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Abstract—The enabling of scientific experiments that are
embarrassingly parallel, long running and data-intensive into
a cloud-based execution environment is a desirable, though
complex undertaking for many researchers. The management
of such virtual environments is cumbersome and not necessarily
within the core skill set for scientists and engineers.

We present here Chiminey, a software platform that enables
researchers to (i) run applications on both traditional high-
performance computing and cloud-based computing infrastruc-
tures, (ii) handle failure during execution, (iii) curate and visu-
alise execution outputs, (iv) share such data with collaborators
or the public, and (v) search for publicly available data.

Demo video: http://youtu.be/Twi-d2WT94A

I. INTRODUCTION

Researchers have been using computing resources such as
desktops and supercomputers for running their experiments.
In order to use such resources, researchers are expected to
know how to set up their execution environment, run their
experiments and collect and optionally share the output of
their experiments. When executing computational experiments
on a local desktop machine, performing these tasks may not
be challenging. However, if an experiment’s resource require-
ments exceed those of a single workstation, then computing
environments such as cluster, grid or cloud can be considered.

Cloud computing [3] presents a unique opportunity for
users: it enables researchers to acquire very large numbers
of computing and storage resources quickly. Moreover, re-
searchers with relatively modest requirements for paralleli-
sation of existing code may be able to avoid learning high-
performance computing (HPC) infrastructure concepts. Re-
searchers still need to learn how to work within a cloud-based
environment, which itself presents its own challenges. They
need to to create and set up virtual machines (VMs) in the
cloud, collect the results of their experiments, and then release
the VM resources. Furthermore, cloud-based environments are
more prone to failure than HPC environments due to network
and third-party software issues [13], and these environments
expect researchers to handle such failures themselves.

The rate of technological change and innovation for com-
pute environments is ever increasing. When a new technology

is introduced, both opportunities and challenges are presented.
As a researcher migrates from desktop to cloud computing,
new computing capabilities may be realised; but new skills
are required: there needs include not only operational but also
fault tolerance and recovery skills. Such challenges distract
the user from focusing on their core goals such as research
discovery through creating domain-specific software.

In this paper, we present Chiminey platform, designed to
enable the user to focus on their domain of investigation,
and to delegate the platform to deal with the detail that
comes with accessing high-performance and cloud computing
infrastructure, as well as the data management challenges it
poses. Researchers are not expected to have a deep technical
understanding of cloud-computing, HPC, fault tolerance, or
data management in order to leverage the benefits provided
by Chiminey. Users may interact with Chiminey via a web-
based graphical user interface or a scriptable API.

We have conducted a number of case studies, applied
Chiminey across to two research disciplines in order to assess
its practicality: physics and structural biology. The domain
experts appreciated Chiminey’s features and noted the time
savings for computing and data management. We believe that
Chiminey will have a strong positive impact on the research
community, because it gives an opportunity to focus on the
main research problems and takes upon itself solving of the
major part of the infrastructure problems.

II. CHIMINEY

The Chiminey platform (cf. Fig. 1) is a computing and a
data management platform that enables researchers to perform
complex computation on cloud-based and HPC facilities, han-
dle failure during the execution of their application, curate and
visualise execution outputs, share such data with collaborators
or the public, and search for publicly available data. Chiminey
provides a data management platform both as a source and sink
of data coming from instruments and being processed through
Chiminey, and as a curation and storage repository for data to
utilised by future tools, published and then cited. Whenever
HPC computation is completed, its output is transferred to
user-designated locations including a data curator. For curatingc© 2015 IEEE Preprint
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Fig. 1. UML-based reference architecture of Chiminey platform

data, Chiminey uses MyTardis [2], an application for cata-
loguing, managing and assisting the sharing of large scientific
datasets privately and securely over the web. MyTardis is
currently deployed at various labs and institutions around Aus-
tralia to capture, manage and provide access to data in research
areas such as x-ray crystallography [8], microscopy, medical
imaging, genomics, and HPC. The Chiminey platform was
created as part of the Bioscience Data Platform project [12],
which is an agile software collaboration between software
engineering and natural sciences researchers. Python was cho-
sen as the development language due to its rapid prototyping
features, integration with the MyTardis data curation system,
and due to its increasing uptake by researchers as a scientific
software development language. However, the domain-specific
calculations could be written in any language (the choice
depends on the domain and the concrete research task).

Software engineering challenges: One of the main chal-
lenges is the development of Smart Connector (SC) compo-
nents of Chiminey. An SC is a core Chiminey component that
interacts with a cluster or a cloud service on behalf of the
user: it sets up the execution environment (creates the VMs,
configures then for the upcoming simulation, etc.), runs a
computation, and then transfers the output of the computation
to the user’s desired location. SCs handle the provision of
cloud-based and HPC infrastructures, as well as give special
importance to resource access abstraction and fault tolerance.
The user does not need to know about how VMs are created
and destroyed, how a simulation is configured and executed,
or how the final output is transferred. With respect to the
execution environment, the only information that is expected
from the user is to specify the number of computing resources
she wishes to use, credentials to access those resources, and
the location for transferring the output of the computation.
With respect to configuring and executing the simulation, the
user may set the value of domain specific parameters. .

SCs vary from each other by the type of computation to
be supported and/or the specific computing infrastructure to
be provisioned. Chiminey provides a set of APIs to create
new and customise existing SCs. The APIs enable research
software engineers to focus on developing the variation point
of the new connector rather than access abstraction and/or
fault tolerance support. Chiminey allows to specify ranges

of input parameter values for a given SC, and subsequently
automatically creating and executing multiple instances of the
given connector to sweep across ranges of values. This allows
the researcher to quickly explore a parameter space, and the
results to then be visualised.

Another challenge was to develop a user interface which
is intuitively clear to the research scientists, who do not
have a deep technical understanding of cloud computing, fault
tolerance, etc. The present interface was created on the basis of
contextual interviews with the physics and biology researchers.
Fig. 2 shows a web interface for the specification of an SC
execution. Fig. 3 shows an example of visualisation: two-
and three-dimensional graphs are automatically generated as
physics simulation data is curated.

Fig. 2. Chiminey interface: specification of an SC execution. The user
defines a name of the SC, chooses the computational platform from a
given list, specifies required cloud resources (desired and minimal number
of required VMs), reliability requirements (maximum number of retries of a
failed computation and whether a failed computation should be rescheduled),
input/output locations, and domain specific characteristics. Finally, the user
selects whether the execution output should be curated and where.

Example of a Smart Connector: One of the SCs we im-
plemented in Chiminey is a cloud-based iterative MapReduce



Fig. 3. Visualisation of computation results in MyTardis, using a plug-in
developed to provide better usability for the Chiminey platform. The curated
datasets are fully accessible and shareable online.

Smart Connector (MRSC), which is suitable for long-running
data-parallel programs like Monte Carlo simulations. These
simulations are computational algorithms that rely on repeated
random sampling to obtain numerical results: simulations (so
called MapReduce computations) should be run many times
over, until a predefined criteria are met, in order to obtain
the distribution of an unknown probabilistic entity. Monte
Carlo simulations are often used in solving physical and
mathematical problems, especially for optimization, numerical
integration and generation of draws from a probability distri-
bution.

The communication and computation pattern of the MRSC
is shown on Fig. 4. Since VMs need to be created and
configured before execution commences, the execution time
of applications should be long enough to justify the use of
cloud resources. The MapReduce computation is performed
iteratively until the predefined criterion is met. The output of
each task is sent to a MyTardis instance for both generic data
access, and domain-specific visualisation.

Input

map component
e.g. an HRMC task 

collect output
reduce component

e.g. compute criterion,
regenerate input for next iteration

Iteration 1 Iteration 2 Iteration n

criterion met

...

Fig. 4. The communication and computation pattern of the cloud-based
iterative MapReduce Smart Connector

III. EVALUATION

We have evaluated our system by running a number of case
studies, involving experiments in physics (material character-
ization) and structural biology (understanding materials at the
atomic scale). The domain experts noted the time savings for
computing and data management, as well as usability aspects
of the Chiminey platform.

The user interface allows flexibility in the initial setup,
with most parameters easy to change from their default values
for a new exploration of the parameter space available to the
platform. Finally, the ability to index and store the increased
volumes of data stemming from this new tool are also of high
value; academic research is often conducted under conditions
requiring the storage and/or accessibility of data for several
years following the actual work. Chiminey user interface,
combined with the MyTardis data curation module, allows
for flexible handling of data according to its completion and
significance. Files can be transferred between computational
resources while the work is in progress, and can be curated
when the workflow slows naturally, such as when the solution
to a problem involving many calculations is found.

In addition, the inclusion of automated graphing software
means that the user can easily trace the flow of the calculations
through the several sequential parallel executions that are often
required to reach reasonable convergence to the experimental
data. This diagnostic information allows the user to cope
with the increased flow of information available, and judge
whether the model is converging adequately or requires further
tweaking. Where the methods can involve simulated annealing
to varied temperatures in an effort to locate the correct
solution, the pathways leading to the best candidate are also
of interest, and the graphs can easily be used for presentations
or in written documents.

In the rest of this section we discuss the application of our
tools to execute Monte Carlo simulations. As these simulations
give the basis for modelling of a material’s porosity and the
size distribution of its pores, they are of recent interest in
the material characterization community. One such modeling
methodology is the Hybrid Reverse Monte Carlo (HRMC)
method [10]. This method aims to produce three dimensional
atomic coordinates of disordered materials which are consis-
tent with a variety of experimental data (e.g., electron, x-ray
and neutron diffraction, porosity information) while ensuring a
low energy local bonding environment. Together with the the
Theoretical Chemical and Quantum Physics group at RMIT
University, we have identified the requirements for a cloud-
based execution and deployed this using the MapReduce Smart
Connector (cf. Section II). The connector was configured to
run the HRMC program on the cloud and to manage the output
of that execution. The main requirements are (cf. also Fig. 4):

1) To exploit the randomness inherent to the HRMC
method for executing multiple tasks, each with unique
input data, in parallel bursts: this data parallelism can
be satisfied by using the the map component of the SC.

2) To automate a decision-making process to prune the



calculations in accordance with pre-defined criteria, as
well as to regenerate a new batch of parallel tasks based
upon the outcomes of the previous tasks: this requires
computation to be performed on the outputs of all map
tasks. These computations are equivalent to the reduce
component of the MRSC.

3) To visualise output of each task to indicate the progress
of the calculations with respect to the criteria at a glance:
to satisfy the fourth requirement, the output of each task
are sent to a MyTardis instance for both generic data
access, and domain-specific visualisation.

4) To organise and store each output persistently, i.e. to
provide data curation: this is achieved by transferring all
data to either a MyTardis, or a user designated location.

In a process reliant on the random nature of Monte Carlo
simulation, the abilities to rapidly process simulation results,
make decisions based on outcomes, and generate new calcula-
tions when necessary are of high value. Here, the automation
of the HRMC package via Chiminey has led to significant
speedups in model planning, setup and execution. Where
before, the typical modus operandi was to run a calculation
and subsequent evaluation of the pore-size distribution in the
hope of a random match to experimental data, and then to
tweak some initial parameters and try again, now a structured
process exists to facilitate and manage these time-consuming
tasks. As well as saving time on the low-level evaluation and
changes to setup, this also has consequent flow- on effects at
the computational level; restarting calculations no longer have
to wait for user input, meaning that the available resources
can be used more efficiently, with minimal downtime while
the problem iterates.

IV. RELATED WORK

There are different types of scientific workflow systems such
as Kepler [7], Taverna [9] and Galaxy [1], which are designed
to allow researchers to build their own workflows. However,
Chiminey provides drop-in components, i.e. Smart Connectors,
for existing workflow engines. Researchers utilise and adapt
existing Smart Connectors. New types of Smart Connectors
would be developed by the Chiminey development team in
collaboration with researchers.

There are a number of platforms/applications with similar
aims and features. In comparison to them, Chiminey provides
more features to make the researchers’ work more efficient.
Unlike VIVO, a semantic web application for the discovery
of research outputs within an institution [6], the data man-
agement component of Chiminey focuses on curating data
from instruments, visualising and publishing these data, and
making the research data itself accessible. Unlike Chorus, a
web application for managing spectrometry files [5], Chiminey
is not restricted to managing a specific type of files: Chiminey
not only manages any type of files but also allows the addition
of filters to the files for automatic generation of domain-
specific metadata. Furthermore, Chiminey provisions a reliable
computing capability for data processing. Unlike ReDBox, a
software platform for curating and publishing experimental

results [11], Chiminey curates and publishes metadata and data
collected from instruments. Furthermore, Chiminey provides
a reliable computing and data visualisation capability.

Nimrod [4] is a set of software infrastructure for executing
large and complex computational processing across several
compute resources at a time. It is compatible with the scientific
workflow system Kepler, s.t. users can set up complex com-
putational workflows and have them executed without having
to interface directly with an HPC system. Incorporation the
Nimrod into Chiminey’s architecture for the execution of its
Smart Connectors is an ongoing work.

V. CONCLUSION

The nature of many scientific problems today mandates the
use of parallel programming to unlock the power of HPC
and big data from advanced instruments. This has required
researchers to learn HPC, cloud computing and data manage-
ment skills to address their problems.

We have presented the Chiminey platform, which provides
a reliable computing and data management, and be used by
researchers without having to learn extensive infrastructure
concepts and technologies. Researchers can access HPC, use
cloud services, and archive, visualise and publish the result
of their computations. In the demo, we have discussed one of
our case studies: Monte Carlo simulations. The domain experts
appraised Chiminey with these scenarios, and noted the time
savings for computing and data management.
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