Supporting the Statistical Analysis

of Variabil

David Fernandez-Amoros
Universidad Nacional de
Educacion a Distancia

Madrid, Spain
david@issi.uned.es

Ruben Heradio
Universidad Nacional de
Educacion a Distancia

Madrid, Spain

rheradio@issi.uned.es

Abstract—Variability models are broadly used to specify the
configurable features of highly customizable software. In pactice,
they can be large, defining thousands of features with their
dependencies and conflicts. In such cases, visualizatiorchmiques
and automated analysis support are crucial for understandag the
models. This paper contributes to this line of research by pe-
senting a novel, probabilistic foundation for statistical reasoning
about variability models. Our approach not only provides a rew
way to visualize, describe and interpret variability modek, but
it also supports the improvement of additional state-of-tke-art
methods for software product lines; for instance, providirg exact
computations where only approximations were available beifre,
and increasing the sensitivity of existing analysis operains for
variability models. We demonstrate the benefits of our apprach
using real case studies with up to 17,365 features, and wréh
in two different languages (KConfig and feature models).

Index Terms—Variability modeling, feature modeling, software
product lines, software visualization, binary decision dagrams.

I. INTRODUCTION

A common challenge in software engineering is enabl
and coping with many variants of software products that

ity Models

Christoph Mayr-Dorn Alexander Egyed

Johannes Kepler University Johannes Kepler University

Linz, Austria
christoph.mayr-dorn@jku.at

Linz, Austria
alexander.egyed@jku.at

This paper proposes an alternative way to reason about
VMs. The basic idea is adopting a method that, in many other
knowledge domains, has proven to be successful for desgribi
and interpreting variation in large samples/populatiatatis-
tics. For that, it presents two algorithms that compute the
primary elements needed for the VM statistical analysis: (i
the Feature Inclusion ProbabilitfFIP) algorithm determines
the probability for a feature to be included in a valid proluc
and (ii) the Product Distribution(PD) algorithm determines
the number of products having a given number of features.

SPL engineering typically distinguishes two roles: the
main engineeland theapplication engineefi8]. Whereas the
domain engineer undertakes the product line development (i
she engineerfor reuse), the application engineer obtains par-
ticular systems from the product line through a configuratio
process (i.e., she engineaxith reuse). Our approach assists
both roles.

ing Regarding the domain engineer, our method supports repre-
apenting the feature and product variation using generéiksta

customized for different market segments or contexts of ugal plots (e.g., histograms, box-plots, etc.), and sungy
This is explored in paradigms such @eftware Product Lines the variation through descriptive statistics (e.g., mstandard

(SPLs) [1] or Context-Aware Softwarf2]. An essential tool
to tackle this challenge ardariability Models(VMs), which
specify the common and variable features available for
software products, together with the inter-feature cotsfland
dependencies [3].]4].

Numerous visualization methods [5] and analysis operati
[6] support the reasoning on non-trivial VMs. Introduced

deviation, etc.). This way, the engineer receives inforomat
about the complexity of the software products, and the SPL
tieelf. Moreover, our approach supports augmenting theisen
tivity of binary analysis operations by redefining them into
probabilistic terms, hence providing a continuous range of
ovalues instead of a simplistic yes/no categorization. BEegjis
ifnay use this, for instance, to detect highly dispensablarfes

1990, feature diagramg7] are the prevalent way to visualizewhose reuse probability is close to zero, but not exactlp.zer
VMs as graphs whose nodes and edges depict features andegarding the application engineer, our method provides

inter-feature relationships. Such representation wolkely

information about the implications of her decisions (i) in

for small VMs, but it becomes ineffective for large modeléerms of features (e.g., if featurg is selected, which other
because the resulting graphs are overly complicated. Maig@tures become selected/excluded due to their depemdénci

analysis operations are excessively rigid. For instaneeent

conflicts with f?), and also (ii) in terms of the final product

approaches for detecting dispensable features only fitentie.g., if featuref is selected, what size will the final product
those that, due to conflicts/dependencies with the remginigrobably have?). Moreover, some procedures have been pro-
features, cannot be included in any product at all, oveitupk Posed to guide the engineer through the configuration space

thus features with a reusability insignificantly above zero

This work has been supported by (i) the Spanish Ministry aidation and
Vocational Training under the projects with reference ORER77677-P and
CAS17/00022, (ii) the Austrian Science Fund (FWF): P29AE- funded
by the Government of Upper Austria; and (iii) the FFG, Cocttfdo. 854184.

by using the concept of feature probabilityl [9], [10], [11],
[12]. However, as existing methods for computing feature
probabilities do not scale for large VMs _[13], probabilitie

are often roughly approximated from samples of historical
product configurations[[12],[[14] or set manually by the

engineer according to her beliefs [15]. This paper conteibu
to configuration guidance procedures by supporting thetex:
and scalable feature probability computation.

Most existing methods for automated reasoning on VN
convert the models into Boolean logic formulas for subsatjue
processing with logic engines [16]. This translation of VM:
into Boolean logic is a well-studied problem, supported fc
most VM notations, such deature model§L6], KConfig[L17], i
[18], or CDL [19]. Our algorithms work with practically every -
VM notation as they build on th8inary Decision Diagram
(BDD) [20], [21] encoding of the VM Boolean formulas. 7

We demonstrate the feasibility and benefit of our approa — _.
with real VMs specified in two distinct languages (KConfi¢ ~
and feature models). The investigated VM examples differ
the number of features (ranging from small to huge with u
to 17,365 features), and come from different application d
mains (open source software projects, the automotive tngdus
and web configurators). Among other issues, the experime
reveal that some models have a surprisingly high number
features with extremely low reusability.

The remainder of this paper is organized as follows: Sectis
[Mmotivates the statistical analysis of variability moslgllus-
trating its benefits with a real example. Section 11l desesib
our algorithms in detail. Section_1V reports the applicatio
of the approach to distinct case studies. Sedfibn V dissusse
related work. Finally, Sectidn VI summarizes this papersnm 1) How complex are the products@he complexity of a

conclusions and outlines directions for future research. ~ product can be roughly measured by its number of features
[24]. Our PD algorithm computes the products’ distribution
Il. MOTIVATING THE STATISTICAL ANALYSIS OF regarding their number of features. This distribution ig th
VARIABILITY MODELS basis for distinct plots and descriptive statistics furtblear-
Most approaches for providing engineers with visualizaticActerizing products’ complexity.
assistance to understand non-trivial VMs use graphs (esjre For instance, the density plot in Figlre 2 and the desceptiv
whose nodes and edges represent features and constraft@distics in Tabldll summarize the product distributiom fo
respectively [[5]. Feature modelsare the most Widespreadthe KConfig specification of EmbToolkit 1.7.0. This way, the
graphical notation for VMs[22]. engineer becomes aware that the most frequently occurring
In practice, VMs can be hugé [23] and for those casedumber of features for a product is 773, that the smallest and
their visual graph representation becomes ineffective.gxe largest products have 19 and 1398 features, respectively, e
ample, the EmbToolkit project (www.embtoolkit.org) eates
application development and firmware generation for high_w 250075
customized embedded Linux products. Its VM is specified £ ; ;-
a text-based language called KConfig, which is also used &% oous-
other popular open source projects, such as the Linux Kerr oooo00-

Fig. 1: Graph-representation of the EmbToolkit KConfig

0.00100-

uClib, or axTLS. The KConfig specification of EmbToolkit SFEEFFETSSSSFSLFSSESS
encompasses 1,815 configurable features, together wigi3 7,1 _ | eawres
inter-feature constraints. Figure 1 shows the graph reptas Fig. 2: EmbToolkit product distribution

tion of the KConfig specification of EmbToolkit 1.7.0. Such
visual representation offers little value even when zogmm

to make the node labels readable. Mean | Standard Median Median Mode Min Max | Range
.. . deviation absolute
In contrast, we propose a statistical approach to descrithe deviation
interpret the variation of the features and products smetifi 74749] 33091 [748 | 39141 [773]| 19 [1398 | 1379 |

by a VM. In the following subsections, we outline how this
method assists both the domain and the application engineer TABLE I: Product distribution descriptive statistics

A. Domain engineer’s support 2) How complex is the product line?the complexity of a
Our algorithms provide the fundamental information t&PL may be characterized by the following three core metrics
enable answering the following key questions: the number of features the SPL manages, the number of valid

www.embtoolkit.org

. . Dead features Unconst. opt. features Core features
products that can be derived, and the resulting homogen% 7=0] p<005 H p=05 [0475 gﬁgom H pP=1]p>0.0% I

of those products [24] (i.e., how much does one product diffezsm e 25.73% | 38.95% || 1.21% | 5.29% |
from the others). The PD algorithm in combination with our
Feature Inclusion ProbabilityFIP) algorithm provides a clear

picture of the products’ homogeneity. Figlre 3 presents two

extreme cases: one of extreme homogeneity (top), the other o))
extreme heterogeneity (bottom): « The green shaded area (right) emphasizes the features that

. The top row describes a SPL where products are ved required by aimost every valid product, being the exérem
homogeneous because (i) most products contain a simf&s€s those with probability one, which are usually cattee

number of features (i.e., its distribution has low variansee S they are present in all products. .
the plot on the left), and (i) most features are nearly avay * 1he yellow shaded zone (middle) identifies low-constraint
included (i.e., the feature probabilities are close to ond afeatures. In particular, those with probability 0.5 arei¢ply
have low variance - right plot). pure optional features whose selection is unconstrained.

« The bottom row describes a SPL where the products aréQur approach also provides assistance when historical data
very heterogeneous because (|) some products may Conmut the actual feature inclusion are ava“a.ble; e.g.,[lbe
only a few features while others may contain a high numbfan popularity contesgathers information about how many
of features (i.e., the product distribution has high vargn times each Debian package has been installed (https:Bpopc
and (i) most features are nearly never included in a produ#gbian.org/). In this case, the domain engineer compaes th

(i.e., the feature probabilities are close to zero and hawe | VM statistics with the historical ones. If, for example, the
variance). actual products tend to be much smaller than the product dis-

tribution mode obtained from the VM, then perhaps the SPL is
Homogeneous products unnecessarily complex and could be simplified. Understandi
the answers to these questions is thus of essential value for
A | | | A SPL and product testing, evolution, and reuse.
0.0 05 1.0

TABLE II: Dead, core, and (potentially) optional features

Products'
density
%Features

#Features Fealtuéedp_robabilli_té/ of bdein?
Included In a valid proauc A - .)
B. Application engineer’s support
Heterogeneous products ”
w5 e Our approach supports the application engineer’s decision
2% ©
§§ £ making by showing the impact that a decision has on:
o <] S ol 0’5 10 . .
#Features Feature probability of being 1)_ The remaining features: For example, if the _
includad in & valid product engineer selects the ARM architecture for EmbToolkit

Fig. 3: Products’ homogeneity characterization (EMBTK_ARCH_ARM, then our FIP algorithm will
show that some other features will necessarily be

excluded from the product (e.g., the probability of

3) Should the SPL be refactored to simplify its mainte,\gENETK UCLI BC TARZET um- ps(%ecomespzero)”);nd
na.n.ce?:.Th_e h|_stogram n F|gurE_]4 depicts the feature pml?ﬁat the selection of other features will become difficult
ability distribution for EmbToolkit 1.7.0. Three zones leav e.g., the probability oEMBTK_CLI B_GLI BC decreases to
been highlighted in the plot, whose detailed information & -’10‘35). It is worth noting that our approach determines
sum_lr[}?nzeith%blaE]II: left) highliahts the feat _fEature exclusion beyond explicit constraints among two

« 'he red shaded area (left) highlights 1€ Teatures Wi atures by considering the overall set of constraints and
probability less than or equal t0.05 of being included currently selected features
in a valid product. The extreme cases are those with zeroz) The broduct under co.nfi uratiorFor instance. our FIP
probability, which are commonly calledead[6], [25]. P Y ' '

Interestingly, 6.23% of the EmbToolkit features are dea hd PD algorithms support providing plots such as the one in
L igure[®, which shows how the configuration space shrinks

and thus they should be removed from the KConfig specifica: :) . : ,
tion as they are completely without value. with each engineer’s decision z_slbo_ut s_electlng/excludmg-f

tures. Note that the product distribution variance de@gas
progressively until it becomes zero at the end of the configu-
ration process.

Several heuristics have been proposed to speed up product
configuration by taking advantage of the fact that, due to the
inter-feature constraints, some decisions can be autoatlti
derived from other decisions previously made. Some of those
2 vald oroduc heuristics are based on approximating feature probadsiliti

[10], [11]. Since our FIP algorithm computes those prob-
Fig. 4: EmbToolkit feature probability distribution abilities, it provides better support for the aforemengion

heuristics.

%Features
N w
S8 8

o

o

PR PEESELLS LS HS
o o © o o o o O O O O °© O O O o N
n

Feature probability of being included i

$ &S
o o o

https://popcon.debian.org/
https://popcon.debian.org/

1250~ | For instance, the VM in Figure

g . A B C|@®
4 1000- . is equivalent to the formul@ = o0 o011
F 50 —— ' ((AAB) <—>.C)/\(B —>_A), yvhose 0 o 1|0
po . . truth table is summarized in Table 0 1 0,0
é 500 : [M(1 and 0 means true and false, (1) é é 8
& 250- ‘ respectively). 1 0 111
! . : . . The truth table contains all pos- 1 1 01

oSt e ggon®gondgen® sible configurations. The validand 1 1 110

Configuration stage invalid products are represented b

Y'ABLE 1lI: Running

Fig. 5: Visualizing the product derivation progress ~ fows where® is 1 and 0, re- example truth table

spectively. For each row, the in-
clusion/exclusion of a feature is
represented by 1/0 in its corresponding column. For example
the seventh row depicts the valid proddet, B, C'}.

This section describes a new method to compute the featurerhe following probabilities are defined from the truth table
and product d|str|but|o_nls from g_VM. First, Sectiobn 1I-A-in p(®) andp(®) are the probabilities ob to be 1 and 0,
troduces some probability definitions and the BDD technplog respectivelyp(®) andp(®) are calculated as the number
our approach is built upon. Then, Sectidns 1II-B dnd 11-C f rows where® is 1 and 0, respectively, divided by
explain our algorithms in detail. the total number of rows. In TableJllp(®) = 3/8 and
A. Preliminaries p(®)=5/8. N _

The KConfig file in Figure[J6 will be used throughout ° p(z, ®) is thejoint probability of » and® to be both 1; it

. :) . is computed as the number of rows where botand ®
this section as running example. It is composed of several

configsthat specify three featured, B and C, and their are 1 divided by f[he total nur_nber of rows. For ex_a_lmple,
interdependencies. p(A, ®) = 2/8. It is worth noting that joint probabilities

are symmetrical, i.ep(x, ®) = p(®, z). Obviously, other
joint probabilities can be defined negatingor ®; e.g.,

IIl. COMPUTING FEATURE AND PRODUCT DISTRIBUTIONS

All features are Boolean (Lines 2,

© NG AWN

5 and 8), meaning that they can be

config A . = =
boo! " A val ue?" either selected or deselected. Features (4,) ..1/8’ p(4,) . 2/8, ete. .
ect Cif IB)) « Theconditional probabilityp(z|®) is the probability that
select C1IT | can acquire their value from the user : : . o
config B : x is 1 knowing beforehand thdtis 1. In other words, it is
bool "B val ue?" input, but also from other feature values. .
denend A . . . the number of rows where bothand® are 1 divided by
epends on For instance, Configel and B specify .
config C a promotto request the user about their the number of rows wher@ is 1. For examplep(A|P) =
bool prompto req 2/3, p(A|®) = 1/3, etc.

feature values (e.g",A val ue?"). In i
contrastC' does not specify any prompt, In this paper, we are especially interested in getting the

Fig. 6: Running and its value is derived as followe! is Probability each feature has to be included in a valid praduc

example: a selected whenevet is selected, but not i.e., p(z|®). N_Q\(ertheless, .this computa_tiqr_1 will be built upon
KConfig file B (Line 3). Finally, featureB depends other probabilities. In particular, by definition:

on A, i.e., to be selected in a product, _ plz, @) B
B requires thatd is selected as well. p(z|®) = 2(®) = p(x, ®) = p(z|®)p(P)

As a result, the configuration space encompasses only ()
three valid products{ 4, B, C}, {4, B,C},{A, B,C}, where Likewise,p(®[x) = =52 = p(®,2) = p(®lx)p().
f or T represents that featurg is selected or deselected, AS joint probabilities are symmetrical, thep(z,) =
respectively. Therefore: P(g";éﬂ)wﬁ p(|@)p(®) = p(Plz)p(x) = p(z|®) =
« The product distribution, regarding the number of featurés p(@) - This last relation, which supports derivipgz|®)
each product has, is: one product with zero featuré®m p(®|z), is known asBayes' rule and it will be used in
({A, B, CY}), zero products with one feature, two productSectionIll-B to getp(z|®).
with two features {A, B, C} and {4, B,C}), and zero 9y ginary decision diagramsTruth tables are convenient
products with three features. _ “to understand the concepts we will handle to get the feature
« The probability of A, B and C to be selected in a valid,ropapilities and product distribution, but not to make the
product is2/3,1/3 and1/3, respectively. computations because their size grows exponentially viaigh t
1) Boolean representation of variability modelslost ap- number of variables (a table with variables ha™ rows).
proaches for automated reasoning on VMs are based |@ncontrast, BDDs, which can be thought as compressed truth
converting the models into Boolean logic formulas, whicé atables without redundancies, are by far more scalgble [20],
then processed with logic engines. [26], [21]. An example that illustrates their compressiawer
The details of this translation can be found[inl[16] and [18§ reported in this paper experimental section: the KConfig
for feature and KConfig models, respectively. specification of the uClibc library for developing embedded

algorithms.Tr aver se is called at the top level with the BDD
root as argument, and with a Booleamark for every node
being either all true or all false€lr aver se visits all nodes

by recursively visiting the lowh;,o and highng; subBDDs
rooted byn. Whenever a node is visited, its mark value is
complemented. Comparing the marks+ofand its children,

it can be determined if they have already been visited. The
method ensures that each node is visited exactly once ahd tha
when traverse finishes, all node marks have the same value.

(a) Non-reduced (b) Reduced Algorithm 1. Bryant’s method for BDD traversing

6! Function traver se(n)
2 mark(n) < mark(n)

Fig. 7: BDD encoding for the KConfig example in Figiie

3 if n is non-terminal then
4 if mark(n) # mark(nro) then traverse(nro)
if mark(n) # mark(nu1) then traverse(ngur)

Linux systems has 306 features and thus its truth table would
have23%6 rows; nevertheless, its BDD encoding has only 3,085 ! raverse(ROOT)
nodes.
A BDD is a rooted directed acyclic graph where (i) all
terminal nodes are labeled with 0 or 1, and (ii) all non-tevahi B. Computing feature probabilities
nodes are labeled with a Boolean variable. Each non-tetminaAlgorithm[2 (FIP) obtains, for each feature, the proportion
node has exactly two edges from that node to others: opfvalid products that include it, i.ep(z|®). To do so, it
labeled O and the other 1. They are called kv and high applies Bayes’ rule to ultimately deriygz|®) from p(®|n).
edges, and are usually represented graphically with dashed First, the definition of conditional probability is used irne
solid lines, respectively. A BDD isrderedif the variables 37: p(z|®) = p}g”(”g); being p(®) and p(z, ®) computed by
always appear in the same order for all the paths from thige auxiliary Functionget NodePr andget Joi nt Pr.
root to the terminal nodes. For instance, Figure 7a reptesen 1) Computing node probabilitiestn a BDD, let us define
a BDD with the orderind4, B, C] for our running example. the probabilitieg(n) andp(7) for a noden as the number of
It has eight nodes, two terminals, andn;, and six non- paths that go from the root to the terminal nodes by travgrsin
terminalsny, ns, . .., nr. n through its high and low outgoing edges, respectively,
Likewise rows in truth tables, paths in BDDs representivided by the total number of paths. Let us start reasoning o
variable assignments. In a path,is assigned to O (or 1) if how to computep(n) when Reduction R2 has not been done
it goes through the low (or high) outgoing edge of a nodget. For instance, in Figufel7a(ns) = 2/8 since there are
labeledz, and the resulting evaluation is O (or 1) if the patlkight paths in total from root to terminals, and two of them
ends up in the terminal 0 (or 1). For example, #1& row go through the high edge of;: @ —>@ —>@ —[ng] and
in Table[l (4, B, C, ®) corresponds to the patfz) —(n) 17) —([0) —(@3) (7]
——-) —[n1] in Figure[7a. By construction, in a truth table every variabteis 1 half
To save memory, BDDs are usualfgducedby (R1) re- the rows, and it is O the other half. For instance, in Table Il
moving duplicated nodes (i.e., nodes that are the roots there are four rows wher®& is 1, and there are other four
structurally identical subBDDs), and (R2) deleting nodéthw rows whereB is 0. This fact can be expressed @) =
identical outgoing edges. In Figurel 7a, R1 was performed hu@) = 1/2. If R2 is not appliedp(z) = p(U,, 1abeled = ™)
not R2, as the shaded node could be removed. Figufe I7bbeing p(l,, 1apeled =) = 2on labeleq (1) because all BDD
shows a completely reduced BDD without these redundagrdths are mutually exclusive as they represent independent
nodes. variable assignments. For example, in Figlré g@B) =
From here on, we will assume that BDDs are ordered apns) + p(ng) = 2/8 +2/8 = 1/2.
totally reduced. Thus, the algorithms we present in the nextThe first variable in the BDD ordering is represented by
sections deal not only with the existing nodes in the BDD, bat single node: the root. Sp(ROOT) = p(ROOT) = 1/2.
also with those removed due to R2. The next variable in the ordering is encoded with two nodes
In Section(II-B, we saw that, in order to assist the applic&OOTu; andROOTLo because every node has exactly two
tion engineer to understand the impact of her decisions, itautgoing edges. Hence, the variable probability is shartéd o
convenient to restrict the configuration space according toboth nodes and thug(ROOTy1) = p(ROOTH) = %
given set of selected/excluded features. Fortunatelyt BD® and p(ROOTro) = p(ROOTLo) = % Proceeding this
libraries include a function calledestri ct that provides way, the node probabilities will be subsequently divided by
exactly this functionality([2]7]. two until the terminal nodes are reached. Finally, we need
Finally, Algorithm[d shows Bryant's method [20] to traverséo be aware that whereas a node always has two outgoing
a BDD in a depth-first fashion, which will be used by ouedges, it may have any number greater than one of incoming

Algorithm 2. Feature Inclusion Probability (FIP)

1 Function get NodePr (n)
2 mark(n) < mark(n)
3 if n is non-terminal then

/1 explore | ow

if npo is terminal then p(nLo) < p(nLo) + p(n)
else p(nrLo) «+ p(nro) + p(n)

if mark(n) # mark(nro) then get NodePr (n1,0)
/1 explore high

if nur is terminal then p(nur) < p(nui) + p(n)

else p(nu1) < p(nu1) + p(n)
if mark(n) # mark(ngur) then get NodePr (nur)

10 Function get Joi nt Pr (n)
11 mark(n) < mark(n)
12 if n is non-terminal then

13
14
15
16

17

18

19
20
21
22

23

24

25
26

27
28
29
30

/1 explore | ow
if nLo = no then p(®|7) < 0
elseif n,o = ni then p(®|m) < 1
else
if mark(n) # mark(nro) then get Joi nt Pr(nLo)
_ P.n T
p(@[n) « PTLOVIES) 2;,%3;0)“))
p(n, @) « p(@[n)p(n)

/1 explore high

if nar = no then p(®|n) « 0

else if ngr = ny then p(®|n) « 1

else

L if mark(n) # mark(ngr) then get Joi nt Pr (nmr)
p(®,np1VIHT)
p(®|n) 2p(nur)

p(n, @) + p(®[n)p(n)

/1 conbine both | ow and hi gh

p(®,n VR) < p(®,n) + p(2,n)

p(var(n), ®) « p(var(n)) + p(n, ®)

/1 add joint probabilities of the renpved nodes

foreach x; between var(n) and var(nur) do
|_ p(zj, @) « pla;, ¢) + 22

foreach x; between var(n) and var(nLo) do
|_ p(zj, @) « pla;, ¢) + 252

31 p(ROOT) «+ 1/2

32 p(n

i) < 0 for all nodes n; except the BDD root

33 get NodePr (ROOT)

34 p(x;,®) <« 0 for all variables x;
35 get Joi nt Pr(ROOT)

36 p(P) < p(n1)

37 foreach z; do p(z;|®) <

p(x;,P)
p(2)

B is in the second position of the orderifg, B, C]. Finally,

let var(ng) = var(ny) = s+ 1 . Then,var(nyo) — var(n) — 1

is the number of nodes that have been removed between
andnro, andvar(ngy) — var(n) — 1 is the number of nodes
that have been removed betweerand ny;. For example, as
var(ng) —var(ng) —1 =4—-2—1=1, it can be deduced that
one node was removed in the high edge that goes figro

ng (i.e., the shaded node, in Figure[7&).

When a non-reduced BDD has a path —>@ --»@

3. 3@, after applying R2 the path becomes —®

Accordmg to what was previously discussed abgye,;) =
p(u)/2. For the rest of the nodes, ns, . . ., v, the probability
is not divided again since both the high and low edges go to the
same node, e.gp(ns) = p(anI)+P(n1LO) (u)/2+p(u)/2 _
p(u)/2. To sum up, (i) the probab|I|ty of the reduced nodes
between any two nodes and v is p(u)/2, and (ii) the
probability of v is not affected by the amount of reduced
nodes, being equal to(u)/2 as well.

Functionget NodePr combines the ideas discussed above
with Bryant's traverse method. In Algorithm FIRROOT) is
set tol/2, andp(n) is initialized to O for the remaining nodes
(Lines 31-32). Thenget NodePr traverses the BDD in pre-
order to update(n). Finally, it is worth noting thap(®) =
p(n1) andp(®) = p(ng), beingp(®) andp(®) the proportion
of valid and invalid products of the VM, respectively.

2) Computing joint probabilities:Following the same ar-
gumentation line than in the previous section:

=3 p(n, @)+ Y p(n’, @)

Let us start first with the non-reduced nodes. By definition,
p(n,®) = p(®|n)p(n). As we rely on Bryant's recursive
method to perform the computations, let us defii®|») in
function of n high descendant (as the probability is condi-
tioned ton = 1, in principle we only care about the high
descendant). Two cases need to be considered:

1) Whenny; is terminal, (a) ifng; = ng it means that the
path is evaluated to O, i.e® is O for the variable assignment

edges. Therefore, for a non-terminal nodewith parents
_ i p(ui). H
up, Us, . . . us, thenp(n) = 5 : and for a terminal node,
p(n) =>"7_, p(u;) (the parents’ probability is not divided as
the node has no outgoing edges).
Let us move now to realistic BDDs, where R2 is performed.

In this case, we need to take into account the removed noded®|n)

p@)=p((U mu(U

n labeled = n’ labeled x

but removed
= Zp(n) + Zp(n'

Let us see how to compute the number of redundant no
removed between any two nodes due to R2. If the variables
follow the ordering[z1, x2, . . ., 2], let var(n) be the position
of the variable that labels the nodein the ordering. For
example, in Figuredbyar(ns) = 2 sinceny is labeledB, and

the path represents and g@P|n) = 0; (b) otherwise asiy; =
ny thenp(®|n) = 1.
2) Whenny is non-terminalp(®|n) is calculated as:

p(®, nur V 7o)
p(nu1 V Tmn)
w)) _ p(®,nmn) + p(®,7m) _ p(®,) + p(P,)
p(nun) + p(mn) 2p(nmr)

= p(®|nur V omn) =

Equatiorl] summarizes the cases above to comgdig:).
As it needs knowing)(®, 7xr), Equatior 2 is used (which is
cingeed the symmetrical case of Equatidn 1).

0 if Ny = No
p(<IJ|n) = 1 if nH1I = N1 (1)

2p(nu1)

Algorithm 3. Product Distribution (PD)

0 if nLo = no 1 Function get Pr odDi st (n)
dn) =41 if nLo=n 2) > mark(n) < mark(n)
p(|) P(®,n10)+p(®,7L0) Lo . ! () 3 if n is non-terminal then
2p(nLo) otherwise /1l traverse
.) .] 4 if mark(n) # mark(nro) then get ProdDi st (npo)
Functionget Joi nt Pr in Algorithm FIP uses both Equa- 1 cogput ehlowDéstI to account for the renpved
H G HH nodes throug ow
tions[A andP to get the joint probability(z, ®) fpr non- removedNodes « var(nyo) — var(n) — 1
removed nodes (Lines 13-26). Then, Equafibn 3 is applied to Ietd loszist)be a vector with removedNodes + length of
H / / H H ist(n1o0) zeros
obtalnp(n_ , ®) for the removeq nodes’ (Lines 27-30). It is _ for (i = 01 < removedNodes; i++) do
worth noting that such equation follows the same reasonin for (j =034 [<Iens]ﬁh of dist(nr.0); j++) do
. . - / 9 lowDist[i 4 j] <
presented in Sectidn 1I-B1 to obtaj{n’). L lowDist[i +] + dist(nio)(j] - (emovedNodes)

p(n,®) i v
5 if n’ was betweem andnyg 3) /1 traverse

/
n,P) = = ' !
p(’) {p(naqj) if n/ was betweem and nLO 10 if mark(n) # rr{ark(TLHI) then get ProdDi st (1)
2 /1 compute highDist to account for the renoved
nodes t hrough high

C. Computing product distribution 1 removedNodes « var(ng1) — var(n) — 1
12 let highDist be a vector with removedNodes + length of
. : _ dist(nur1) zeros
AIg_ont_hm_[E (PD) skchhes the computation of the prod: for (i = 01 i < removedNodes; i++) do
uct distribution, accounting for how many products have ne for (j = 0; j < length of dist(ngr); j++) do
features, one feature, two features,, all features. It uses * highDist[i + 7] _ ANod
, . . highDist[i + 5] + dist(nu1)[j] - (F7OV29¢%)
Bryant's method to traverse the BDD in post-order by calling
the auxiliary Functiorget Pr odDi st with the BDD root as /1 conbine |ow and high distributions
argument. From the terminals to the root, it progressivély o' if lowDist is longer than highDist then
] . - . 17 distLength < length of dist(nLo)
tains the partial distributions that correspond to the dDDB 3, else distLength « length of dist(nu) -+ 1
rooted by each node, being the final distribution p|aced at th let dist(n) be a vector of length distLength filled with zeros
20 for (: = 0; j < length of lowDist; i++) do
root. 21 | dist(n)[d] « lowDist[q]
Figure[8 shows each node’s distribution for our running for (i = 0; j < length of highDist; i++) do

23 | dist(n)[i 4 1] < dist(n)[i 4 1] + highDist[3]

example, which is stored in different vectalist Starting from
0, the positioni in a dist vector accounts for the number of, dist(no) « []// no product s
products that have features; e.g., dists) = [0, 1] because zs dist(n1) < [1]// one product with no features
the subBDD with nodesy, n1, andn; represents no products? 95t ™ %?S%QE)(ORT?OT)
with zero features, and one product with one feature (i.es
product{C?}).

get ProdDi st’s recursive base
cases are nodeg, representing no
products at all, and node;, rep-
resenting a single product with no
features. Accordingly, digtg) = []
and distni) = [1] (Lines 24-25).

To understand the more advanced
recursive cases, three observations
need to be done:

1) Including new features into all
products is achieved by shifting the

In general, the addition of features to all products means
shifting dists positions to the right.

2) Combining dist vectors is accomplished by adding
them (O2): Let us think about how to getlist(n) from
dist(no) anddist(ngr). First, let us suppose that no nodes
were removed between and its descendants. Imagine that

‘ dist(nLo) = [2,0,3] and dist(nur) = [1,2]. According to
Ol, dist(ng1) needs to be shifted one position to account for

the additional feature that labels Then, both descendants

B, n4
dist=[1,0]

X ' T distributions are combined by just adding thedist(n) =
dist vector to the right (O1):Let 0, n0 1, nl 2.0.31+10.1.2] = [1.1.3

H H H H dist=(] dist=[1] [D]+[»]_[?]
us imagine that dist [1,0,4], i.e., _ o
there is 1 product with O features, Fig. 8: dist vectors 3) Removed nodes require taking into account both ob-
0 products with 1 feature, and 4 T servations O1 and O2, and blending them by means of
products with 2 features. combinatorial numbers (O3)if a non-reduced BDD had a

If no new features are added, dist remains the same. If PN @ -~ @ -3 @ =3 -@j@ » R2 would remove
feature is added to all products, dist becorfied, 0, 4], i.e., the s redundant nodes, and thus the path would became
there are no products without features because all of them ha—*@ - Hence, disturo) should be adjusted as any of the
at least the new feature, the product that had zero featores femoved nodes could be setto 1, and so one new feature would
have 1 feature, and the 4 products that had 2 features nB added to all products. Furthermore, any pair of redundant

have 3 features. If two features are added to all producss, diodes (3) could also be set to 1, any combination of three
becomes0, 0, 1,0,4], and so on. nodes(3), ..., and finally the combination of nodes(?).

‘VM |VM
Let us see how the Lname notation

#nodes FIP PD

Reference ‘ #Features | #Clauses H BDD Running time

[orgnaldisturo) [J1]ofa] [| . axTLS KConfig| http://axtis. 54 119 108 0.070s 0.0355
, adjustment should work | 15 forge.net/
adding (3) features 0]2|0]8 .J L . |132||3 Feature [SflL}rceorge = 118 2,304 1876 0.287s 0.273s
adding 5) features ololtlol4 with an example' imagine t?pmps ’\Kﬂgde;‘ https:/70s.inf.t 125 2717 1,235 0.139 0.104
. lasco onfi S://os.Inf.tu-)) . S . S
[adusted fnal distro) [1] 2 [5 [8] 4] that distnro) = [1,0,4] and | 2014002821 °| dresten-defiasco
uClibc 201 | KConfig| https://www, 306 903 4,862 0.506s 0.492s
two nodes where removed| soio | uslibc.org
TABLE |V DiStribUtion betWeen’l’L and nLO- Table[ﬂ ?uzsggox‘ KConffg :gss.//busybox. 677 572 1,036 0.514s 0.582s
adjustment Summarlzes the Computatlons E.T.%Toolkn KConfig Z&Dt;ém)rg/ 1,815 7,193 263,636 15.117s 14.647s
- Automotive Feature| [28] 17,365 321,933 30,432 | 3m 22.007s| 3m 35.713s
The first and last rows | o model
represent the initial and adjusted distributions, respelgt
The two intermediate rows represent the required adjugsnen TABLE V: VM benchmark
First, adding one feature to all products implies shiftimgf d _
one position to the right (O1). As there afg) = ey = g
2 different combinations of one feature, two shi%ted vectors . . 5 2
should be added (02). As a resuilt, 0,4] becomes|0,1 - g c she 2| | -] S
2 2 2 s g o £ 3 I Vi I 5 I Al
(1)70.(1)74.(1)] :[072’078] > = @ s = & & a S) D)
. FTH XTLS 25.46 10.46 3 46 0 9.38 6.25 | 37.50 0 3.12
Second, there is only one possibilifg) = 1 to add two oo [rre |z 14| ([O ards|| o 254l oss| 08
Fi 24.84 9.70 4 44 31.20 | 46.40 15.20 | 24.80 0 1.60
features to all products. S@l, 0, 4] becomeg0,0, 1,0, 4]. Wi || 10649 7613 8 | 200 || 261 | 2386 2549 | 3529 0 204
Finally, all distributions are combined by adding them (O2) emsosit || 7a146 | 335091 |19 | 1008 || 628 | 119 2573 | 3505 || 1211 529
[1 0 4] + [O 2 O 8] + [O 0 1 0 4] _ [1 2 5 8 4] Automotive 4,048.48 778.7 2,562 | 5,472 0.03 | 57.31 13.92 | 18.66 9.71 | 10.39
g) Sy Yy s YUy Ly Yy -) Sy Uy Oy E]-

Lines 5-9 and 11-15 of Algorithm PD adjust the low angzp, ;. Descriptive statistics for product distributipand

high distributions of the nor_l-terminal nodes. to account f‘%fec{centage of dead, core, and unconstrained optionalrésatu
the removed nodes. Then, Lines 16-23 combine both adjuste

distributions.

D. Computational complexity B. Results

Both Algorithms FIP and PD traverse the whole BDD, and O“T ap.proach enables reasoning on VMs under two per-
thus their complexity depends linearly on the numbérof spectives:)) o .
BDD nodes. Visiting each node requires (i) one loop on the * The products’ viewTable[V] provides descriptive statis-
numberV of variables for FIP, and (i) two nested loops on tics for the VMs’ product distribution regarding their
the variables for PD. As a result, the time complexities are number of features, and Figuré 9 visualizes that distri-

O(NV) andO(NV?) for FIP and PD, respectively. bution. S _
« The features’ viewFigure 10 shows the feature probabil-
V. EXPERIMENTAL ANALYSIS OF VM'S ity distribution, and colored columns in TadlelVI detail

This section reports the analysis of seven VMs gathered the number of features in the zongsad unconstrained
from open source projects and academic repositories with Optional andcore.
the aim of illustrating the usefulness and generality of our The product distribution graphs (Figl 9) and feature prob-
approach. All the material described in this section (impde- ability distribution graphs (Figl_10) (respectively Taljé)
tation of the FIP and PD algorithms, VM benchmark, BDDhighlight the existence of two rough VM groups. In the first
encoding of the VMs, and results of the analysis) is avadlab§jroup, axTLS, uClibc, Busybox, and EmbToolkit represent
at the following public repository: families of loosely constraint products. Valid productsyma

https://figshare.com/s/2f9f29494b16a0b88b87 range from consisting of only a few features (as low as three
features for axTLS), to close to all features (e.g., over %%
all features in the case of Busybox). Hence, also the feature

Our algorithms have been implemented as an extensionpwbbability distribution graphs for these models show more
the library CUDD 3.0 for BDDs| (https://github.com/vscdstafeatures in the rang6.475 < p < 0.525 compared to the
cudd). The benchmark is composed of VMs coming from difangep < 0.05. In contrast, the second group consisting
ferent application domains and specified in distinct laggaiga of Dell Laptops, Fiasco, and Automotive, represents SPLs
(i) axTLS Fiascg uClibc, BusyboxandEmbToolkitare open with rather restricted products. Valid products may cantai
source projects to enable the creation of highly customézalat a maximum 18%, 35%, and 32%, respectively, of available
products, whose variability models are written in KConfi@; (features compared to the first group with 72%, 65%, 94%,
the Dell feature model specifies a laptop configurator reversend 77% respectively. SPLs in the second group also tend to
engineered from the DELL homepage; and (AiJtomotiveis come with highly rare features. Between 46% and 57% of all
a feature model coming from the automotive industry. Tabfeatures have a reusing probability less or equal than ®05.
[Vl summarizes (i) the models, (ii) the size of the BDDs thatetailed list of all feature probabilities for every VM ingh
encode them, (iii) and our algorithms’ running times on abenchmark is published at our repository. This list will el
HP ProLiant DL360 G9 with an Intel Xeon E5-2660v3. domain engineers to polish their VMs, especially for Fiasco

A. Experimental setup

https://figshare.com/s/2f9f29494b16a0b88b87
https://github.com/vscosta/cudd
https://github.com/vscosta/cudd
http://axtls.sourceforge.net/
http://axtls.sourceforge.net/
https://os.inf.tu-dresden.de/fiasco/
https://os.inf.tu-dresden.de/fiasco/
https://www.uclibc.org/
https://www.uclibc.org/
https://busybox.net/
https://busybox.net/
https://www.embtoolkit.org/
https://www.embtoolkit.org/

which has a surprisingly high percentage of dead featurc axTLS1.5.3

31.2%. For Dell Laptops and due to the sensitivity augme £ =- —
that our FIP algorithm provides, some low reusable featur $ fo- I %
are discovered where current approaches do not detect > ° ST LT I AL T TS E I i I ISl
problem at all: although there are no dead features, 17.8% T T T % Cesture probabilty of being included in a valld product

Dell's features are allowed in at most 0.001% of the vali

products. g 30-
5 20-
©
D 10-
TLS 1.5.3 % 0
_ 003- S EI P L PR PPREESLERNALSLSSPS
_‘@ - i) Q O O O O O O O O O O O o o o o O o o »
S ‘@ 0.02- Feature probability of being included in a valid product
©°
28 001- :
o Fiasco 2014092821
0.00- 0 0 0 . @ 40- =
° N I S N S & 5 30- =
#Features § 20- ==
L 10- ==
Dell Laptops X o0- = == ==
N S ER L PP HEPPEESERLS LS HS
E > 0.10- ©Q © O O O O O O O O O O O O O O o o o) by
é K Feature probability of being included in a valid product
8§ 005-
av® 0.004 uClibc 20150420
S O T A g a0
=1
220
#Features 3
2 10-
Fiasco 2014092821 ® o- I e e -
Y 003 SER LIS SL PSS P88 S
‘Q>‘ S o) i) iS) A8} Q Q AN} S Q IS S S Q A8 Q Q o iS) bl
39 0.02- Feature probability of being included in a valid product
[e) -
g£s Busybox 1.23.2
0.00- 0 0 0 0 v ' ' v v l 1 0 ' n
A S . S R R 2 Q 40-
=1
#Features S 20-
uClibc 20150420 2o A L . a .
R S EL L PPHLP S HEPPEELERLS LS HS
v 5, 0.006- Q9 O O o o o o O O O O O O O O O O O O N
22 0004~ Feature probability of being included in a valid product
©8 0.002- .
x® EmbToolkit 1.7.0
0.000- v v . . v 0 . \
£ 20
#Features 3
P 10-
Busybox 1.23.2 2 o- ——— o . —=
- 0.00204 SEILP P I PP LSS
£> 8 < AN Q Q Q AN Q) AN Q Q i)) Q Q i) Q Q i) <]
é K g'gglg: Feature probability of being included in a valid product
£ ooo0s- Automotive 02
00000 = NN REREA= ==, 73
DL LD DL DL @ 40-
PELSEEESPELSTISESPELSISESEEE ¢
#Features $ 20-
w
EmbToolkit 1.7.0 ® o- 0 e e e 7 I
- o Kol S L oS Lo S (g) /\Q o S o‘? QQ
Q i) o w

0.00100 S EL L P PH L PR ES AL PSS
0.00075- O O o © o o o o o o o o O O ° SN
0.00050 - Feature probability of being included in a valid product
0.00025-

0.00000- — e

S Fig. 10: Feature probability distribution

Products'
density

S -~} S S
&S ES
#Features

Automotive 02

n _ 4e04-
%‘:;‘? %Eg ‘ e.g., decision diagram$ [29], the OVM language] [30], etc.
& geroo- e e EmE Nevertheless, the differences among notations are mindr, a
TESSSSESSSSESSSsSEE S somost approaches can be considered equivalent [4].
#Features As in practice variability models can include thousands of
Fig. 9: Product distribution features [[2B], some efforts have been made to clarify the

visualization of large graph VM representations: apply®iy
techniques to visualize the graphs in the space insteadeof th
V. RELATED WORK plane [31], supporting zooming on different graph ar¢a$, [32
The seminal work by Kang et al.][7] established what hdgcusing the visualization on a selected feature [33], deco
been the mainstream for visually representing VMs from 199®sing the graphs [34], etc. Our work complements existing
to nowadays: graphs whose nodes depict features, and whigsgarch by introducing an alternative way to look at VMs
edges represent inter-feature constraints. The most aopdihrough statistics, supporting thus the use of centraliyad
notation is feature modeling][5], which puts the emphasiBeasures, plots, etc.
on those constraints that enable arranging the featurearhie Sectiond V-A and_V-B discuss related work that aims to
chically as a tree[]3]. There are also other graph notatiorassist domain and application engineering, respectively.

A. Domain engineer’s assistance scale when many constraints cross the tree structure of the

A literature review by Benavides et al.][6] reports thirty€ature model.
analysis operations on VMs, most of them oriented to domainTo the extent of our knowledge, Algorithm FIP is the most
engineering. This paper supports augmenting the semgitifi scalable and general approach to compute the feature proba-
some of those operations. For instance, a feature is typicdilities from a VM. This way, our work not only supports the
considered dead if it cannot appear in any product at all. TRenfiguration heuristics that rely on the feature probtédi
main reason why most approaches stick to this definition febtained from the VM, but also the ones based on historical
detecting dispensable features is due to the current lioite. data. In the latter case, our algorithms can be used to overco
of the technology they are built upon, as they detect whethethe limitations of reasoning exclusively on the basis of a
featuref in a VM @ is dead by checking with a SAT solver ifsingle product sample by applying Bayesian infererice [39]
f A® is unsatisfiable [28]. In contrast, our algorithms suppol® combine both therior probabilities coming from the VM
a more flexible definition, detecting features with an extem With the posterior probabilities coming from historical data.
low probability of being selected.

Beek et al. [[15], [[35], [[36] point out the convenience of VI. CONCLUSIONS AND FUTURE WORK
providing the domain engineer with information about the . o] .
product distribution regarding distinct quantitativeriattes [N this paper, the algorithmic foundation for analyzing VMs
(e.g., number of features, product cost, failure probghili from an innovative perspective ha; bgen presented, where th
etc.). To do so, their approach requires (i) that the domdf@tures’ and products’ variation is visualized and désafi
engineer sets manually the feature probabilities, or tigtt USing statistics. We have justified why this approach benefit
the feature probabilities are derived from historical d@teen, bPOth, the domain and the application engineer, exemplfyin
the product distribution is estimated by generating mlgtipSuch benefits on real models gathered from open source
samples through a simulation process. Compared to BeekPERJECtS and academic repositories. We have shown that our
al.s method, our procedure provides the exact produdilolist approach not only enables new ways to reason about VMs, but
tion instead of an approximation. Nevertheless, Algorifay @S0 supports the improvement of current VM-related meshod
currently supports only one quantitative attribute, thenber increasing the sensitivity of existing analysis operagiam

of features, and could be extended to consider domain speciMs, and providing exact computations for approaches that
properties. currently work with approximations.

o]] We believe that our work opens a range of additional

B. Application engineer's assistance opportunities for future research. Applied to other pradine

There are several approaches to guide the applicati@iated activities, such as testing, our work enables dhgck
engineer through product configuration. Some of them anghether current methods for SPL testing are able to generate
built upon historical data about previous configurations: Fsuites covering the whole product distribution range, dngst
instance, Pereira et al._[12], [14] proposes a recommen@®bid missing any rare boundary cases. Also, our approach
system that limits the engineer’s decision space towards conay be of assistance during maintenance of projects folynigh
figurations included in historical data. In addition, Magz customizable software; e.g., we have reported that the ViMs o
et al. [37] provide the engineer with feedback on the impasbme relevant open source projects have an alarming amount
of her decisions by estimating the feature probabilitiesnfr of dead features. The causes of those useless featuresmeed i
historical data. These approaches have several shortgemiivestigation. A longitudinal study would provide insightsder
first, the historical data may not be a representative saofplewhich circumstances these projects exhibit these prohlents
the product population, especially if the sample size islsmavhether they are corrected or stay in the successive varsfon
and its variance is high; and most important, feature selgct the VMs. Finally, our algorithms rely on the BDD encoding of
cannot be strictly constrained to a sample. For example, ifVs. It is well-known that a BDD'’s size is extremely sensitiv
non-dead feature is not included in any configuration of the its variable ordering, and that finding an optimal ordgiis
historical data, then the system could conclude errongouaih NP-complete problem. Therefore, our approach’s sdiabi
that the engineer should never select such feature. greatly depends on the performance of existing heuristics

Other approaches, instead of relying on previous configior variable ordering. Hence, future research might look fo
rations, work directly with the VM. For example, Czarneckadapting our algorithms to other alternative logic tecbgas
et al. [9] suggest the application of tremtropy measure to that also support model counting, SUCh#8AT solver§4Q]
guide the VM configuration process, which is calculated fromr Sentential Decision Diagram&DDs) [41].
the feature probabilities. In addition, Nohrer et al.|[1[]1]

propose an alternative heuristic, also based on the feature ACKNOWLEDGMENTS
probabilities. However, none of those works scale to large
VMs. We thank Armin Biere and Tom van Dijk for their insight

Fernandez-Amoros et al. [38] provide an algorithm to conand helpful comments about the strengths and weaknesses of
pute the feature probabilities from a feature model. HowevdDDs, and other logic related technologies in the earl@gess
the algorithm is specific for feature models and it does nof this work.

(1]

(2]

(3]

(4

(5]

(6]

(7]

(8]

El

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES [22]

R. Heradio, H. Perez-Morago, D. Fernandez-Amoros, FCabrerizo, [23]
and E. Herrera-Viedma, “A bibliometric analysis of 20 yearfsre-
search on software product linesjformation and Software Technolagy
vol. 72, pp. 1 — 15, 2016.

W. Cazzola and A. Shagqiri, “Context-aware software ahility through
adaptable interpreters,JEEE Software vol. 34, no. 6, pp. 83-88,
November 2017.

P. Heymans, P. . Schobbens, J. . Trigaux, Y. Bontemps, Rulevi-
cius, and A. Classen, “Evaluating formal properties of deatdiagram
languages,1ET Software vol. 2, no. 3, pp. 281-302, June 2008.

K. Czarnecki, P. Grinbacher, R. Rabiser, K. Schmid, AndlVasowski,
“Cool features and tough decisions: a comparison of vditialbnodeling
approaches,” iréth Int. Workshop on Variability Modelling of Software-
Intensive Systems (VaMo%kipzig, Germany, 2012, pp. 173-182.

R. E. Lopez-Herrejon, S. lllescas, and A. Egyed, “A sysadic mapping
study of information visualization for software productdiengineering,”
Journal of software: evolution and processl. 30, no. 2, pp. 1-18,
2018.

D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automiadealysis of
feature models 20 years later: A literature revielmformation Systems
vol. 35, no. 6, pp. 615 — 636, 2010.

K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Pe-
terson, “Feature-Oriented Domain Analysis (FODA) FedigjbStudy,” [30]
Carnegie Mellon University/Software Engineering Ind@tuTech. Rep.
CMU/SEI-90-TR-21, November 1990.

K. Czarnecki and U. EiseneckeGenerative Programming: Methods, [31]
Tools, and Applications Addison-Wesley Professional, 2000.

K. Czarnecki, S. She, and A. Wasowski, “Sample spaces faatlire
models: There and back again,” it2th Int. Software Product Line
Conference (SPLCLimerick, Ireland, Sept 2008, pp. 22-31. 32]
A. Nohrer and A. Egyed, “Optimizing user guidance dgridecision-
making,” in 15th Int. Software Product Line Conference (SPLEIu-
nich, Germany, Aug 2011, pp. 25-34.

A. Nohrer and A. Egyed, “C20 configurator: a tool for ded decision-
making,” Automated Software Engineeringpl. 20, no. 2, pp. 265-296,
Jun 2013.

J. A. Pereira, P. Matuszyk, S. Krieter, M. Spiliopouland G. Saake,
“A feature-based personalized recommender system foruptdihe [34]
configuration,” inACM SIGPLAN Int. Conference on Generative Pro-
gramming: Concepts and Experiences (GPCHgw York, NY, USA,
2016, pp. 120-131.

R. Heradio, D. Fernandez-Amoros, J. A. Cerrada, and Badh “A
literature review on feature diagram product counting atsduisage
in software product line economic modeldriternational Journal of
Software Engineering and Knowledge Engineeriugl. 23, no. 8, pp.
1177-1204, 2013.

J. A. Pereira, J. Martinez, H. K. Gurudu, S. Krieter, aBd Saake,
“Visual guidance for product line configuration using regoendations
and non-functional properties,” i83rd Annual ACM Symposium on [37]
Applied Computing (SACNew York, NY, USA, 2018, pp. 2058-2065.
M. H. ter Beek, A. Legay, A. Lluch-Lafuente, and A. Vandi‘Quan-
titative analysis of probabilistic models of software potllines with
statistical model checking,” ith Workshop on Formal Methods and
Analysis in SPL Engineering (FMSPLE@ETAPB)ndon, UK, Apr.
2015, pp. 56-70.

D. S. Batory, “Feature Models, Grammars, and Propwsiti Formulas,”
in 9th Software Product Lines Conference (SPLRZnnes, France, Sep.
2005, pp. 7-20.

T. Berger and S. She, “Formal Semantics of the CDL Laggyia
University of Leipzig, Tech. Rep., 2010. [40]
R. Tartler, “Mastering Variability Challenges in Liruand Related
Highly-Configurable System Software,” Ph.D. dissertatiémiedrich-
Alexander-Universitat Erlangen-Nurnberg, 2013.

S. She and T. Berger, “Formal semantics of the kconfigyuage,”
University of Waterloo, Tech. Rep., 2010.

R. E. Bryant, “Graph-based algorithms for boolean fiorc manipula-
tion,” IEEE Transactions on Computergol. C-35, no. 8, pp. 677-691,
Aug 1986.

T. van Dijk and J. van de Pol, “Sylvan: multi-core franww for deci-
sion diagrams,international Journal on Software Tools for Technology
Transfer vol. 19, no. 6, pp. 675-696, Nov 2017.

[24]

[25]

[26]
[27]

(28]

[29]

(33]

(35]

[36]

(38]

[39]

[41]

S. Apel, D. Batory, and C. Kastndfeature-Oriented Software Product
Lines: Concepts and ImplementationSpringer, 2013.

T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czakie® study
of variability models and languages in the systems softvaan@ain,”
IEEE Transactions on Software Engineeringl. 39, no. 12, pp. 1611—
1640, Dec 2013.

P. C. Clements, J. D. McGregor, and S. G. Cohen, “Thec8trad
Intuitive Model for Product Line Economics (SIMPLE),” Camgie
Mellon University/Software Engineering Institute, Teétep. CMU/SEI-
2005-TR-003, 2005.

H. Perez-Morago, R. Heradio, D. Fernandez-Amoros, RarB and
C. Cerrada, “Efficient identification of core and dead fessuin vari-
ability models,”IEEE Accessvol. 3, pp. 2333-2340, 2015.

C. Meinel and T. TheobaldAlgorithms and Data Structures in VLSI
Design: OBDD - Foundations and ApplicatiansSpringer, 1998.

M. Huth and M. Ryan,Logic in Computer Science: Modelling and
Reasoning about SystemsCambridge University Press, 2004.

S. Krieter, T. Thim, S. Schulze, R. Schroter, and Gk8a“Propagating
configuration decisions with modal implication graphs,” 40th Int.
Conference on Software Engineering (ICSBE)ew York, NY, USA,
2018, pp. 898-909.

K. Schmid, R. Rabiser, and P. Grinbacher, “A comparieb decision
modeling approaches in product lines,” 3th Workshop on Variability
Modeling of Software-Intensive Systems (VaMbd@w York, NY, USA,
2011, pp. 119-126.

K. Pohl, F. V. D. Linden, and G. BockleSoftware Product Line
Engineering: Foundations, Principles, and Techniqu&pringer, Ed.
Springer, 2005.

P. Trinidad, A. R. Cortés, D. Benavides, and S. Segufidjree-
dimensional feature diagrams visualization,"ligth Int. Software Prod-
uct Lines Conference (SPLClimerick, Ireland, Sep. 2008, pp. 295—
302.

M. Stengel, M. Frisch, S. Apel, J. Feigenspan, C. Kastrand
R. Dachselt, “View infinity: a zoomable interface for featoriented
software development,” iB3rd International Conference on Software
Engineering (ICSE)Honolulu, HI, USA, May 2011, pp. 1031-1033.
M. Garba, A. Noureddine, and R. Bashroush, “Musa: A aoial multi-
touch and multi-perspective variability management tanl13th Work-
ing IEEE/IFIP Conference on Software Architecture (WICS¥gnice,
Italy, April 2016, pp. 299-302.

S. Urli, A. Bergel, M. Blay-Fornarino, P. Collet, and lBosser, “A visual
support for decomposing complex feature models/ERE 3rd Working
Conference on Software Visualization (VISSQFB)emen, Germany,
Sept 2015, pp. 76-85.

M. H. ter Beek, A. Legay, A. Lluch-Lafuente, and A. VandfiStatistical
model checking for product lines,” ifth Int. Symposium on Leveraging
Applications of Formal Methods, Verification and ValidatiglSoLA)
Corfu, Greece, Oct. 2016, pp. 114-133.

M. T. Beek, A. Legay, A. L. Lafuente, and A. Vandin, “A freework for
quantitative modeling and analysis of highly (re)confidileasystems,”
IEEE Transactions on Software Engineering (Early Access), 2018.
J. Martinez, T. Ziadi, R. Mazo, T. F. Bissyand, J. Kleiand V. L.
Traon, “Feature relations graphs: A visualisation panadigr feature
constraints in software product lines,” 2nd IEEE Working Conference
on Software Visualization (VISSOF Nictoria, BC, Canada, Sept 2014,
pp. 50-59.

D. Fernandez-Amoros, R. Heradio, J. A. Cerrada, and €Errada,
“A scalable approach to exact model and commonality cognfior
extended feature modeldEEE Transactions on Software Engineering
vol. 40, no. 9, pp. 895-910, Sept 2014.

J. K. KruschkeDoing Bayesian Data Analysis, 2nd Edition: a Tutorial
with R, JAGS, and Stan Academic Press/Elsevier, 2015.

C. P. Gomes, A. Sabharwal, and B. Selmiiandbook of Satisfiability
I0S Press, 2009, ch. Model Counting, pp. 633-654.

A. Darwiche, “SDD: A New Canonical Representation obpwsitional
Knowledge Bases,” ir22nd Int. Joint Conference on Atrtificial Intelli-
gence (IJCAI) 2011, pp. 819-826.

	Introduction
	Motivating the statistical analysis of variability models
	Domain engineer's support
	How complex are the products?
	How complex is the product line?
	Should the SPL be refactored to simplify its maintenance?

	Application engineer's support
	The remaining features
	The product under configuration

	Computing feature and product distributions
	Preliminaries
	Boolean representation of variability models
	Binary decision diagrams

	Computing feature probabilities
	Computing node probabilities
	Computing joint probabilities

	Computing product distribution
	Including new features into all products is achieved by shifting the dist vector to the right (O1)
	Combining dist vectors is accomplished by adding them (O2)
	Removed nodes require taking into account both observations O1 and O2, and blending them by means of combinatorial numbers (O3)

	Computational complexity

	Experimental analysis of VMs
	Experimental setup
	Results

	Related work
	Domain engineer's assistance
	Application engineer's assistance

	Conclusions and future work
	References

