
Situational Awareness:
Personalizing Issue Tracking Systems

Olga Baysal, Reid Holmes, and Michael W. Godfrey
Software Architecture Group (SWAG)

David R. Cheriton School of Computer Science, University of Waterloo, Canada
{obaysal, rtholmes, migod}@cs.uwaterloo.ca

Abstract—Issue tracking systems play a central role in ongoing
software development; they are used by developers to support
collaborative bug fixing and the implementation of new features,
but they are also used by other stakeholders including managers,
QA, and end-users for tasks such as project management, com-
munication and discussion, code reviews, and history tracking.
Most such systems are designed around the central metaphor of
the “issue” (bug, defect, ticket, feature, etc.), yet increasingly this
model seems ill fitted to the practical needs of growing software
projects; for example, our analysis of interviews with 20 Mozilla
developers who use Bugzilla heavily revealed that developers face
challenges maintaining a global understanding of the issues they
are involved with, and that they desire improved support for
situational awareness that is difficult to achieve with current
issue management systems.

In this paper we motivate the need for personalized issue
tracking that is centered around the information needs of
individual developers together with improved logistical support
for the tasks they perform. We also describe an initial approach to
implement such a system — extending Bugzilla — that enhances
a developer’s situational awareness of their working context by
providing views that are tailored to specific tasks they frequently
perform; we are actively improving this prototype with input
from Mozilla developers.

I. INTRODUCTION

Issue tracking systems are used by most software projects.
They enable developers, QA, managers, and users to submit
bug reports and feature requests and are also often used for
other tasks such as bug fixing and code review. Because
these systems are also used for project management tasks,
there is often some level of integration with development
and maintenance activities, and their supporting tools. Most
issue trackers are designed around the central metaphor of
the “issue” (bug, defect, ticket, feature, etc.) For example, in
Bugzilla reported issues have IDs that are easily searched but
finding what has changed since the last time an issue was
examined is very challenging (one Mozilla developer (P11)
maintains a “gigantic spreadsheet of bugs he is looking at.
It would be useful to know how the bugs have changed
since he last looked”)1. As a result, developers have poor
collective understanding of the overall project status and activ-
ities of others within the shared software project [2]–[4]. Our
own qualitative study on the developers’ experience with the
Bugzilla issue tracking system also indicated that developers

1All the quotes are taken from the set of interviews available at https://wiki.
mozilla.org/Bugzilla Anthropology; the results of the qualitative analysis are
reported in [1].

often have difficulty maintaining a global understanding of the
issues they are involved with, and that they desire improved
support for situational awareness [1].

Situational awareness is a term from cognitive psychology;
it refers to a state of mind where a person is aware of the
elements of their immediate environment, has an understand-
ing as to their greater meaning, and can anticipate (or plan
to change) the status of these elements in the near future [5].
The term is used in engineering, for example, to describe how
air traffic controllers work; it is also an apt description of
how software developers must maintain awareness of what is
happening on their project, be able to manage a constant flow
of information as issues evolve, and be able to plan appropriate
actions. Developers often find themselves trying to identify the
status of a bug — 1) What is the issue waiting on? 2) Who is
working on what bug? 3) What are the workloads of others?
4) Who is the best person to review the patch?, as well as
trying to track their own tasks — How many bugs do I need
to triage, fix, review, or follow up on?.

One way that developers can cope with the challenge of
being aware of what is happening on the project is by making
issue tracking systems more developer centric. Our work aims
to help software developers improve their awareness on the
status and recent changes on their issues (as one Mozilla
developer (P7) put it, “you look at the bug and you think,
who has the ball? What do we do next?”) and increase their
ability to monitor personal tasks (“What he really wants is a
dashboard to show the important stuff he needs to see: review
status, assign bug with a new comment or a change since the
last time he looked at” (P17), “It would be nice to be able
to create a simple list for yourself” (P11)) and to manage
information flow (“Bugzilla doesn’t let you control the flow
enough, 5000 email in a month and most of it doesn’t relate
to his work” (P17)).

By treating people as first-class entities within issue man-
agement systems, developers can be provided with a personal-
ized landing page that can have public and private information
and serve as a heads up display showing them their own
tailored view of the issue tracking system. However, this is
not a common approach in these systems, where only issues
are first class entities; people are usually modelled as mere
meta-data on various issue fields.

In this paper we propose a developer-centric solution or-
ganized around personalized landing pages that reduces the

978-1-4673-3076-3/13 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA
New Ideas and Emerging Results

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

1185



issue-centricity of Bugzilla by equipping developers with
information filtering and change tracking capabilities. Bugzilla
is a widely deployed bug tracking system used by thousands of
organizations including open-source projects such as Mozilla,
the Linux kernel, and Eclipse, as well as NASA, Facebook,
and Yahoo!.2 Our approach is evolutionary; we augment
Bugzilla with the personalized views on the system targeted
to help developers gain and maintain ongoing awareness on
the project, as well as track progress on their own activities.

II. RELATED WORK

Issue tracking systems have been previously studied by
the research community. However, previous work has mainly
focused on understanding how issue management systems
are being used in practice [6], [7] and suggesting a number
of design improvements for developing future issue tracking
tools [7]–[10].

Several tools have been developed to enhance devel-
oper awareness and understanding of the large source code
bases [11]–[15] but none of them target issue tracking sys-
tems. Existing research also offers a number of tools [16]–
[19] to assist developers with daily tasks and development
activities; these tools are more relevant to our research goals.
Hipikat [16] provides assistance to new developers on the
project by recommending relevant artifacts (source code, bug
reports, emails) for a given task. Bridge [18] is a tool that en-
ables a full-text search across multiple data sources including
source code, SCM repositories, bug report, feature request,
etc. Mylyn [17] is a task management tool for Eclipse that
integrates various repositories such as GitHub, Bugzilla, JIRA,
etc. It offers a task-focused interface to developers to ease
activities such as searching, navigation, multitasking, planning
and sharing expertise. Yoohoo [19] monitors changes across
many different projects and notifies a developer of any changes
in the depend-upon projects that are likely to impact the
developer’s code.

The state-of-the-art research identifies key design improve-
ments for developing next generation of issue management
systems: role-based views, prioritized to-do lists, privacy
preservation vs. better transparency, ownership vs. expressed
interest. Ideally, new defect management systems would over-
come existing shortcomings and combine all desired features
in one design. However, bug and issue tracking systems are
often implemented as a part of integrated project management
systems and are unlikely to be replaced. Thus, our work pro-
poses an initial solution that addresses existing shortcomings
and augments a widely deployed bug tracking system —
Bugzilla — with developer-centric views to improve devel-
oper’s global understanding of the project’s status and changes.

III. DEVELOPER-CENTRIC APPROACH

To understand how developers currently interact with the
Bugzilla issue management system, we performed a grounded
theory study to explore the prevailing themes about their

2http://www.bugzilla.org/installation-list/

engagement with Bugzilla, and to identify the key challenges
they face in practice.

A. Open Coding Approach

We have performed a qualitative study on a set of interviews
with 20 Mozilla developers on the topic of their engagement
and experience with Bugzilla bug tracking system [1]. We
split these 20 interviews into over 1,200 individual quotes and
performed an open coding approach [20] to gain insight into
high-level themes about Bugzilla, with the aim of identifying
strengths, weaknesses, and ideas for future enhancement of
the platform. During this process, four high-level categories
emerged from the data along with 15 themes and 91 sub-
themes. Table I presents an overview of the concept categories,
as well as the count of the participants, quotes, and sub-
themes.

TABLE I
OVERVIEW OF CONCEPT CATEGORIES.

Category # Participants # Quotes # Sub-themes
Situational awareness 19 208 14
Supporting tasks 20 700 53
Expressiveness 20 188 12
(Everything else) 20 166 12

Of the major topics that emerged from our analysis of the
interviews, we were most surprised that improved support
for situational awareness seemed so important to Mozilla
developers; for example, developers expressed frustration that
they were not able to easily determine which developer is
working on which bug fix at any given moment.

The Mozilla project already makes use of team-wide dash-
boards to track some aspects of the development effort,
e.g., bug open/close charts, performance deltas, etc.3 In the
interviews, developers expressed a keen desire for dashboard-
like features that would support personalized list-based views
of development. For example, some developers wanted to be
able to privately mark certain bugs to track; others wished
to be able to explore the role of other developers (Are they
active? Which modules do they own? Do they have review
rights?); and several developers expressed interest in better
transparency in modelling the workloads of others, to aid in
the allocation of reviewers for proposed patches.

Unlike chart-based views that are geared towards project
managers, most of the perceived shortcomings with respect
to situational awareness in Bugzilla involve accessing and
correlating various pieces of metadata that are already present
in the Bugzilla data store, but are not easily accessible by its
users.

B. Task-Oriented Views

Based on the results of the qualitative analysis, we identified
several ways in which the needs of Bugzilla users could be
better met, largely by easing access to key information that
already exists within the system but can be hard to obtain.

3http://eaves.ca/2011/04/07/developing-community-management-metrics-
and-tools-for-mozilla/

1186



Fig. 1. Landing page: developer-centric presentation

We identified four key tasks that developers perform daily:
bug tracking, patch tracking, self-tracking, and assigning patch
reviewers. We now describe each task and how it is supported
by our prototype (shown in Figure 1).

1) Bug tracking
For developers who use Bugzilla, email is the key
communication mechanism for discussing bugs and the
bug fixing process. Any change on an issue results in
an email being sent to the developers whose names
are on the issue’s CC list. For many developers, these
emails are the primary means for maintaining awareness
in Bugzilla. Developers receive an email every time they
submit an issue, edit it, want to be aware of it, someone
comments or votes on a bug. An individual developer
can track only a limited number of bugs in their head;
10 of the developers who were interviewed wanted to
be able to watch bugs and sort them by activity date.
One said, “[I] would like to have a personal list of bugs
without claiming them” (P8).

Our prototype supports developers with a Watch List
for indicating their interest on a bug without taking
ownership. Watch lists provide means to track bugs
privately by adding them to their private watch list
without developers having to CC themselves on the
bugs. Bugs are ordered by “last touched” time as “last
touched time a key metric for tracking if work is being
done on a bug” (P1). Watch lists enhance “last touch”
with short descriptions and are useful for setting up
personal priorities on bugs.

2) Patch tracking
Bug fixing tasks are centered around making patches —
code modifications that fix the code. While working on
a bug fix, developers will often split a single conceptual
fix into multiple patches. “People are moving to having
multiple patches rather than one large patch. This really

helps with the review. Bugzilla isn’t really setup for
this model” (P16). Ten developers expressed a desire to
improve the way Bugzilla handles patches,“It would be
good if [Bugzilla] could tell you that your patch is stale”
(P13). Developers mainly expressed desire for tracking
their own patch activity, as well as determining what
patches are awaiting reviews or who is blocking their
reviews.

The Patch Log view displays developers’ patches
sorted by last touched date to be aware of the recent
changes, as well as indicating the current status of the
patch (e.g., the name of the reviewer the patch is waiting
on).

3) Self tracking
We found that developers face challenges in determining
what has happened since the last time an issue was
examined (as noted by 12 participants). Some developers
mentioned, “[I want] to get info based on what has
changed since last time I looked at it” (P6), “You look
at the bug and you think, who has the ball? What do we
do next?” (P7). They also need some means to observe
and track their tasks, for example their review queues.
“He has a query that shows all his open review queue”
(P16), “The review queues are very useful, he will check
that every few days just to double check he didn’t miss
an email” (P8).

The My Actions view supports monitoring developers’
tasks including bugs reported and assigned to them,
patches submitted for reviews, and discussions on bugs
or patches (recent comments).

4) Assigning patch reviewers
While 12 participants indicated that Bugzilla is ill suited
for conducting code review (“The review system doesn’t
seem to be tightly integrated into Bugzilla” (P10)), the
common task developers perform is determining who

1187



is the “right” reviewer to request a review from. The
right person to send a patch for review to may either
be the one having faster review turnaround or having a
shorter review queue. In order to answer this question,
developers need to be informed about reviewers’ work
loads and average response time. “I can be more helpful
if I can better understand what people are working on
and how it fits with [their tasks]” (P11).

Supporting this task is particularly important if a
developer is not familiar with the module/component
reviewers — “When submitting a patch for another
component, it’s more difficult, he has to try to figure
out who is good in that component, look up their review
info” (P8).

The Review Queues view displays developer’s current
review queue, provides better transparency on the work-
loads of others, in particular it presents review queues
of the reviewers to support better decision-making on to
whom a developer should ship their patch.

We have implemented a prototype in the form of a per-
sonalized landing page that provides developers with private
watch lists, patch logs, and action summaries that can help
Bugzilla users have better awareness of the issues they are
working on, other issues of interest to them, as well as
tasks they perform daily. Our solution is organized around
custom views of the Bugzilla repository supporting ongoing
situational awareness on what is happening on the project.
Since community members report defects to Bugzilla, the
developer is presented with the means to select bugs of
interest to them. Some UI components are injected directly
into Bugzilla, while the main solution is based on filtering
important and relevant information from the repository and
presenting it to the developers supporting their common tasks
such as bug fixing, feature implementation, code review, triage,
etc. Our prototype is built into the existing issue tracking
system targeted to enhance Bugzilla with the means to increase
developer’s awareness within the situational context.

IV. CONCLUSIONS AND FUTURE WORK

Our qualitative study of interviews with Mozilla developers
suggests that they often have difficulty maintaining a global
understanding of the issues they are involved with, and that
they desire improved support for situational awareness. We
proposed an initial solution that improves support for particular
tasks individual developers need to perform by presenting
them with the custom views of the information stored in the
issue management system. By personalizing issue management
systems, developers can stay informed about the changes on
the project, track their daily tasks and activities.

Our prototype has received positive feedback from Mozilla
developers and is actively being extended with input from
them. Once the prototype is fully implemented, we plan to
conduct a user study with Mozilla developers to evaluate its
effectiveness in an actual development setting. Such a study
would reveal whether our prototype can reduce developers’
efforts in achieving and maintaining awareness on their issues

of concern and how they evolve. We also plan to seek
developers’ feedback on the prototype and its perceived value
during the project management process.

REFERENCES

[1] O. Baysal and R. Holmes, “A Qualitative Study of Mozillas Process
Management Practices,” David R. Cheriton School of Computer
Science, University of Waterloo, Waterloo, Canada, Tech. Rep. CS-
2012-10, June 2012. [Online]. Available: http://www.cs.uwaterloo.ca/
research/tr/2012/CS-2012-10.pdf

[2] J. T. Biehl, M. Czerwinski, G. Smith, and G. G. Robertson, “Fastdash:
a visual dashboard for fostering awareness in software teams,” in Proc.
of the SIGCHI Conference on Human Factors in Computing Systems,
2007, pp. 1313–1322.

[3] R. E. Kraut and L. A. Streeter, “Coordination in software development,”
Commun. ACM, vol. 38, no. 3, pp. 69–81, Mar. 1995.

[4] D. E. Perry, N. Staudenmayer, and L. G. Votta, “People, organizations,
and process improvement,” IEEE Softw., vol. 11, no. 4, pp. 36–45, Jul.
1994.

[5] M. R. Endsley, “Toward a theory of situation awareness in dynamic
systems: Situation awareness,” Human factors, vol. 37, no. 1, pp. 32–
64, 1995.

[6] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zimmer-
mann, “What makes a good bug report?” in Proc. of the ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2008,
pp. 308–318.

[7] D. Bertram, A. Voida, S. Greenberg, and R. Walker, “Communication,
collaboration, and bugs: the social nature of issue tracking in small,
collocated teams,” in Proc. of the ACM conference on Computer Sup-
portedCcooperative Work, 2010, pp. 291–300.

[8] T. Zimmermann, R. Premraj, J. Sillito, and S. Breu, “Improving bug
tracking systems,” in proc. of the International Conference on Software
Engineering - Companion Volume, may 2009, pp. 247 –250.

[9] S. Just, R. Premraj, and T. Zimmermann, “Towards the next generation
of bug tracking systems,” in IEEE Symposium on Visual Languages and
Human-Centric Computing, sept. 2008, pp. 82 –85.

[10] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, “Information needs
in bug reports: improving cooperation between developers and users,”
in Proc. of the ACM conference on Computer Supported Cooperative
Work, 2010, pp. 301–310.

[11] R. DeLine, M. Czerwinski, and G. Robertson, “Easing program compre-
hension by sharing navigation data,” in Proc. of the IEEE Symposium on
Visual Languages and Human-Centric Computing, 2005, pp. 241–248.

[12] R. DeLine, M. Czerwinski, B. Meyers, G. Venolia, S. Drucker, and
G. Robertson, “Code thumbnails: Using spatial memory to navigate
source code,” in Proc. of the Visual Languages and Human-Centric
Computing, 2006, pp. 11–18.

[13] J. Froehlich and P. Dourish, “Unifying artifacts and activities in a
visual tool for distributed software development teams,” in Proc. of the
International Conference on Software Engineering, 2004, pp. 387–396.

[14] L.-T. Cheng, S. Hupfer, S. Ross, and J. Patterson, “Jazzing up eclipse
with collaborative tools,” in Proc. of the 2003 OOPSLA Workshop on
Eclipse Technology eXchange, 2003, pp. 45–49.

[15] A. Sarma, Z. Noroozi, and A. van der Hoek, “Palantir: raising awareness
among configuration management workspaces,” in Proc. of the Interna-
tional Conference on Software Engineering, 2003, pp. 444–454.

[16] D. Čubranić and G. C. Murphy, “Hipikat: recommending pertinent
software development artifacts,” in Proc. of the International Conference
on Software Engineering. Washington, DC, USA: IEEE Computer
Society, 2003, pp. 408–418.

[17] M. Kersten and G. C. Murphy, “Using task context to improve pro-
grammer productivity,” in Proc. of the ACM SIGSOFT international
Symposium on Foundations of Software Engineering, 2006, pp. 1–11.

[18] G. Venolia, “Textual allusions to artifacts in software-related reposi-
tories,” in Proc. of the international Workshop on Mining Software
Repositories, 2006, pp. 151–154.

[19] R. Holmes and R. J. Walker, “Customized awareness: recommending
relevant external change events,” in Proc. of the IEEE International
Conference on Software Engineering, 2010, pp. 465–474.

[20] M. Miles and A. Huberman, Qualitative Data Analysis: An Expanded
Sourcebook. SAGE Publications, 1994.

1188


