
Experiences in Developing and Delivering a
Programme of Part-Time Education in

Software and Systems Security
Andrew Simpson∗, Andrew Martin∗, Cas Cremers∗, Ivan Flechais∗, Ivan Martinovic∗, and Kasper Rasmussen∗

∗Department of Computer Science, University of Oxford
Wolfson Building, Parks Road, Oxford OX1 3QD

United Kingdom
Email: {Andrew.Simpson, Andrew.Martin, Cas.Cremers, Ivan.Flechais, Ivan.Martinovic, Kasper.Rasmussen}@cs.ox.ac.uk

Abstract—We report upon our experiences in developing and

delivering a programme of part-time education in Software

and Systems Security at the University of Oxford. The MSc

in Software and Systems Security is delivered as part of the

Software Engineering Programme at Oxford — a collection

of one-week intensive courses aimed at individuals who are

responsible for the procurement, development, deployment and

maintenance of large-scale software-based systems. We expect

that our experiences will be useful to those considering a similar

journey.

I. INTRODUCTION

Much has been written about the need for quality software
engineering education over the past 25 years, with the contri-
butions of Lethbridge [1] and Shaw [2], [3] being notable in
this respect. Some authors have reflected upon experiences in
particular countries (see, for example, [4], [5] and [6]), while
others have considered the various difficulties associated with
delivering software engineering education (see, for example,
[7], [8], and [9]). Our particular concern in this paper is a
programme of education that exists at the academia / industry
interface — an area explored by a number of other authors,
including Mead et al. [10], Fraser et al. [11], Vaughn and
Carver [12], Subrahmanyam [13], and Almi et al. [14].

The Software Engineering Programme at the University of
Oxford1 was launched in 1993.2 The Programme, which was
originally a partnership between the University’s Department
of Computer Science (previously the Computing Laboratory)
and its Department for Continuing Education, had the aim
of providing graduate-level education to professional software
engineers who wished to study on a part-time basis. The
approach of the Software Engineering Programme has been
to deliberately target its programme of education at those
associated with the procurement, development, deployment
and maintenance of large-scale software-based systems —
which inevitably requires its courses to be both relevant to

1www.softeng.ox.ac.uk
2Various aspects of the Software Engineering Programme have been re-

ported upon previously: issues pertaining to the supervision and assessment
of part-time postgraduate projects are discussed in [15]; the challenges of
teaching formal methods to professional software engineers studying on a
part-time basis are discussed in [16].

commercial needs and accessible to those who have been away
from the higher education context for some time (or, in some
cases, those who have no prior higher education experience).

Initially concentrating on Oxford’s traditional strengths in
topics such as Functional Programming and Formal Meth-
ods, the Software Engineering Programme has evolved into
a significant enterprise offering one-week intensive courses
in approximately 40 different subjects. In recent years, the
Programme has become wholly owned by the Department
of Computer Science and now offers professionals the op-
portunity to study for an MSc in Software Engineering or
an MSc in Software and Systems Security. The development
and delivery of the latter is the focus of this paper. We give
consideration to the relationship between security and software
engineering, and pay particular attention to how we have tried
to raise awareness of security issues, challenges and techniques
to those whose primary concern is software development. In
addition, we reflect upon some of the trends we have witnessed
and some of the lessons we have learnt along the way.

The structure of the remainder of this paper is as follows. In
Section II, we discuss the Software Engineering Programme
at the University of Oxford. We present our MSc in Software
and Systems Security in Section III, and focus on a particular
course (Data Security and Privacy) in Section IV. In Section V,
we discuss our approach to supervising and assessing projects.
In Section VI, we reflect upon our experiences, indicate some
trends, and present some lessons learnt. Finally, we summarise
the contribution of this paper in Section VII.

II. THE SOFTWARE ENGINEERING PROGRAMME AT THE
UNIVERSITY OF OXFORD

What is now known as the Software Engineering Pro-
gramme at the University of Oxford was established in the
early 1980s as a collection of ‘industrial courses’: profession-
als would attend one-week, intensive courses that introduced
them to formal methods such as Z [17], [18], Communicating
Sequential Processes (CSP) [19], [20], and B [21], [22]. An
‘integrated programme’ of six one-week courses was estab-
lished in 1993, with the first intake being drawn entirely from
staff of IBM’s UK Development Laboratories at Hursley; this

has evolved into a comprehensive programme of education,
which now delivers one-week courses in approximately 40
different subjects. At present, approximately 300 students
are registered with the Software Engineering Programme,
pursuing either an MSc in Software Engineering or an MSc
in Software and Systems Security. Many of these students
‘commute’ from overseas to attend one-week courses.

The aim of the Programme is to provide students with an
understanding of software engineering and security principles
and techniques; this is stated formally thus:3

“The aim is to provide students with an under-
standing of software engineering principles and tech-
niques, enabling them: to choose the most appro-
priate technique to apply in a software design, de-
velopment, or management situation; to apply that
technique, or to identify the resources (intellectual
or material) necessary for its application; to explain
their choice in terms that can be understood by
anyone with a basic knowledge of the field.”

One’s interpretation of the term software engineering will
inevitably influence the philosophy of a programme of ed-
ucation in the subject. The Programme team has found
Blanchard’s definition of systems engineering [23] — which
encompasses technical, social and other aspects associated
with the design and development of large-scale systems —
to be an appropriate reflection of the activity that motivates it:

“The application of scientific and engineering efforts
to (1) transform an operational need into a descrip-
tion of system performance parameters and a system
of configuration through the use of an iterative
process of definition, synthesis, analysis, design, test
and evaluation, and validation; (2) integrate related
technical parameters and ensure the compatibility of
all physical, functional, and program interfaces in a
manner that optimises the total definition and design;
and (3) integrate reliability, maintainability, usability
(human), safety, producibility, supportability (ser-
viceability), disposability, and other such factors into
the total engineering effort to meet cost, schedule,
and technical performance objectives.” [23]

The Programme’s requirements for entry are flexible, taking
into account prior industrial experience and academic back-
ground. The formal requirements are stated thus.4

“To be accepted for postgraduate study in software
engineering (or software and systems security), you
should have:

• at least two years’ close engagement with soft-
ware (or security) issues in a professional envi-
ronment (but see below);

• a university-level qualification in a related sub-
ject (but see below);

• a good command of both written and spoken
English;

3http://www.cs.ox.ac.uk/softeng/handbook/specification.html
4http://www.cs.ox.ac.uk/softeng/study/apply.html

• an appreciation of the challenges and practices
in software engineering (or in software and
systems security);

• an appropriate level of logical, mathematical, or
analytical skills;

• a good understanding of the nature of the pro-
gramme, and the level of commitment required;
and

• the support of their employer, if necessary, in
embarking on this course of study.

More extensive experience may compensate for
the lack of a related qualification, and a strong,
immediately-relevant qualification — e.g. in engi-
neering or computing — may compensate for a lack
of experience.”

The wide diversity of the student body gives rise to a
number of challenges: few assumptions can be made about
the nature of previous experience, meaning that the com-
plexities of teaching principles and techniques are inevitably
different from those associated with teaching cohorts of full-
time student that are (typically) more homogeneous. (This
heterogeneity is not exclusive to our programme; Hjelmås and
Wolthusen [24], for example, make similar observations in the
context of their programme.)

Each course consists of three components: a period of
preparatory study, typically involving the reading of textbook
chapters or research papers and, perhaps, a small exercise;
an intensive teaching week, consisting of lectures, exercises
and practicals; and a written assignment. The relatively small
class sizes (the maximum class size is 18) lead to a high
degree of interaction between students and instructors. The
structure of the course will depend upon the subject, but
will typically involve anywhere between 10 and 20 hours of
lectures, supported by practical sessions, group exercises or
tutorial sessions, as appropriate. Assignments — which are
undertaken over a six-week period — allow students to reflect
upon and apply the techniques taught during the week. Some
assignments are more research-oriented, requiring students to
engage with the wider academic literature; others are more
applied, with a particular scenario having to be tackled.

The assignments are considered to be formal examinations
by the University of Oxford. For each assignment, extensive
personalised feedback (on average, of the order of 2–3 pages)
is provided to each candidate. There are good reasons for this
choice of mode of assessment. First, our students often travel
from all over the world to attend our courses; to expect them to
travel back to sit examinations would be impractical. Second,
by being provided a six-week period in which to undertake an
assignment, students are given a great deal of opportunity to
reflect upon, and immerse themselves in, the material that was
delivered during the one-week course. We would argue that
this approach to assessment allows students to gain a deeper
understanding of a topic than would be possible were they to
be assessed via a sit-down examination.

Many of the Programme’s students bring significant experi-

ence: it is not uncommon for a course attendee to have greater
in-depth knowledge of a particular aspect of the course than
the teaching team. This presents great learning opportunities;
it also presents challenges in terms of ensuring that enthusiasm
is channeled effectively.

A candidate for the MSc has up to four years (with the
possibility of a one-year extension and suspensions of status,
if necessary) in which to attend ten courses and complete a
dissertation. The time available reflects the professional and
personal pressures that many of our students will face during
their time with the Programme.

While students are free to choose any 10 courses with a
view to designing their own unique programme of study (with
the only constraint being that students registered for the MSc
in Software and Systems Security must choose at least six
courses from the Software and Systems Security provision), it
has been helpful to collect courses into three separate themes:

• Software Engineering Methods: Agile Methods; Concur-
rency and Distributed Systems; Enterprise Architecture;
Interaction Design; Management of Risk and Quality;
Model Checking; Performance Modelling; Process Qual-
ity and Improvement; Requirements Engineering; Safety
Critical Systems; Software Development Management;
Software Engineering Mathematics; and Specification
and Design.

• Software Engineering Tools: Agile Engineering Practices;
Concurrent Programming; Database Design; Design Pat-
terns; Extensible Markup Language; Functional Program-
ming; Mobile and Sensor Networks; Object-Oriented
Design; Object-Oriented Programming; Semantic Tech-
nologies; Service Oriented Architectures; and Software
Testing.

• Software and Systems Security: Building Information
Governance; Cloud Security; Data Security and Privacy;
Design for Security; Forensics; Mobile Systems Security;
Network Security; People and Security; Risk Analysis
and Management; Secure and Robust Programming; Se-
curity and Incident Management; Security Principles;
Security in Wireless Networks; and Trusted Computing
Infrastructure.

These themes have developed over time, reflecting de-
mands from the student body and advice provided by the
Programme’s Industrial Advisory Board. A crucial part of
the review process comes from students themselves: should
any course be deemed irrelevant, registration numbers would
decline accordingly.

The courses delivered by the Programme are all concerned
with the teaching of principles in a way that is sympathetic
to the context in which they might be deployed. The course
that is called eXtensible Markup Language isn’t simply a
training course on XML; rather, it is a course that is concerned
with transformation and manipulation of information, with
XML as a vehicle. As another example, the Object-Oriented
Programming course is not simply a course on Java: rather, it
concentrates on principles — with Java as a vehicle.

This approach is important: the prior experience of students
is varied (an attendee on the Database Design course, for
example, might have been working with relational databases
for many years; an attendee on the aforementioned Object-
Oriented Programming course might have significant experi-
ence of working on an implementation of the Java Virtual
Machine) and there is a need for all students to ensure that they
receive value from the course — no matter how experienced
they are. Thus, the courses support the students’ practical
knowledge by discussing principles and foundations within the
broader software engineering context.

The Programme limits the number of dependencies between
courses as much as possible. Nevertheless, there are certain
natural starting points: the Security Principles course is the
typical starting point for those pursuing the Software and
Systems Security MSc; the Software Engineering Mathemat-
ics course underpins many of the more formal courses. As
students can start at any point during the year, it may very
well be that a student doesn’t actually start their career with
the Programme with one of these two courses: for this reason
(as well as others), very few assumptions can be made about
prior academic experience.

The Programme currently employs 14 full-time academics
and three administrators. This number has grown steadily from
a single academic in 1993, to four by the year 2000, to seven
by 2003, through to the present total of 14. Of these, six (the
present authors) are primarily concerned with the delivery of
courses in the area of Software and Systems Security.

III. THE MSC IN SOFTWARE AND SYSTEMS SECURITY

Technological and societal developments over the past two
decades have led to increased security concerns and challenges
across a wide range of sectors. The Software Engineering Pro-
gramme has attempted to meet these demands. The Programme
delivered its first course on a security-related topic — Secu-
rity Principles — in November 2000, with others (including
Design for Security, People and Security, and Risk Analysis
and Management) coming on-line in the subsequent couple of
years. These developments led to the Programme deciding to
initially offer a Postgraduate Certificate in Computer Security
— requiring candidates to attend, and submit assignments for,
four courses. In recent years, the Programme’s provision in
this area has expanded significantly, meaning that students
now have the opportunity to pursue an MSc in Software and
Systems Security. Students pursuing this path are required to
ensure that six of their 10 courses are drawn from the Software
and Systems Security theme.

If the MSc were described as consisting of a total of 180
credit points, then each course and assignment would be
associated with a notional 15 credit points, and the dissertation
would be associated with a further notional 30 credit points.

The learning outcomes are stated thus:5

“Graduates in Software and Systems Security will
be able to: evaluate the security risks and threats

5http://www.cs.ox.ac.uk/softeng/handbook/specification.html

!"#$%&'()&*+)!,-$(.-)!(/0'1$,)2"0'-(-
3'"/(-- 4(/5*"6"7,

!(/0'1$,)3'1*/186(-

!(/0'1$,)&*+)9*/1+(*$)
:&*&7(.(*$

;(-17*)#"')!(/0'1$,

3("86()&*+)!(/0'1$,

;&$&)!(/0'1$,

<"'(*-1/-

26"0+)!(/0'1$,:"=16()!,-$(.-)
!(/0'1$,

!(/0'()&*+)>"=0-$)
3'"7'&..1*7

>1-?)@*&6,-1-)&*+)
:&*&7(.(*$

4'0-$(+)2".80$1*7)
9*#'&-$'0/$0'(

A016+1*7)9*#"'.&$1"*)
B"C('*&*/(

D($%"'?)!(/0'1$,

!(/0'1$,)1*)E1'(6(--)
D($%"'?-

Fig. 1. The range of courses

associated with a proposed software development;
explain the technologies used to achieve a suitable
level of security in a given situation; and design
security solutions that are both technically sound and
usable in practice.”

We give brief descriptions of each course in Appendix A.
The breadth of the provision — with individual courses placed
on what might be characterised as the ‘process–technology
spectrum’ — is illustrated in Figure 1.

Half of these courses are delivered by full-time academic
staff; the remainder are delivered by ‘external lecturers’, all
of whom are subject experts. At the heart of many of the
security courses are case studies and ‘war stories’: examples
of errors and mishaps that have led to security and privacy
breaches at a variety of levels — ranging from the individual
through the commercial to the national. This makes the em-
ployment of subject experts from industry a credible addition
to the Programme’s teaching team: the input and expertise of
these individuals adds significant value and credibility to the
students’ learning experience. Importantly, the nature of the
student body means that the students themselves often bring
interesting and unique perspectives on particular problems.

The UK Government has made ‘cyber security’ a strategic
priority, largely in recognition of the perceived threat to the
nation’s ‘cyber infrastructure’. In 2014, the MSc in Software
and Systems Security was one of a handful of Master’s
degrees to be accredited by the Government Communications
Headquarters (GCHQ), the UK’s security and intelligence
organisation. As well as meeting the requirements for the
MSc in Software and Systems Security, to receive a ‘GCHQ
certificate’ each student should have received a passing grade
for each of the following courses:

• Security Principles.
• Security and Incident Management.
• Forensics.
• At least two from Design for Security, Risk Analysis and

Management, and People and Security.
• At least one from Data Security and Privacy and Building

Information Governance.
• At least one from Network Security and Secure and

Robust Programming.
• At least one from Cloud Security, Mobile Systems Sys-

tem, Trusted Computing Infrastructure, and Security for
Wireless Networks.

This reflects GCHQ’s perception of what a qualification in
‘general Cyber Security’ should cover and our desire that
our graduates should cover an appropriate mix of theory and
practice.

IV. AN EXAMPLE: DATA SECURITY AND PRIVACY

The Programme’s Data Security and Privacy course was
delivered for the first time in June 2010, and has subsequently
been delivered on three further occasions. The course is an
interesting case study as, while very clearly a ‘security course’,
it does require an understanding of some software engineering
subjects (relational databases, in particular) and utilizes some
techniques from computer science (set theory; predicate logic;
graph theory). To this end, the course ‘requirements’ for
participants are stated thus:

“Participants should have a basic understanding of
computer security to the level provided by the Secu-
rity Principles course; participants should also have
some familiarity with predicate logic and set theory
to the level provided by the Software Engineering
Mathematics course.”

The motivation for the course is stated as follows:
“As increasing amounts of data are captured about
patients, consumers and citizens, and as more ways
of linking and utilising such data emerge, so do
concerns about the treatment of personal data —
with these concerns emerging from a variety of
stakeholders. As such, issues pertaining to database
and applications security have increased in impor-
tance in recent years. Understanding how existing
and emerging legislation might be considered in
designing secure databases, as well as how such
designs might be mapped to practical security mea-
sures, will be essential in an increasingly data-driven
world.”

The structure of the course — which is broken into three
parts — follows naturally from the above.

1) Context: the changing landscape; privacy, data security
and the law.

2) Access control: theory and practice; mandatory policies;
role-based access control; policy languages.

3) Privacy: statistical database security; balancing privacy
and utility; k-anonymity and related techniques.

The current course text — Security, Privacy, and Trust
in Modern Data Management by Petkovic and Jonker [25]
— reflects the breadth of the course. The fact that previous
instances have leveraged very different books — The Spy in
the Coffee Machine by O’Hara and Shadbolt [26] and Bishop’s
Introduction to Computer Security [27] — is indicative both

of the fact that new courses evolve over time and also that
these courses are often not a natural fit for standard academic
textbooks — given the nature of the student body and the fact
that teaching techniques ‘within context’ is important to the
Programme team.

The course involves 18 sessions — as is typical for our
courses (with two sessions per half-day). There are four
sessions per day for Monday to Thursday and two sessions
on Friday (courses finish on Friday lunchtime).

The current course structure is as follows:
• Monday AM: Introduction: the changing landscape.
• Monday PM: Privacy, data security, and the law.
• Tuesday AM: Access control: theory and practice.
• Tuesday PM: Mandatory policies.
• Wednesday AM: Role-based access control.
• Wednesday PM: Policy languages.
• Thursday AM: Balancing privacy and utility.
• Thursday PM: Statistical database security.
• Friday AM: k-anonymity and related techniques.
The nature of the sessions varies according to the nature of

the topic. For example, the Monday AM session is lecture-
based, whereas the Monday PM material is delivered in the
style of an interactive workshop. The access control part of
the course is relatively theoretical, utilising formal techniques
to explore different models of access control. Finally, the third
component of the course consists of lectures, a workshop-
based discussion, theoretical exercises, and practical exercises.

The nature of the assignment reflects the breadth of the
course and the fact that no prior experience (in terms of
security, database or systems administration skills, formal
description techniques, etc.) can be assumed. To this end,
assignments with a research focus are set for this course. As
an example, the assignment for the first instance of this course
consisted of two questions. The first, which makes reference
to [28], was stated as follows:

“One important model of access control that was not
covered in the taught material is the Clark-Wilson
model, which was first described in the paper A
comparison of commercial and military computer
security policies, published in the Proceedings of
the 1987 IEEE Symposium on Research in Security
and Privacy. After consulting both this paper and the
wider literature (constituting any relevant textbooks
and conference or journal papers),
(a) give an overview of the model;
(b) show, via an extension of the running example

from the lectures (or any other example of your
choice), the principles of the model;

(c) compare and contrast the Clark-Wilson model
with some of the other models of access control
that we have studied; and

(d) give some indication of the implementation
issues associated with this model either in
general terms, or with respect to a specific
DBMS.

As an illustration of scope, it would be surprising if
an answer were to be longer than 10 pages.”

The second question, which makes reference to [29], was
stated thus:

“First, consider the discussion between Korff and
Shadbolt on the pros and cons of www.data.gov.uk.
Second, download some data sets from www.data.
gov.uk to get a feel for the kind of data that is
available and the potential privacy issues involved.
Describe where you stand on the discussion. You
should feel free to make use of any resources to
support your arguments; a strong answer should both
leverage relevant literature and give consideration to
some of the data sets available from the site.
Remember that a scientific argument needs to be
backed up with evidence (don’t simply give opin-
ions!), and that you should describe the strengths
and weaknesses of each position before presenting
a reasoned conclusion.
It would be surprising if an answer were to be longer
than 5 pages.”

The assessment criteria for the course are stated as follows:
• Context: have you demonstrated an awareness of the

issues pertaining to privacy and confidentiality derived
from relevant legislation, guidelines and ethical concerns?

• Access control: have you demonstrated an understanding
of the underlying theory and principles?

• Statistical database and microdata security: have you
demonstrated an understanding of both the broad issues
and the underlying theory and principles?”

Students’ experiences in tackling this particular question are
summarised (in part) in [30].

V. PROJECTS

The project is a crucial part of the MSc — it allows
students to address some aspects of security than is the case in
undertaking post-course assignments. There are several aspects
that complicate the project process for part-time students. For
example, (in the UK, at least) full-time MSc students will
typically spend an extended period of several months on their
project work: this is not possible for part-time MSc students.
Such students will typically spend spare-time — at irregular
intervals — working on their project. There are consequences
of this. First, there is the overhead associated with ‘picking
up’ from where things were left at the end of the last session.
Second, by not being in the higher education context on a
full-time basis, many of the lessons learnt by osmosis by full-
time students are missed out on. One consequence is that part-
time students can overestimate what is required of them and
underestimate potential risks.

To counter these problems, we deliberately encourage our
students to pursue project topics that are closely related to
their professional activity; this has the additional benefit of
increasing the potential for employer ‘buy-in’. If this is not
possible, basing a project around the topics covered in one

of their favourite courses is the next best option. Only as
a last resort will a student pursue a project suggested by a
staff member. Crucially, the subject must be of interest to the
student, rather than of interest to an academic, if it is to sustain
them over what is a significant period of time

The Programme team has established a ‘Project Week’ to
mitigate some of these problems: students are required to
attend a one-week preparatory course prior to embarking upon
their project work. Topics such as academic writing, the as-
sessment and examination process, research skills, and project
planning are covered during the week. The intention is that
successful completion of the course will reduce many of the
risks. The most important aspect, though, is that, together with
the academics responsible for running that week’s activities
and the student’s supervisor, a sensible, coherent and well-
scoped project proposal is identified. To help in this, the
students take part in an assessment exercise — whereby they
assess previously submitted dissertations to help understand
the various parts of the process; this enables them to judge
what constitutes a well-scoped and well-executed project.

The allocation of project supervisors happens during these
Project Weeks. All students are assigned a supervisor (drawn
from the academic staff who teach Security courses on the
MSc in Software and Systems Security) at the start of their
period of study. Should the student’s proposed project be
something that their supervisor can supervise, then they will
typically remain with that supervisor for the project; if, on
the other hand, the intention is to pursue a topic that is more
closely aligned with another academic’s expertise, then they
will change supervisor during the Project Week and it will be
the new supervisor that ‘signs off’ the proposal.

All dissertations are assessed by two academics, one of
whom is an examiner (the examiners are a subset of the group
of academics responsible for delivering the course) and neither
of whom can have been involved in the supervision of the
student. The assessors provide independent grades according
to clearly stated criteria. If the grades differ by less than
10% and don’t cross either of the fail/pass or pass/distinction
boundaries, then the final mark is determined by averaging the
two provisional marks; should the difference be significant
or cross a boundary, the two assessors are invited to arrive
at an agreed, consolidated grade. Should such agreement be
impossible to arrive at, the external examiner will be invited
to review the dissertation and suggest a grade. (The external
examiner is at liberty to review any other dissertation.)

VI. EVALUATION AND LESSONS LEARNT

A. Evaluation
Each course is evaluated by attendees via a paper-based

questionnaire. Students respond (anonymously) to 12 state-
ments on a scale of 1 to 5 (1 and 2 disagree; 3 indifference;
4 and 5 agree):

1) The lectures added significant value to the course mate-
rial.

2) The lecturer took the time needed to explain the key
concepts.

3) The lectures included valuable contributions from the
other students in the class.

4) The lecturer was helpful and ready to answer questions.
5) The exercises helped me to understand the topics cov-

ered in the lectures.
6) The lecturer or tutor was knowledgeable and encourag-

ing.
7) Help was available — from the lecturer or tutor — when

I needed it.
8) Issues raised were adequately addressed — through

model solutions or discussion.
9) I think that the techniques taught during the course will

be valuable to me in the future.
10) The course was well constructed: the various compo-

nents worked well together.
11) The course material was appropriate, and of good qual-

ity.
12) The course administration was efficient and effective.

At the time of writing, the average score across all courses
delivered by the Software Engineering Programme since 2010
is 4.53 (4 represents “agree” and 5 represents “strongly
agree”); the highest ‘overall’ score is 4.80 for Specification
and Design. The scores for the Software and Systems Security
courses are:

• Building Information Governance: 4.69
• Cloud Security: 4.27
• Data Security and Privacy: 4.58
• Design for Security: 4.52
• Forensics: 4.64
• Mobile Systems Security: 4.78
• Network Security: 4.54
• People and Security: 4.65
• Risk Analysis and Management: 4.58
• Security and Incident Management: 4.73
• Security Principles: 4.53
• Secure and Robust Programming: 4.61
• Security in Wireless Networks: 4.61
• Trusted Computed Infrastructure: 4.59

B. Lessons learnt
1) The relationship between Software Engineering and Soft-

ware and Systems Security is a complicated one: Our first
course in a security-related subject was Security Principles,
which was first delivered in November 2000. All of the
students were studying for an MSc in Software Engineering
and were drawn from organisations such as IBM, Panasonic,
Nokia and the Royal Air Force — which would have been
typical for the Programme at the time. The most recent
instance at the time of writing (delivered in July 2014) was
evenly split between those studying for an MSc in Software
Engineering and those studying for an MSc in Software and
Systems Security. This shift reflects the fact that the Security
Principles course tries to achieve two different things: to
provide Software Engineering students with an exposure to
security issues and to provide Software and Systems Security
students with an appropriate entry point to their MSc.

The provision of the two MScs gives rise to a broad pro-
gramme of courses. This expansion of the Programme — and
the fact that students can ‘mix and match’ courses — brings
some interesting challenges. For example, the prior experience
that software engineers bring to courses will (typically) be
different to that brought by security engineers: the fact that
security engineers might attend, for example, the Database
Design course can make for an interesting teaching challenge
— as might the fact that a software engineer might attend, for
example, the Network Security course. The small class sizes
mean that it is possible to ‘tailor’ that week’s delivery for
those in attendance to suit their background and experience.

2) Funding and support from employers: The Software En-
gineering Programme had its foundations in one-week courses
delivered to employees of several companies. While the Pro-
gramme team still delivers courses on a one-off basis to some
companies, this is not the core business of the Programme.
20 years ago, it was not uncommon for companies to invest
in the education of their charges: companies would often pay
the course fees of those attending. Ten years ago, companies
providing funding for their employees was less common, but
‘support in kind’ might be provided: time off from work was
given to attend courses; workloads might be reduced; ‘study
days’ might be given. Now, it is not uncommon for students
to not only pay their own fees but also to attend courses in
their annual vacation time: while the need for security (and
software engineering) education is often recognised by many
companies, their actions do not always reflect this.

3) The value of classroom contact: The rise of Massive
Open Online Courses (MOOCs) in the past few years has, in
conjunction with increases in tuition fees in the UK, resulted in
a long series of debates questioning whether more traditional
approaches to higher education can survive in the 21st century.

The delivery of courses within the Software Engineering
Programme typically involves one lecturer and one teaching
assistant (sometimes supported by guest lecturers). Class sizes
of up to 18 (with an average of approximately 12) encourage
interaction. We believe that the value delivered in this mode
is extremely high — with, as we have discussed, the prior
experience of the course attendees providing significant ‘added
value’. A drawback is that this mode of study is relatively ex-
pensive. Nevertheless, recruitment remains good — with year-
on-year increases in terms of both numbers of applications and
numbers of admissions.

4) Prior knowledge changes: The typical student on the
Software Engineering Programme 20 years ago was a rel-
atively experienced software engineer, who had been based
in the industry for at least five years. This meant that the
prior knowledge that one might use in delivering courses was
relatively uniform. As an example, when teaching discrete
mathematics, one might use a binary tree as a motivating
example when discussing recursive functions. Unfortunately,
this is no longer true: it is not unusual to be met by blank
faces (by even those with a first degree in an IT-related
subject) when mentioning binary trees. This is for (at least)
two reasons. First, the level of abstraction has been raised:

developers don’t have to define their own tree-like structures
as libraries exist that can be leveraged. Second, the student
body of the Software Engineering Programme now reflects
the healthy heterogeneity that is the workforce in software
engineering, security, and related industries.

The problem is even more complex when it comes to
security courses: some will have backgrounds in software;
others will have backgrounds in hardware; some will have
neither, and are taking the courses from the point of view of
needing to be an ‘informed customer’. As we have discussed,
this brings (and will continue to bring) challenges in terms
of course design and delivery. The breadth of courses (as
per Figure 1) is sympathetic to this: a purely managerial
route through the MSc (drawing on courses from the Software
Engineering MSc) is possible — but wouldn’t, for example,
meet the aforementioned GCHQ accreditation requirements.

5) Principles endure: As alluded to in Section II, much has
changed in the software industry over the past two decades.
Yet principles still endure. For example, issues such as the
healthiness of transactions were important to know in the
1970s. Then, for a period, they were less important to know as
database management systems could be relied upon to provide
good transactional support. Later, as developers were required
to write code to engage with several data sources, developers
themselves had again to think about such issues. (Similar
points might be made for, for example, query optimisation.)
With respect to other aspects, Formal Methods and Functional
Programming — while never attaining the heights predicted
several decades ago — now have a role to play, in, for
example, underpinning software testing frameworks and code
assertion frameworks.

Similarly, one could argue that while technological devel-
opments often bring new security challenges, it is often the
case that they breathe life into old challenges — or present
existing ones in new guises. We would argue that providing
professionals the opportunity — and space — to step back
and consider principles and fundamentals is a benefit of
programmes such as ours.

6) The team: An important aspect of the delivery and run-
ning of the Software Engineering Programme is that there is a
dedicated team whose teaching responsibilities are exclusively
associated with the Programme: although all of the academics
supervise full-time doctoral students and undertake research
and administrative tasks, all of their teaching is exclusively
for the Programme. In addition, all of the academics’ teaching
tends to be in subjects closely related to their research inter-
ests. Subject experts are contracted to deliver courses where in-
house expertise does not exist. Going further, the Programme’s
students are all supervised by members of this team. This is
important: the demands, needs and expectations of part-time
students are very different from those of full-time students; as
such, academics and administrators alike need to be sensitive
to this. For example, personal or professional commitments
can sometimes mean that long-planned course attendances are
cancelled at short notice — or, even worse, those delivering the
course are unavailable at short notice. Well thought through

contingency measures are more vital in a context such as this
than they would be in a ‘typical’ educational context, as is a
solid ‘team ethos’.

We acknowledge that this is an unusual situation. However,
it would be difficult to reproduce an enterprise such as that
described here by employing a team who attempted to deliver
such a programme in addition to other duties.

VII. CONCLUSIONS

We have described the MSc in Software and Systems Secu-
rity, which is part of the Software Engineering Programme at
the University of Oxford. The difference between our MSc
and other, ‘more traditional’ Master’s in Security (such as
that of Royal Holloway, University of London (RHUL) [31],
for example) pertains to heritage and motivation: our MSc
grew out of the University of Oxford’s Software Engineering
expertise; that of RHUL grew out of their research exper-
tise in cryptography (and related areas). In some ways, our
experiences have more in common with those who have
given consideration to the development of courses on software
assurance (e.g. [32]–[35]). Further, the focus on contextual and
practical issues means that the course is closer in nature to, for
example, Carnegie Mellon’s MS in Information Technology—
Privacy Engineering (MSIT-PE) (see [36] for a description of
the motivation for the development of that course) than more
traditional Master’s in Security.

The MSc (and, indeed, the Software Engineering Pro-
gramme as a whole) is operating in a context in which the
demand for a highly skilled work force is increasing at pre-
cisely the time that government support for higher education
is declining [15]. In addition, there are ongoing debates about
how Computer Science and Software Engineering curricula
prepare graduates for the ‘real world’. While there have been
many shifts over the past two decades — in terms of employer-
investment in individuals, in terms of technology, and so on —
the MSc in Software and Systems Security and the Software
Engineering Programme (which has just celebrated its 20th
anniversary) continue to benefit from the gap that exists
between formal software engineering and security education
at the undergraduate level and the needs of industry; they also
benefit from the fact that these needs will continue to evolve —
meaning that the demand for post-experience education such
as that described in this paper will continue to exist for the
foreseeable future.

REFERENCES

[1] T. C. Lethbridge, “What knowledge is important to a software profes-
sional?” IEEE Computer, vol. 33, no. 5, pp. 44–50, 2000.

[2] M. Shaw, “Software engineering education: A roadmap,” in Proceedings
of the 22nd International Conference on Software Engineering (ICSE
2000). ACM Press, 2000, pp. 371–380.

[3] ——, “Continuing prospects for an engineering discipline of software,”
IEEE Software, vol. 26, no. 6, pp. 64–67, 2009.

[4] C. O’Leary, D. Lawless, D. Gordon, L. Haifeng, and K. Bechkoum,
“Developing a software engineering curriculum for the emerging soft-
ware industry in China,” in Proceedings of the 19th IEEE International
Conference on Software Engineering Education and Training (CSEET
2006), 2006, pp. 115–122.

[5] G. Taran and M. Rosso-Llopart, “Software engineering education in
Russia: A comparative study of people, process and technology: A
four year pespective,” in Proceedings of the 20th IEEE International
Conference on Software Engineering Education and Training (CSEET
2007), 2007, pp. 19–28.

[6] K. Garg and V. Varma, “Software engineering education in India:
Issues and challenges,” in Proceedings of the 21st IEEE Conference
on Software Education Education and Training (CSEET 2008), 2008,
pp. 110–117.

[7] M. R. Ali, “Imparting effective software engineering education,” ACM
SIGSOFT Software Engineering Notes, vol. 31, no. 4, pp. 1–3, 2006.

[8] N. R. Mead, “Software engineering education: How far we’ve come and
how far we have to go,” Journal of Systems and Software, vol. 82, no. 4,
pp. 571–575, 2009.

[9] M. A. Ardis and P. B. Henderson, “Software engineering education
(SEEd): Is software engineering ready for MOOCs?” ACM SIGSOFT
Software Engineering Notes, vol. 37, no. 5, pp. 14–14, 2012.

[10] N. R. Mead, H. J. C. Ellis, A. Moreno, and P. MacNeil, “Can industry
and academia collaborate to meet the need for software engineers?”
Cutter IT Journal, vol. 14, no. 6, pp. 32–39, 2001.

[11] S. Fraser, R. Bareiss, B. Boehm, M. Hayes, L. Hill, G. Silberman, and
D. Thomas, “Meeting the challenge of software engineering education
for working professionals in the 21st century,” in Proceedings of the
18th Annual SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 2003), 2003, pp. 262–
264.

[12] R. B. Vaughn and J. Carver, “Position paper: The importance of expe-
rience with industry in software engineering education,” in Proceedings
of the 19th IEEE International Conference on Software Engineering
Education and Training (CSEET 2006), 2006, pp. 19–19.

[13] G. V. B. Subrahmanyam, “A dynamic framework for software engi-
neering education curriculum to reduce the gap between the software
organizations and software educational institutions,” in Proceedings
of the 22nd IEEE International Conference on Software Engineering
Education and Training (CSEET 2009), 2009, pp. 248–254.

[14] N. E. A. M. Almi, N. A. Rahman, D. Purusothaman, and S. Sulaiman,
“Software engineering education: The gap between industry’s require-
ments and graduates’ readiness,” in Proceedings of the IEEE Symposium
on Computers and Informatics (ISCI 2011), 2011, pp. 542–547.

[15] A. C. Simpson, A. P. Martin, J. Gibbons, J. W. M. Davies, and S. W.
McKeever, “On the supervision and assessment of part-time postgraduate
software engineering projects,” in Proceedings of the 25th International
Conference on Software Engineering (ICSE 2003). IEEE Computer
Society Press, 2003, pp. 628–633.

[16] J. W. M. Davies, A. C. Simpson, and A. P. Martin, “Teaching formal
methods in context,” in CoLogNET/FME Sympsoium, TFM 2004, ser.
Lecture Notes in Computer Science, C. N. Dean and R. T. Boute, Eds.
Springer, 2004, vol. 3294, pp. 185–202.

[17] J. M. Spivey, The Z Notation: A Reference Manual, 2nd ed. Prentice-
Hall International, 1992.

[18] J. C. P. Woodcock and J. W. Davies, Using Z: Specification, Refinement,
and Proof. Prentice-Hall International, 1996.

[19] C. A. R. Hoare, Communicating Sequential Processes. Prentice-Hall
International, 1985.

[20] A. W. Roscoe, Understanding Concurrent Systems. Springer-Verlag,
2010.

[21] J.-R. Abrial, The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 1996.

[22] S. A. Schneider, The B-Method: An Introduction. Palgrave Cornerstones
in Computer Science, 2001.

[23] B. S. Blanchard, System Engineering Management. Wiley, 1998.
[24] E. Hjelmås and S. D. Wolthusen, “Full-spectrum information security

education: Integrating B.Sc., M.Sc., and Ph.D. programs,” in Proceed-
ings of the 3rd Annual Conference on Information Security Curriculum
Development (InfoSecCD 2006), 2006, pp. 5–12.

[25] M. Petković and W. Jonker, Eds., Security, Privacy, and Trust in Modern
Data Management. Springer, 2007.

[26] K. O’Hara and N. Shadbolt, The Spy In The Coffee Machine: The End
of Privacy As We Know It. Oneworld Publications, 2008.

[27] M. Bishop, Introduction to Computer Security. Addison Wesley, 2004.
[28] D. D. Clark and D. R. Wilson, “A comparison of commercial and

military computer security policies,” in Proceedings of the 1987 IEEE
Symposiym on Research in Security and Privacy, 1987, pp. 183–193.

[29] D. Korff and N. Shadbolt, “Public information: Cause for celebration or
concern?” Public and Science, pp. 10–11, March 2010.

[30] A. C. Simpson, “On privacy and public data: A study of data.gov.uk,”
Journal of Privacy & Confidentiality, vol. 3, no. 1, pp. 51–65, 2011.

[31] C. Ciechanowicz, K. M. Martin, F. C. Piper, and M. J. B. Robshaw, “Ten
years of information security masters programmes: Reflections and new
challenges,” in Security Education and Critical Infrastructures, C. Irvine
and H. Armstrong, Eds. Kluwer Academic Publishers, 2003, pp. 215–
230.

[32] N. R. Mead, J. McDonald, J. H. Allen, M. Ardis, T. B. Hilburn, A. J.
Kornecki, and R. C. Linger, “Development of a master of software as-
surance reference curriculum,” International Journal of Secure Software
Engineering, vol. 1, no. 4, pp. 18–34, 2010.

[33] N. R. Mead, J. H. Allen, M. Ardis, T. B. Hilburn, A. J. Kornecki,
R. C. Linger, and J. McDonald, “Software assurance curriculum project
volume I: Master of software assurance reference curriculum,” Soft-
ware Engineering Institute, Carnegie Mellon University, Tech. Rep.
CMU/SEI-2010-TR-005/ESD-TR-2010-005, August 2010.

[34] N. R. Mead, T. B. Hilburn, and R. C. Linger, “Software assurance
curriculum project volume II: Undergraduate course outlines,” Soft-
ware Engineering Institute, Carnegie Mellon University, Tech. Rep.
CMU/SEI-2010-TR-019, ESC-TR-2010-019, August 2010.

[35] N. R. Mead, J. H. Allen, M. Ardis, T. B. Hilburn, A. J. Kornecki, and
R. C. Linger, “Software assurance curriculum project volume III: Master
of software assurance course syllabi,” Software Engineering Institute,
Carnegie Mellon University, Tech. Rep. CMU/SEI-2011-TR-013/ESD-
TR-2011-013, March 2011.

[36] L. F. Cranor and N. Sadeh, “A shortage of privacy engineers,” IEEE
Security & Privacy, vol. 11, no. 2, pp. 77–79, 2013.

APPENDIX

We describe the learning outcomes of the individual courses
in the following.

A. Building Information Governance
The successful participant will:
• achieve an understanding and ability to explain the di-

verse sources of requirements that give substance to the
complexity and value of information governance;

• acquire a capability to analyse these requirements and
map their detailed criteria into process models and con-
trols that govern the creation and use of digital informa-
tion assets throughout their lifecycle;

• exercise the requisite skills at analysing and navigating
conflicting and non-aligned rule systems in order to
structure unified approaches to governing information that
are defensible and capable of rapid adaptation to changing
requirements;

• evaluate alternative strategies for implementing informa-
tion governance objectives across various tools, including
policies, procedures, contracts, application designs, and
cloud-based services; and

• use the knowledge gained to develop an integrated, sub-
stantive proposal for establishing or improving informa-
tion governance within a defined scope of application.

B. Cloud Security
The successful participants will:
• be able to explain cloud architecture, properties, manage-

ment services, and security challenges;
• understand security risks associated with different deploy-

ment models, and what could be done to address such
risks; and

• experience a real demonstration, provided by on building
a simple cloud using an appropriate management tool,
managing it, and hosting a web-application on it.

C. Data Security and Privacy

The successful participant will:
• have an awareness of both the risks and threats associated

with data security, as well as the relevant legislative and
regulatory frameworks;

• be able to utilise established and emerging theory in the
design of secure access mechanisms; and

• be in a position to reason about issues of privacy with
respect to data release.

D. Design for Security

The successful participant will:
• know the strengths and weaknesses of different security

design techniques; and
• be able to specify a security solution to fulfill specific

design requirements.

E. Forensics

The successful participant will:
• understand how forensic principles and techniques relate

to the investigation of software and systems;
• have a detailed knowledge of a systematic methodology

for undertaking forensic investigations; and
• understand how the results of an investigation relate to

those security measures that were taken during the design,
development and implementation of a software-centric
system.

F. Mobile Systems Security

The successful participant will:
• be able to describe the threat landscape for mobile devices

and applications, and be able to map its co-evolution
with security controls and anticipated trajectories for the
future;

• have a working knowledge of the main sources of vul-
nerabilities in mobile applications — deriving from the
whole hardware and software stack — and their impacts;

• understand the subject of mobile handset forensics, the
difficulties to be encountered, and how the objectives for
extracting evidence often conflict with keeping a device
secure;

• understand the differing security and privacy require-
ments of sets of users and be able to implement privacy
and security elements by design into mobile applications;

• be able to form a coherent design strategy for usable,
friendly security in mobile applications whilst minimising
the risk to users;

• be able to describe the future threat landscape for mobile
and connected devices, understanding the physical secu-
rity impacts of emerging technologies used in smart cities
such as machine-to-machine; and

• understand the strengths and weaknesses of the mobile
application lifecycle from digital signing of applications,
application distribution through to methods for detecting
maliciousness in applications, software upgrades and kill
switches.

G. Network Security
The successful participant will:
• be able to explain how the architecture of the internet

gives rise to security challenges;
• know and understand the major classes of security tech-

nologies used in best practice to improve internet secu-
rity;

• understand how technology, practice, and procedure work
together to deliver security in networked systems; and

• be able to extend their understanding to encompass the
security of new and emerging kinds of network.

H. People and Security
The successful participant will:
• be able to specify usability criteria that a security mecha-

nism has to meet to be workable for end-user groups and
work contexts;

• be able to chose and configure mechanisms for best
performance in a given organisational context; and

• be able to specify accompanying measures (policies,
training, monitoring and ensuring compliance) that a
user organisation needs to implement to ensure long-term
security in practice.

I. Risk Analysis and Management
The successful participant will:
• be able to understand the main issues of risk in computer

and information security;
• be able to conduct a security risk analysis and make cost-

benefit decisions based on this; and
• have an overview of how risk analysis can be used to

make a business case for security.

J. Secure and Robust Programming
The successful participant will:
• be able to explain the sources of failures in software

written using modern high-level languages;
• have an understanding of the conceptual tools needed to

mitigate and eliminate those failures;
• have gained practical experience in using tool-sets which

permit the development of robust and correct software;
and

• be able to place such practices appropriately within a
systems development methodology.

K. Security and Incident Management
The successful participant will:
• have an understanding of the key themes and principles of

security incident management, and be able to apply these

principles in designing systems and models for managing
security incidents;

• understand how to apply the principles of incident man-
agement in a variety of contexts, and be able to make a
case to argue the extent to which technology can assist
in the resolution of security incidents and how this is
changing over time; and

• have an appreciation of the wider context of security
incident management, and in particular of the relationship
with business continuity and crisis management disci-
plines.

L. Security Principles

The successful participant will:
• understand the main issues in computer and information

security;
• have practical experience in the analysis of secure com-

munication protocols;
• have an overview of the scope of the current leading

technologies and standards; and
• be able to evaluate security solutions.

M. Security in Wireless Networks

The successful participant will:
• understand the main security goals and adversarial mod-

els of wireless and mobile networks;
• gain a broad knowledge regarding real-world security

architectures of WLANs, GSM/UMTS, WSNs, RFIDs,
etc.;

• be able to reason about wireless security protocols and
protection techniques, and discuss proposed solutions and
their limitations; and

• have an overview of the recent advances regarding
lightweight authentication, key management for wireless
networks, secure localization, and wireless device pairing.

N. Trusted Computing Infrastructure

The successful participant will:
• be able to explain critically the notion of trust as embod-

ied in trusted computing devices, and the requirements
upon those devices;

• know the role and purpose of each element of the trusted
platform module;

• be able to use the Trusted Software Stack API to interact
with the TPM;

• understand how technologies of virtualization can com-
bine with trusted platform modules to yield trusted in-
frastructure; and

• describe some systems architectures which use these
capabilities to provide innovative and strong security
solutions.

