
Coupled Evolution of Model-Driven Spreadsheets

Jorge Mendes
HASLab / INESC TEC, Universidade do Minho, Portugal

jorgemendes@di.uminho.pt

Abstract—Spreadsheets are increasingly used as program-
ming languages, in the construction of large and complex
systems. The fact is that spreadsheets, being a highly flexible
framework, lack important programming language features
such as abstraction or encapsulation. This flexibility, however,
comes with a price: spreadsheets are populated with significant
amounts of errors.

One of the approaches that try to overcome this problem
advocates the use of model-driven spreadsheet development: a
spreadsheet model is defined, from which a concrete spread-
sheet is generated. Although this approach has been proved
effective in other contexts, still it needs to accommodate for
future evolution of both the model and its instance, so that
they remain synchronized at all moments.

In this paper, we propose a pair of transformation sets,
one working at the model level and the other at the instance
level, such that each transformation in one set is related to
a transformation in the other set. With our approach, we
ensure model/data compliance while allowing for model and
data evolution.

Keywords-Spreadsheets; Model-Driven Engineering (MDE);
Software Evolution

I. INTRODUCTION

Spreadsheets are widely used by non-professional pro-
grammers, the so-called end users, to develop business appli-
cations. Spreadsheet systems offer a high level of flexibility,
making it easier to get started working with them. This
freedom, however, comes with a price: spreadsheets are very
error prone, as shown by numerous studies which report that
up to 90% of real-world spreadsheets contain errors [1].

In recent years the spreadsheet research community
has recognized the need to support end-user model-driven
spreadsheet development (MDSD), and to provide spread-
sheet developers and end users with methodologies, tech-
niques and the necessary tool support to improve their
productivity. Along these lines, several techniques have been
proposed, namely the creation of spreadsheet templates [2],
ClassSheets [3] and the use of class diagrams to specify
spreadsheets [4]. These proposals guarantee that end users
safely edit their spreadsheet data. In fact, they introduce a
form of model-driven software development: a spreadsheet
business model is defined from which a customized spread-
sheet application is generated guaranteeing the consistency
of the spreadsheet data with the underlying model.

In the past, we have proposed two techniques to provide
end users with an environment for MDSD: the embedding
of ClassSheet models in a spreadsheet system [5], and the

co-evolution of ClassSheets and spreadsheet instances [5],
[6]. With our work, it is possible to automatically obtain
an updated spreadsheet instance given that some evolution
is performed at the model level. This approach, however,
does not consider the evolution of the spreadsheet instance
and the necessary co-evolution of the corresponding model.
Nevertheless, this is direction also worth studying since,
for example, several operations are easier to realize on the
instance level.

In this paper we propose the integration of bidirec-
tional [7] and coupled transformation [8] techniques in our
formal co-evolution setting, so that we enable the evolution
of spreadsheet instances and the automatic co-evolution of
spreadsheet models.

II. CLASSSHEET MODELS

ClassSheets [3] are a high-level, object-oriented formal-
ism to specify the business logic of spreadsheets. Class-
Sheets allow users to express business object structures
within a spreadsheet using concepts from the Unified Mod-
eling Language (UML). Using the ClassSheets model, it is
possible to define spreadsheet tables and to give them names,
to define labels for the table’s columns, to specify the types
of the values such columns may contain and also the way
the table expands (e.g., horizontally or vertically).

Besides a textual (and formal) definition, ClassSheets also
have a visual representation which very much resembles
spreadsheets themselves [9]. We have embedded such visual
model representation that mimics the well-known embed-
ding of a domain specific language in a general purpose
one [5]. Like in such embeddings, we inherit all the powerful
features of the host language: in our case, the powerful
interactive interface offered by the (host) spreadsheet system.

III. COUPLED EVOLUTION

To provide a synchronization between models and data,
we consider the approach of coupled transformations where
the consistency relation is the model compliance relation [8].
The diagram in Figure 1 shows the principle of such ap-
proach: starting from a model and one of its compliant data
instances we apply a set of transformations on each artifact
to obtain a new model and a compliant new instance. The
goal is to make it possible to compose these transformations
to provide a linear flow of model/data evolution.

M

D

M'

D'

M''

D''

...

...

...

...

t t

t' t' t' t'

t t

complies to complies to complies to

a

b

c

d

e

f

g

h

Figure 1. Representation of a set of transformations performed both on
the model and the data.

We developed coupled transformations for model-driven
spreadsheet evolution: the model is our ClassSheet model
and the data is the spreadsheet data.

Figure 2 abstractly illustrates a ClassSheet model with
three columns (left) and a spreadsheet instance with three
repetitions of those columns (right). The ClassSheet model
expands horizontally as suggested by the ellipsis.

A B C

...

A B C D E F G H I

1 2 3

Figure 2. Example of an expandable row class model (left) and an instance
(right).

A common spreadsheet evolution step is the addition of
a column. In an MDE setting this can be done in two ways.
The first corresponds to the column being added to the model
and the data being co-evolved: if in the model of Figure 2
we add a fourth column, then all three class instances in the
data need to be updated with a new column. In this case,
an evolution in the model corresponds to several updates
on the data. The second, and more challenging, evolution
occurs when the user adds a column to the spreadsheet
data. Figure 3 presents an example where the user added
a column to the last class instance (column ♦ is added
between columns H and I). In this case several models could
be defined complying to the new data. We have used our own
spreadsheet expertise to select one such model, the one we
would manually create, but this is an approach that requires
further validation.

We have implemented all evolution step functions in
an algebraic and point-free setting, where each evolution
function at the data (model) level is coupled with a co-
evolution function at the model (data) level. Next, as a
preview of our implementation, we show the signature of the
function that adds a column to the spreadsheet data instance:

addColumData:(Model,Data)->Int->(Model,Data)

This function receives both the initial model and its instance
and starts by adding the column to the instance in the

A B C

... ...

G H ◊ I A B C D E F G H ◊ I

21 3

Figure 3. Example of two expandable row classes model (left) and an
instance (right) after adding a column after column H in the data.

position given by the second argument; then, it automatically
evolves the model so that it complies to the evolved instance.
As a result, the function returns a pair with both the new
model and the new spreadsheet data with one column added.

IV. CONCLUSIONS

We have been working on model-driven approaches for
spreadsheets at both the theoretical [5], [10] and the practi-
cal [6] level. Moreover, we have integrated our techniques
in a unifying framework for model-driven spreadsheet devel-
opment, MDSheet [11]. In this paper we propose a model-
driven approach to spreadsheet engineering. We studied one
complex and relevant problem in model-driven engineering:
the evolution of the model (data) and the automatic synchro-
nization of the data (model). Thus, we propose a technique
for the coupled evolution of both software artifacts. In fact,
operations that are easier for users to accomplish on the
model side can be performed there and, on the other hand,
operations that are more suitable to be accomplished on
the data instances can straightforwardly be achieved on data
sheets.

In the lines proposed in this paper, another result has
already been achieved [12]. In fact, we have proposed
a prototype framework for the bidirectional development
of spreadsheets and their models. Although this approach
seems to validate the intentions envisioned in this paper,
there are still several directions for future research. Firstly,
we plan to consult spreadsheet experts, both from academy
and industry, in order to spot opportunities for improvement.
Secondly, we will conduct an empirical study with human
spreadsheet users in order to try to assess the practical
interest of our framework. Finally, we plan on using the
insights learned in the context of the previous steps in the
improvement of our framework, that we wish to transform
into a fully-functional bidirectional system with a practical
impact.

ACKNOWLEDGEMENT

This work is funded by the ERDF through the Programme
COMPETE and by the Portuguese Government through
FCT - Foundation for Science and Technology, project ref.
PTDC/EIA-CCO/108613/2008, and FCT grant BI4-2011
PTDC/EIA-CCO/108613/2008.

REFERENCES

[1] R. Panko, “Spreadsheet errors: What we know. what we think
we can do.” Proceedings of the Spreadsheet Risk Symposium,
European Spreadsheet Risks Interest Group (EuSpRIG), 2000.

[2] R. Abraham, M. Erwig, S. Kollmansberger, and E. Seifert,
“Visual specifications of correct spreadsheets,” in IEEE Sym-
posium on Visual Languages and Human-Centric Computing.
IEEE Computer Society, 2005, pp. 189–196.

[3] G. Engels and M. Erwig, “ClassSheets: automatic generation
of spreadsheet applications from object-oriented specifica-
tions,” in 20th IEEE/ACM Int. Conf. on Automated Sof. Eng.,
Long Beach, USA. ACM, 2005, pp. 124–133.

[4] F. Hermans, M. Pinzger, and A. van Deursen, “Automatically
extracting class diagrams from spreadsheets,” in Proc. of the
24th European Conference on Object-Oriented Programming.
Berlin, Heidelberg: Springer-Verlag, 2010, pp. 52–75.

[5] J. Cunha, J. Mendes, J. P. Fernandes, and J. Saraiva, “Em-
bedding and evolution of spreadsheet models in spreadsheet
systems,” in IEEE Symp. on Visual Languages and Human-
Centric Computing. IEEE CS, 2011, pp. 179–186.

[6] J. Mendes, “Classsheet-driven spreadsheet environments,” in
IEEE Symp. on Visual Languages and Human-Centric Com-
puting. IEEE CS, 2011, pp. 235–236.

[7] K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A. Schürr,
and J. F. Terwilliger, “Bidirectional transformations: A cross-
discipline perspective,” in Theory and Practice of Model

Transformations, Second International Conference, ICMT
2009, Zurich, Switzerland, June 29-30, 2009. Proceedings,
ser. Lecture Notes in Computer Science, R. F. Paige, Ed.,
vol. 5563. Springer, 2009, pp. 260–283.

[8] R. Lämmel, “Coupled Software Transformations (Extended
Abstract),” in First International Workshop on Software Evo-
lution Transformations, Nov. 2004.

[9] M. Erwig, R. Abraham, I. Cooperstein, and S. Kollmans-
berger, “Automatic generation and maintenance of correct
spreadsheets,” in Proc. of the 27th Int. Conf. on Software
Eng. New York, NY, USA: ACM, 2005, pp. 136–145.

[10] J. Cunha, J. Visser, T. Alves, and J. Saraiva, “Type-safe
evolution of spreadsheets,” in Int. Conf. on Fundamental Ap-
proaches to Software Engineering, ser. FASE’11/ETAPS’11.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 186–201.

[11] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva, “MD-
Sheet: A framework for model-driven spreadsheet engineer-
ing,” in 34th International Conference on Software Engineer-
ing. ACM, 2012, pp. 1412–1415.

[12] J. Cunha, J. P. Fernandes, J. Mendes, H. Pacheco, and
J. Saraiva, “Bidirectional Transformation of Model-Driven
Spreadsheets,” in 5th International Conference on Model
Transformation, ser. LNCS, vol. 7307. Springer, 2012, pp.
105–120.

