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Abstract—This contribution discuses the physicochemical 

aspects associated with the response of hydrogel based distributed 

fibre optic microbend sensors to different humidity conditions. We 

explain that the swelling of the hydrogel which leads to the 

observed change in the OTDR signal should be attributed to a 

change in the water potential of the hydrogel being at an 

equilibrium with the water potential of its immediate 

physicochemical environment. Since the water potential in the 

hydrogel matrix is the result of several equilibration processes 

from multiple species that are interacting in the immediate 

environment surrounding the sensor, the observed fibre 

deformation should be attributed to all of the components of the 

chemical potential. The work draws attention to the necessity to 

fully characterize the hydrogel system used in each sensing 

application. The analysis is of relevance to all types of fibre optic 

biosensors that utilize hydrogels in the measurement process. 

Keywords—distributed fibre optic sensors; optical time domain 

reflectometry; hydrogels; chemical potential; water potential;  

I. INTRODUCTION  

Hydrogels are widely used nowadays in several forms and 
for multiple technological applications e.g. drug delivery in the 
form of nanoparticles as discussed in the pharmaceutical 
community, as scaffolds, for wound healing (e.g. by 
encapsulating therapeutically active agents in biocompatible 
nanoforms such as nanoparticles, nanocapsules, micellar 
systems, and conjugates), and in particular in tissue engineering 
[1]. They are particularly versatile as it is possible to change the 
responsiveness of the matrix to physiologic environment stimuli 
such as pH, temperature, ionic strength, electromagnetic 
radiation, etc [2].  

The focus of the current contribution is on a particular 
implementation of a distributed microbend fibre optic sensor 
which is interrogated using optical time domain reflectometry 
(OTDR). The system comprises a fiber-optic probe assembly 
incorporating an optical fiber which is susceptible to micro 
bending anywhere along its length, and a body of material 
contained within a rigid containment structure, which can 
consist of a rubber, plastic and semi-crystalline/rubbery 
polymeric material. A hydrogel material which forms a 
continuous coating along the length of the fibre has a specified 
thickness prior to contact with the measurand. Changes in the 

immediate physicochemical environment surrounding the 
coated fibre in the presence of an aqueous or non-aqueous 
organic measurand leads to a volumetric change capable of 
inducing a microbend in the optical fiber. The sensor assembly 
has the OTDR signal propagating along the length of the fibre 
to identify localized optical fiber microbend changes arising 
from forces imposed locally on the fiber by the interaction of the 
rigid containment structure and volumetric changes in the 
hydrogel matrix [3, 4].  

This type of sensor has been used for monitoring the drying 
process in cement [5, 6], and has applications in smart structures 
[7, 8], because it can also provide a warning signal to changes in 
the pH in the vicinity of the fibre [9-11], which is of particular 
interest for corrosion monitoring. Furthermore, this type of 
sensor has potential uses in the development of ‘smart fields’ for 
agriculture [12, 13], by enabling continuous monitoring of water 
in soils, complementing other optical [14] or terahertz (THz) 
sensing modalities [15-17] for the field. 

II. SENSOR CONFIGURATION AND TYPICAL RESPONSE 

Hydrogels respond to their immediate environment by 
equilibrating their chemical potential with the chemical potential 
of their immediate environment. Assuming isothermal 
conditions, at equilibrium, the molecules of water entering the 
hydrogel matrix is equal to the number of molecules leaving the 
system so there is a dynamic equilibrium in the process. The 
degree of swelling of the hydrogel matrix is proportional to the 
number of molecules that have diffused. The equilibrium water 
uptake EWU of the hydrogel is given from 

[( ) / ] 100%EWU SW DW DW    where SW relates to the 

swollen weight and DW to the dry weight of the polymer. In the 
sensor used in the reported experiments, polyethylene oxide was 
used to coat the fibre, and the degree of swelling was 
proportional to the weight fraction EOx of the xerogel where SW 
was the swollen weight and DW was the dry weight of the 
polymer. It was empirically observed [27] that in that system, 

log 1.54 1.01xEWU EO   where 0.5 0.9xEO   irrespective 

of polyethylene oxide molecular weight or degree of cross-
linking [18]. The sensor system and a typical response are shown 
in Fig. 1. Typical EWU values associated with the observed 
attenuation responses from OTDR traces for different osmotic 



pressures imposed using NaCl solutions of different 
concentration are shown in Fig. 2.  

 

 

 

 

 

 

Fig. 1 Sensing cable and typical OTDR response (reference trace and trace after 
immersion in distilled water showing attenuation due to hydrogel swelling). 

Fig. 2 Typical equivalent water uptake (EWU) values associated with the 
observed attenuation responses from OTDR traces for different osmotic 
pressures imposed using NaCl solutions of different concentration.  

III. FIBRE OPTIC OSMOMETRY USING HYDROGELS 

For an environment where there are j different species (types 
of molecules or ions) available to diffuse, the sensor responds to 
an overall change in the chemical potential in its immediate 
environment and at equilibrium the chemical potential of the 
sensor hydrogel is equal to the chemical potential of its 

immediate environment. sensor environ

j j
   Assuming isothermal 

conditions, the chemical potential is composed of the following 
five terms:  

lnsensor

j j

hydrogel hydrogel hydrogel

j j jRT a V P z FE mgh 
      (1a) 

lnenviron

j j

environ environ environ

j j jRT a V P z FE mgh 
       (1b) 

where 
j


  refers to a standard state chemical potential (which 

relates to atmospheric pressure conditions at the location of the 
experiment, e.g. if the experiment is performed at sea level), 

mgh refers to the gravitational potential (and in most cases may 

also cancel out from the two equations at equilibrium, but would 
not if the sensor cable was held vertically and extended over a 
significant height h). When there is no additional hydrostatic 
pressure in the immediate sensor environment during 
measurements (forcing the movement of species j into the 
hydrogel matrix) or the hydrogel is not subjected to additional 

mechanical pressure, environ hydrogelP P  and one more term in 
eqs. (1a) and (1b) cancels out at equilibrium. The observed 
sensor response is then dominated by the contributions of 
solutes, and electrical potential from interactions between 
individual species (ions) in the vicinity of the sensor and the 
number of ions already present in the hydrogel matrix. 
Unfortunately, one cannot distinguish the individual 
contributions of each of these two terms to the overall chemical 
potential change without additional independent measurements.  

 When the sensor is immersed in water or exposed to humid 
air, water molecules will be diffusing in the hydrogel matrix 
from the liquid or air respectively, so in the formulations in eq. 
(1) subscript j may be replaced by subscripts w or wv (to denote 
water molecules in the liquid or vapour state respectively).  

 One can further define the water potential of water in its 
vapour phase air

wv  as the chemical potential divided by the 

partial molal volume of water 
wV  (1.80510-5 m3 mol-1 at 20C):  

%
ln ln

100

air wv wv wv
wv

w w wv w

PRT RT relative humidity

V V P V

 



   
      

  

 (2) 

where R is the gas constant (8.31410-6 m3 MPa mol-1 K-1), T is 

Kelvin temperature, 
wvP  is the partial pressures of water vapour 

and *

wvP  is the saturation vapour pressure in equilibrium with 

pure liquid water at atmospheric pressure (so that the above 
*/ wvwv PP  ratio represents the relative humidity in the vicinity of 

the sensor). The advantage of using the above definition of 

water potential to account for the sensor response is that now 

the diffusion of water molecules to the sensor may be seen as a 

generalization of Ohm’s law, where a driving force (water 

potential difference between the hydrogel matrix and 

environment), allows the water molecules to diffuse and 

equilibrate with those in the sensor hydrogel matrix. It follows 

from the above discussion that when the water potential in the 

hydrogel is equal to the water potential in the air surrounding 

the sensor, air hydrogel

wv w    

When the immediate environment of the sensor is in the 

liquid phase, and in the absence of ionic interactions 

(measurable potential differences across the hydrogel surface 

which can occur when the sensor is tailored to respond to pH 

changes), the driving force for the molecules to diffuse in the 

hydrogel matrix is the osmotic pressure of the solution  . So 

for a closed container where water molecules are equilibrated 

between the liquid and vapour phase and the osmotic potential 

of the solution defines the container’s relative humidity, we can 

write expressions that relate the relative humidity and osmotic 

pressure of the solution: ln( / ) environ

wv wv wRT P P V   . Under 

equilibrium conditions between molecules solely in the liquid 

state, the water potential in the hydrogel matrix becomes equal 

to the water potential in the liquid water surrounding the sensor 

so hydrogel environ environ

w w    . But when water molecules are in 

the liquid state they may be either attached to the matrix of a 

solid surface (adhesive forces) or interact with the other solutes 

in the system. One can therefore write: 
sm   where 

m  



is the matric pressure resulting from the water-solid interaction 

at the surfaces of colloids and other interfaces and s  is the 

solute pressure, due to all the solutes present in the solution. For 

the case of the sensor, at equilibrium sensor environ   which may 

be re-written as: hydrogel hydrogel environ environ

m s m s     Different 

hydrogel formulations with different degrees of cross-linking, 

chain configuration and molecular weight formulations will 

have different hydrogel

m  values, so additional characterization of 

the hydrogel matrix is required to identify the contribution of 

the solute potential (associated with the number of solutes 

diffusing in the matrix) to the overall water potential value 

which leads to the swelling and changing geometry associated 

with the observed sensor response. What the above expression 

also conveys is that the water molecules may not always be 

available to diffuse to the hydrogel matrix of the sensor. In 

practical terms, the water potential definition enables us to 

identify the response of the sensor not to the overall water 

content but to the amount of water that is available (from a 

Gibb’s free energy point of view) to diffuse into the hydrogel 

matrix from its immediate environment.   

IV. CONCLUSIONS 

The analysis in this contribution, although refers to a 
particular microbend fibre optic sensor configuration 
interrogated using OTDR, it is sufficiently generic and may be 
adapted for use in alternative fibre optic interrogation schemes 
or sensing configurations [19] where a hydrogel based substrate 
matrix is incorporated as the sensing element. There is 
considerable interest for example in biosensors research in using 
traditional evanescent wave coupling [20] or plasmonic 
interaction techniques [21] and in spectrometric techniques 
based on the M-lines method [22] to perform biosensing [23] 
(e.g. for observing antibody-antigen interactions or for attaching 
aptamers to enable tailored bio-functionalization on the sensor 
surface). The aim of this contribution was to draw some caution 
to researchers incorporating hydrogels in their fibre optic 
sensing schemes so they do not underestimate the overall 
complexity of their system. It is advisable to engage in the 
complete characterization of the hydrogel system and 
physicochemical environment prior to reporting findings with 
these sensing systems.  

ACKNOWLEDGMENT  

We would like to thank Professor Brian Culshaw for 
enabling this research to take place by inviting S.H. at 
Strathclyde to perform measurements that have led to the further 
characterization of the hydrogel sensor. 

REFERENCES 

[1] M. Hamidi, A. Azadi and P. Rafiei, “Hydrogel nanoparticles in drug 
delivery,” Advanced Drug Delivery Reviews, vol. 60 pp. 1638–1649, 
2008.  

[2] N.A. Peppas, A.G. Mikos, Preparation methods and structure of 
hydrogels, in: N.A. Peppas (Ed.), Hydrogels in Medicine and Pharmacy, 
vol. 1, CRC Press, Boca Raton, FL, 1986, pp. 1–27. 

[3] W. C. Michie, N. B. Graham, B. Culshaw, P. Thomas Gardiner and C. R. 
Moran, “Apparatus for detecting aqueous environments,” U.S. Patent 
5,744,794, April 28, 1998.  

[4] C.R. Moran and W.C. Michie, “Sensor Cable,” Patent US 6,586,723, IPC 
G01J 104, 1 July 2003. 

[5] W. C. Michie, I. McKenzie, B. Culshaw, P. T. Gardiner, A. McGown, 
“Optical fibre grout flow monitor for post-tensioned reinforced tendon 
ducts,” Proc. SPIE 2361, Second European Conference on Smart 
Structures and Materials,” Sept. 1994. 

[6] W.C. Michie, G. Thursby, D. Walsh, B. Culshaw and M. Konstantaki, 
“Distributed sensing of physical and chemical parameters for structural 
monitoring,” IEE Colloquium on Optical Techniques for SMART 
Structures and Structural Monitoring, 1997. 

[7] B. Culshaw and C.W. Michie, “Smart Structures and Applications in Civil 
Engineering,” Proc. IEEE, vol. 84 (1), pp. 78-86, Jan 1996. 

[8] B. Culshaw, Smart Structures and Materials, Artech House, Technology 
& Engineering, 1996. 

[9] W.C. Michie, B. Culshaw, A. McLean, M. Konstantaki, and S. 
Hadjiloucas, “Distributed water ingress and water potential 
measurements using fibre optics,” Cement and Concrete Composites vol. 
19 (1), pp. 35-44, 1997. 

[10] W. C. Michie, B. Culshaw, M. Konstantaki, I. McKenzie, S. Kelly, N. B. 
Graham, and C. Moran, “Distributed pH and Water Detection Using 
Fiber-optic Sensors and Hydrogels,” J. Lightwave Technol., vol 13, (7), 
pp. 1415-1420, July 1995. 

[11] W. C. Michie, B. Culshaw, I. McKenzie, M. Konstantakis, N. B. Graham, 
C. Moran, F. Santos, E. Bergqvist, and B. Carlstrom, “Distributed sensor 
for water and pH measurements using fiber optics and swellable 
polymeric systems,” Opt. Lett. vol. 20 (1), pp. 103-105, 1995. 

[12] S. Hadjiloucas, W.C. Michie, B. Culshaw, M. Konstantaki., D.A. 
Keating, M.J. Usher, N.B. Graham and C.R. Moran “Hydrogel based 
distributed fiber-optic sensor for measuring soil salinity and soil water 
potentials,” Paper No 9, IEE Colloquium on Progress in fibre optic 
sensors & their applications, pp. 1-6, Nov. 1995. 

[13] S. Hadjiloucas, D.A. Keating, M.J. Usler, W.C. Michie, B. Culshaw, A. 
Mclean, “Hydrogel based distributed fibre optic sensor for measuring 
moisture content in soils,” Lasers and Electro-optics Europe, 1996. 
CLEO/Europe., Conference on, pp. 46-46. 

[14] S. Hadjiloucas, L.S. Karatzas, D.A. Keating, M.J. Usher, “Optical sensors 
for monitoring water uptake in plants,” J. Lightwave Technol. vol. 13 (7), 
pp. 1421-1428, 1995. 

[15] S. Hadjiloucas, L.S. Karatzas, and J.W. Bowen, “Measurements of Leaf 
Water Content Using Terahertz Radiation,” IEEE Trans. Microwave 
Theory Tech., vol 47 (2), pp. 142-149, Feb. 1999.  

[16] S. Hadjiloucas and J.W. Bowen, “Precision of Quasi-optical Null-
Balanced Bridge Techniques for Transmission and Reflection Coefficient 
Measurements,” Review of Scientific Instruments, vol. 70, pp. 213-219 
1999. 

[17] S. Hadjiloucas, L.S. Karatzas, J.W. Bowen, D.A. Keating, M.J. Usher 
“Millimeter-wave quasioptic transmissometry for measuring leaf water 
content,” Sensors VII, Technology Systems and Applications, pp. 218-
223, 1995. 

[18] M. E. McNeill and N. B. Graham, “Properties controlling the diffusion 
and release of water-soluble solutes from poly(ethylene oxide) hydrogels 
1. Polymer composition,” Journal of Biomaterials Science, Polymer 
Edition, vol 4(3), pp. 305-322, 1993. 

[19] B. Culshaw, Optical Fibre Sensing and Signal Processing, Institution of 
Engineering and Technology, London, U.K., April 1984. 

[20] W. Johnstone, G. Stewart, T. Hart and B Culshaw, “Surface Plasmon 
Polaritons in Thin Metal Films and Their Role in Fiber Optic Polarizing 
Devices,”  J. Lightwave Technol. vol. 8 (4), pp. 538-544, April 1990. 

[21] S. A Maier, Plasmonics: fundamentals and applications, Springer, New 
York, 2007. 

[22] S Monneret, P. Huguet-Chantôme and F. Flory, “m-lines technique: prism 
coupling measurement and discussion of accuracy for homogeneous 
waveguides,” J. Opt. A. Pure Appl. Opt. vol 2 (2000) pp. 188-195. 

[23] S. R. Makhsin, P. Gardner, N. J. Goddard, and P. J. Scully, “Surface 
modification of titanium-coated glass substrate embedded acrylate-based 
hydrogel film for optical metal clad leaky waveguide (MCLW) 
biosensors,” IEEE Sensors 2017, Glasgow UK, 978-1-5090-1012-7/17.  

 


