
to collect considerable amounts of program state, which can
make it impractical and raise privacy issues.

The two approaches most related to ours are ESD, by
Zamfir and Candea [27] and the technique by Crameri,
Bianchini, and Zwaenepoel [39]. ESD is a technique for
automated debugging based on input generation. Given a
POF, ESD uses symbolic execution to try to generate inputs
that would reach the POF. As we showed in this paper,
without additional guidance, symbolic execution techniques
are unlikely to be successful in this context. In fact, as we
stated in Section the programs and failures used in Ref-
erence [27]] can also be recreated through unguided symbolic
execution. Unlike BUGREDUX, however, one of the strengths
of ESD is that it can recreate concurrency-related failures.
With this respect, BUGREDUX and ESD are complementary,
and it would be interesting to investigate a combination of
the two techniques. (Another approach that aim to reproduce
concurrency bugs, and is thus also complementary to BUGRE-
DUX, is PRES, by Park and colleagues [40].) The approach
by Crameri and colleagues improves ESD by using partial
branch traces—where the relevant branches are identified
through a combination of static and dynamic analysis—
to guide symbolic execution for field failures reproduction.
Although their approach can reduce dramatically the number
of branches considered, we found in our experience that the
use of branch-level traces can be problematic. Their empirical
evaluation is also performed on programs whose failures
can be reproduced using unguided symbolic execution. It
is therefore unclear whether their approach would work on
larger programs and harder-to-reproduce failures.

It is nowadays common practice to use software (e.g.,
Breakpad [41]) or OS capabilities (e.g., Windows Error Re-
porting [2] and Mac OS Crash Reporter [3]]) to automatically
collect crash reports from the field. As we discussed earlier,
these reports can be used to correlate different failures re-
ported from the field. DebugAdvisor [42], for instance, is a
tool that analyzes crash reports to help find a solution to the
reported problem by identifying developers, code, and other
known bugs that may be correlated to the report. Although
these techniques have been shown to be useful, they target
a different problem, and the information they collect is too
limited to allow for recreating field failures.

VI. CONCLUSION AND FUTURE WORK

The ability to reproduce an observed failure has been
reported as one of the key elements of debugging. Whereas
recreating failures that occur during in-house testing is usually

easy, doing so for failures that occur in the field, on user
machines, is unfortunately an arduous task. To address this
problem, we have presented BUGREDUX, a general approach
for supporting in-house debugging of field failures. Our
approach works by (1) collecting data about failing program
executions in the field, (2) extracting from the collected exe-
cution data a sequence of intermediate goals (i.e., statements
in the program), and (3) using input generation techniques
to synthesize, in house, executions that reach such goals and
mimic the observed failures.

To better understand the tradeoffs between amount of
information collected and effectiveness of the approach, we
have performed an empirical investigation and studied the
performance of four instances of BUGREDUX that leverage
different kinds of execution data. We have applied these four
instances to a set of 16 failures for 14 real-world programs and
compared their cost and effectiveness. Our results are encour-
aging and provide evidence that BUGREDUX can reproduce
observed failures starting from a suitable set of execution
data. In addition, the analysis of the results led to several
findings, some of which unexpected (e.g., more information
is not always better). Finally, our results provide insight that
can guide future work in this area.

Our immediate plan for future work is to perform additional
experiments on a larger set of programs and failures. We
will also investigate the use of other kinds of execution
data. Despite the good performance of call sequences in our
initial investigation, collecting execution data whose size is
bounded in the size of the program would be preferable in
many cases. One possibility would be to use of execution
data consisting of dynamic models of the program, such as
dynamic call graphs, to prune the search space during input
generation. Another alternative would be the investigation of
efficient (and possibly partial) ways to represent potentially
unbounded data, for example using some form of automata.
Our approach currently assumes that all parts of a failing
execution are equally relevant when trying to reproduce the
failure. Intuitively, some parts of the execution, or even of
a program in general, may be more relevant than others. We
believe that collecting information at different levels of details
for different parts may allow for an accurate reproduction of
the failure even in the presence of less data. Our preliminary
study on the use of partial call sequences provides supporting
evidence for this research direction. Finally, symbolic execu-
tion is just one possible way to generate execution that can
reproduce an observed failure. We will investigate alternative
techniques for synthesizing failing executions, such as tech-
niques based on backward (rather than forward) exploration
(e.g., [33]), techniques based on genetic algorithms (e.g.,
[43]), and techniques that leverage existing test inputs using
some form of fuzzing (e.g., [14]).
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