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Abstract—In this paper, we address the challenge of navigating
through unknown indoor environments using autonomous aerial
robots within confined spaces. The core of our system involves the
integration of key sensor technologies, including depth sensing
from the ZED 2i camera, IMU data, and LiDAR measurements,
facilitated by the Robot Operating System (ROS) and RTAB-
Map. Through custom designed experiments, we demonstrate
the robustness and effectiveness of this approach. Our results
showcase a promising navigation accuracy, with errors as low
as 0.4 meters, and mapping quality characterized by a Root
Mean Square Error (RMSE) of just 0.13 m. Notably, this
performance is achieved while maintaining energy efficiency and
balanced resource allocation, addressing a crucial concern in
UAV applications. Flight tests further underscore the precision
of our system in maintaining desired flight orientations, with
a remarkable error rate of only 0.1%. This work represents
a significant stride in the development of autonomous indoor
UAV navigation systems, with potential applications in search and
rescue, facility inspection, and environmental monitoring within
GPS-denied indoor environments.

Index Terms—Autonomous UAV Navigation, Multi-Sensor Fu-
sion, SLAM, Deep Learning, Indoor Mapping

I. INTRODUCTION

In recent years, the rapid advancements in Unmanned Aerial
Vehicle (UAV) technology have ushered in a new era of ex-
ploration and data acquisition, particularly in complex indoor
environments where traditional navigation methods often fall
short. These aerial robots, particularly quadrotors equipped
with a multitude of sensors, have the potential to revolutionize
tasks such as search and rescue [1], facility inspections [2],
and environmental monitoring within indoor spaces due to
their enhanced mobility and maneuverability [3]. The difficulty
of autonomous navigation in constrained, GPS-denied indoor
environments is substantial [4], [5]. The combination of Deep
Learning (DL) and multi-sensor fusion is crucial in improving
the navigation [6], mapping, and exploring capacities of UAVs
[7].

The problem of autonomous indoor robot mapping, localiza-
tion, and navigation is widely studied in the literature. Simulta-
neous Localization and Mapping, or SLAM, is a fundamental
concept in this domain that relies heavily on robot sensing and
perception. This process is particularly challenging indoors
due to the absence of GPS signals, the presence of various
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obstacles, and the need for precise, real-time decision-making
[8]. UAVs operating in indoor spaces encounter tight corridors,
dynamic environments, and limited space to maneuver, all of
which intensify the complexity of navigation. Additionally,
UAVs designed for indoor use face constraints in terms of
onboard computational power and payload capacity [9], [10].
Despite these challenges, the demand for indoor applications,
such as surveillance and disaster relief in GPS-denied envi-
ronments [11], is on the rise. In such scenarios, the preference
is often for low-cost flying robots that can be easily replaced
if damaged or lost [3].

Real-time Simultaneous Localisation and Mapping (RTAB-
Map) is an open-source package that focuses on loop closure
detection and effective memory management for large-scale
mapping [12]–[14]. It provides online processing, significant
low-drift odometry, robust localisation, and multi session
mapping. These features were developed to address various
practical requirements.

In this paper, a deep learning-enhanced multi-sensor fusion
SLAM system for autonomous indoor environment exploration
of UAVs is proposed. This paper focuses on the development
of the UAV based on multiple sensors such as IMU, vision
and laser sensors and fusing the data with deep learning based
computer vision sensing. This paper’s main contributions are
as follows:

• Unique UAV system: A novel UAV system architecture
is proposed that uses customised open source software
and hardware configurations with the on-board computer,
flight controller and sensors.

• Multi Sensor-Fusion: A new approach is proposed that
creates a sensor fusion using the LIDAR, camera, and
IMU sensing modalities.

• Deep Learning: A deep learning architecture for au-
tonomous indoor navigation in tight spaces is presented
that uses visual slam to create edge detection.

II. BACKGROUND

Previous research on autonomous indoor navigation for
UAVs using deep learning and SLAM techniques is very
significant in ground based robots [15], [16]. The objective of
these works is to address the unique challenges and limitations
inherent to UAV navigation within indoor settings
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Additionally, systems that merge Light Detection and Rang-
ing (LIDAR) with Inertial Measurement Units (IMU) have
been suggested for indoor UAV navigation [17]. Utilizing
a pair of scanning laser range finders along with an IMU,
this method offers robust navigation by allowing the UAV to
precisely gauge its environment. Moreover, advancements in
multi-sensor fusion and depth learning for UAV navigation
have also been examined [18]. Exploiting the improvements
in sensor technology, this method provides real-time data sup-
port to deep learning algorithms, thereby making autonomous
drone navigation feasible.

A great deal of research has been done on 2D laser range
finders [19], 3D LIDAR [20], and vision sensors [21], [22]
over the past few years. Recent studies have focused on a
variety of different tools that can be used for SLAM, including
magnetic [23], olfactory [24], and thermal sensors [25], and
event-based cameras [26]. However, these substitute sensors
have not yet been taken into account for SLAM in the same
extent as range and vision sensors.

In conclusion, the existing frameworks for deep learning-
based autonomous indoor navigation for UAVs include a
wide range of approaches. These comprise deep reinforcement
learning, obstacle avoidance, integration of LIDAR and IMU,
multi-sensor fusion, and comparative evaluations. Each aims
to surmount the obstacles and limitations related to indoor
UAV navigation, thereby facilitating secure and efficient au-
tonomous operation. While the existing area of research has
significantly advanced the field of autonomous indoor navi-
gation for UAVs, our work introduces an integrated approach
that suggests an alternative to current solutions.

III. SYSTEM OVERVIEW

In this study, the challenge of autonomous aerial robot’s
state estimation is tackled as a hardware software integrated
issue. The objective of this system is to enable a quadcopter
to autonomously navigate through indoor environments, essen-
tially replicating the decision-making capabilities of a skilled
human pilot. A front-facing stereo camera mounted on the
UAV generates images that are processed in real-time. Using
a trained classifier, the system issues flight commands aimed
at ensuring safe navigation shown in Figure 1.

Fig. 1. The aerial robot used for indoor SLAM

We also show the multi-sensor fusion integration of the on
board sensors such as LIDAR, IMU, and stereo vision. Fig. 1
shows the drone hardware specifications and Fig. 2 shows the

hardware system block diagram of the proposed system. This
block diagram is further explained in depth with the deep
learning and edge detection in the coming sections.

Fig. 2. The System Block Diagram of the Autonomous UAV

In this project, the following system configuration partially
adapted from [27] is used:

• UAV Components: A 295 mm carbon fiber quadrotor
frame, 3 bladed 5 inch propellers, 1750 Kv motors, and
a 3S 3200 mAh LiPo Battery are used in building the
UAV. This gives a balance of stability and control for
the UAV with a maximum flight time of 8 minutes with
about 1.5 kg total load. A Pixhawk 2.4.8 flight controller
with Ardupilot firmware are configured for the UAV.

• On Board Computer (OBC): A Jetson Nano board
is used as the onboard computing platform. The board
runs custom built Ubuntu 20.04 OS, ROS Noetic, and
is configured to run Intel and ZED cameras using ROS
middleware. The board is powered by a 5V 4A BEC and
communicates to the flight controller via serial commu-
nication.

• Sensors: The ZED 2i stereo camera and the Intel Re-
alSense d455 equipped with dual RGB cameras and an
IMU sensors are tested. Both of these are compatible
with the software architecture and ROS version making
it versatile for applications like SLAM and 3D mapping.
A Slamtec RPLidar A1M8 laser scanning is used mainly
for confined spaces obstacle detection. Apart from this,
the IMU sensors are also used for motion tracking,
orientation, and odometry data.

• SLAM System: RTAB-Map (Real-Time Appearance-
Based Mapping) integrates with ROS to execute loop clo-
sure detection and construct a global map, by subscribing
to odometry, sensor data, and other ROS topics, while
publishing the generated 2D or 3D maps and localization
data back into the ROS ecosystem. This received data is
then converted into attitude, and position controller for
the flight controller commands.

IV. SENSOR FUSION FOR MAPPING

A. Sensors
Depth sensing is a critical component in many robotic

and spatial perception applications. The camera is connected



to the Jetson Nano through USB 3.0 and uses 1080p Video
Mode at 30 fps, detecting distances from 0.3 to 10 meters.
The camera provides RGB-D images (/rgb_topic) and
stereo images (/depth_camera_info_topic), which are
essential inputs for our sensor fusion block. The (roslaunch
zed_rtabmap_example zed_rtabmap.launch) pro-
gram launches the RTAB-Map program with the appropriate
ROS nodes. It transmits data at 1.55 MB/s and 6.18 Hz
frequency.

Odometry information is similarly sent using the built-
in IMU, Barometer, and Magnetometer sensors in the ZED
2i module. The module provides odometry information
(zed_node/odom) and IMU messages with pose data
(zed_node/imu/data), which are essential inputs for our
sensor fusion block. The (zed/zed_node/odom) ROS
topic, transmitting (nav_msgs/Odometry) messages, op-
erates at a frequency of approximately 7.59 Hz with a
bandwidth usage of 5.31 KB/s as shown in Figure 4. The
(zed/zed_node/imu/data) ROS topic, transmitting mes-
sages of type (sensor_msgs/Imu), operates at a frequency
of approximately 300.31 Hz with a bandwidth usage of 96.51
KB/s. This data is also fed into the sensor fusion block for
synchronization.

LiDAR information is obtained from the (/scan), type
(sensor_msgs/LaserScan) topic obtained from the RPL-
idar. The RPLidar laser scanner generates laser scan data
representing distance measurements to objects in the UAV’s
surroundings. This data is published on the (/scan) topic
in ROS and can be utilized for various purposes, including
obstacle detection, mapping, and localization within the envi-
ronment. The (/scan) ROS topic, transmitting messages of
type (sensor_msgs/LaserScan), operates at a frequency
of approximately 6.4 Hz with a bandwidth usage of 37 kbps.

B. SLAM Visualization in RVIZ

In our SLAM implementation, we employ RVIZ, a ROS
visualization tool, to provide real-time insights into the per-
ception and mapping capabilities of our UAV system. This
enables us to monitor and analyze various critical aspects of
the environment and sensor data as shown in Figure 3.

Fig. 3. The ROS Visualisation output for SLAM implementation performed
by connecting the ground station laptop to the UAV’s unique ROS Master IP
address

Top Left - Confidence Map: This section displays the
confidence obtained from the ZED 2i camera. The confi-
dence map is crucial for understanding the reliability of

the depth information. It is available as an image on the
topic confidence/confidence_image. Note that the
Confidence Map is also accessible as a 32-bit floating-point
image through the topic confidence/confidence_map.
Bottom Left - Depth Image View: Here, we visual-
ize the depth map obtained from the ZED 2i camera.
This depth map is accessible in RVIZ through the topic
depth/depth_registered. It contains 32-bit depth val-
ues in meters. RVIZ automatically normalizes the depth map
to 8-bit and displays it as a grayscale depth image. Top Right
- Custom Edge Detection Node: This section showcases a
custom edge detection node, utilizing the Canny edge detection
algorithm through the OpenCV ROS node. It subscribes to
the ROS topic zed_node/rgb/image_rect_color for
image data, allowing us to visualize edge-detection results.
Bottom Left - Depth Register: This section is dedicated
to visualizing the registered depth information. Registration
ensures that depth data aligns with the RGB data, providing
accurate spatial information. Center of Image - Point Cloud
Reconstruction: At the center of the image, we present a 3D
point cloud reconstruction of the environment. This rich rep-
resentation incorporates information from various sensors, in-
cluding the ZED 2i camera and RPLidar, as well as the orienta-
tion data from the IMU. The point cloud is accessible through
the topic (zed/zed_node/point_cloud/cloud_reg).

In sensor fusion, loop closure operates by integrating data
from multiple sensors to recognize revisited locations or land-
marks within an environment [12]. This recognition relies on
the fusion of sensory information from visual, depth, LiDAR,
and IMU data, to establish consistent and accurate maps. When
the system detects that the UAV or robotic platform revisits
a previously observed location, loop closure algorithms use
the fused sensor data to align the new observations with the
existing map, thereby correcting mapping errors and ensuring
the map remains coherent.

The algorithm 1 outlines the steps for indoor localization
and navigation of a drone. It starts by initializing odometry and
pose estimation, integrating data from an Inertial Measurement
Unit (IMU) and a camera. Point cloud data is reconstructed for
spatial awareness. When an obstruction or edge is detected,
the depth camera’s range is set between 0.3 to 10 meters.
For objects in close proximity, sensor messages are fetched
from a Laser Scan at a frequency of 6.4 Hz. Sensor fusion
techniques of loop closure and proximity detection are applied
to get map graph data. The drone’s velocity and orientation are
updated accordingly using MAVROS messages. If the position
error is within a certain tolerance, the drone switches to a
(Guided No GPS) mode. The final output is a trajectory
map for indoor navigation.

V. EXPERIMENTAL VALIDATION

In our experimental setup, all the computation is done on
board the UAV on the Jetson Nano computer. We first verify
and test the computational requirements and operation without
attaching propellers and rectify any calibration and setup
phases necessary for the communication between different



Algorithm 1 Drone Indoor Localization and Navigation
1: Initialize: Odom and Pose Estimation
2: Integrate IMU and Camera Feedback for Pose Estimation

3: Reconstruct Point Cloud Data from
/point cloud/cloud reg

4: while Obstruction or Edge Detected do
5: Set depth camera info topic range to 0.3 to 10 meters

6: for Objects in Close Proximity (Camera Range Limited)
do

7: Fetch sensor msgs from LaserScan at 6.4 Hz
8: Perform Sensor Fusion: Loop Closure and Proximity

Detection
9: Update (velocity ned) based on current

(drone position)
10: Estimate Orientation using yaw rate cmd
11: if Position Error within Tolerance then
12: Switch to Guided No GPS Mode
13: end if
14: end for
15: end while
16: Output: Generate Trajectory Map for Indoor Environment

sensors, controllers, and actuators present on the UAV. An
experimental setup in the real-world is created to test the
algorithm and model performance.

A. System Network - RQT graphs

We use Rqt graph to illustrate the communication structure
of the components in our autonomous indoor UAV navigation
system, showing how different sensors, processing nodes,
and the flight controller are connected via ROS topics. The
complete Rqt graph is divided into two figures for better
clarity. Figure 4 shows the Rqt graph presenting active ROS
nodes and topics obtained from the ZED 2i camera along with
RVIZ output and Figure 5 shows the Rqt graph for mavros
and rplidar laser ROS nodes. Explained earlier in section 4,
multiple camera ROS nodes are used to create the RTAB-Map
graph and visualisation that is used for positioning, orientation
and trajectory analysis.

Figure 4 shows the Rqt graph for mavros and rplidar laser
ROS nodes. The TF library, denoted by (/tf) allows us to
keep track of the relationships between different coordinate
frames attached to various components of our UAV in a
3D space. The communication between the mavros node
responsible for the flight controller’s messages and control
outputs and (/rplidar) is shown here. The Rostopic list
shows the continuous messages published through the network
to maintain the map generation and trajectory shown in green
colour in the RVIZ output. Hector SLAM ROS package,
when integrated with the RPLidar sensor’s /scan data and
RViz visualization, enables robots to construct 2D maps of
their surroundings while concurrently estimating their own

Fig. 4. The RQT Graph showing active ROS nodes and topics obtained from
the ZED 2i camera along with RVIZ output

positions, supporting tasks such as autonomous navigation and
obstacle avoidance.

An experimental setup is created using different obstacles
placed closely together for the custom UAV to navigate
through autonomously. Our real-world experiments were con-
ducted within a warehouse space and customised to roughly
7m × 7m × 5m dimensions as shown in Figure 6. The point
cloud reconstructed, TF transforms of the links, and coloured
confidence map are shown in the middle Figure 6. The right
most section in Figure 6 represents the planned trajectory
of the UAV in the confined space representing the Odom
and Laser Scan/Feedback. The UAV has demonstrated its
capability to perform effectively even in close proximity to
obstacles.

B. Distance measurements

To verify the accuracy and performance of the UAV, a total
of 20 trials are performed in the shown indoor space with three
different sensor configurations. Table I provides a comparison
of 3 different sensor configurations for the UAV system
navigation. The configurations include ”Monocular Camera
Only,” ”Depth Camera + IMU,” and ”Depth Camera + IMU
+ LiDAR.” The data shows that as the sensor configuration
complexity increases, navigation accuracy improves, with the
LiDAR-equipped system achieving the highest accuracy up
to 0.4 meters. Mapping quality, measured in RMSE, follows a
similar trend, with the LiDAR configuration having the lowest
RMSE of 0.13 m. However, this improved performance comes
at a cost of increased power and energy consumption, where
the LiDAR setup consumes 8 watts and 1440 joules, while the
monocular camera consumes only 5 watts and 900 joules. The
LiDAR configuration is also the heaviest at 1.5 kg, compared
to 1 kg for the monocular camera setup. Hence, the choice of
sensor configuration needs to be balanced considering a trade-



Fig. 5. The RQT graph showing the active ROS nodes, ROS topics and TF
for the LiDAR, Hector Slam, and MAVROS packages along with the RVIZ
output.

Fig. 6. Indoor Autonomous UAV Navigation Flight Tests in a Confined Space
setup

off between accuracy, cost, energy consumption, and weight
requirements.

TABLE I
COMPARISON OF 3 DIFFERENT SENSOR CONFIGURATIONS TESTED ON THE

UAV
A = MONOCULAR CAMERA, B = DEPTH CAMERA + IMU, C = DEPTH

CAMERA + IMU + LIDAR

Sensor Configuration A B C
Navigation Accuracy (m) 0.7 0.5 0.4

Mapping Quality (RMSE) 0.22 0.15 0.13

Exploration Time (min) 18 12 13

Average Power Consumption (Watts) 5 7 8

Total Energy Consumption (Joules) 900 1260 1440

Cost (Au$) $800 $1,300 $1,500

Weight (kg) 1 kg 1.2 kg 1.5 kg

The provided data in Figure 7 illustrates the relationship
between distance (measured in meters) and the percentage of
successful reconstruction. The results indicate that at shorter

distances, the reconstruction performance is consistently high,
with 97% accuracy at 0.25m and 0.5m, gradually declining to
94% at 1m. Beyond this point, there is a more pronounced
decrease in accuracy, with 76% accuracy at 3m and 68% at
4m. As the distance increases further, the accuracy continues
to decrease, reaching 40% at 6m. This data suggests that the
reconstruction system performs exceptionally well for close-
range objects but faces challenges as the distance increases,
which proves that the system performs well in close proximity
areas.

Fig. 7. Detection and Reconstruction of the map at different distances

C. Flight tests

In this section, we describe the flight tests conducted using
our aerial robotic system. The tests were performed in an
indoor environment utilizing a custom indoor map as shown
earlier. One of the key aspects of these flight tests was the
evaluation of the system’s orientation control. To assess this,
we recorded and analyzed the Roll, Pitch, and Yaw (RPY)
IMU readings obtained from the Pixhawk flight controller
during flight.

The flight test results were graphically represented, com-
paring the desired RPY values with the actual values recorded
during flight as shown in Figure 8. This comparison allowed us
to evaluate the system’s performance in terms of maintaining
the desired orientation. Notably, the error rate observed in
these flight tests was found to be impressively low, measur-
ing at just about 0.1%. This low error rate underscores the
precision and reliability of the orientation control system in
maintaining the desired flight attitude.

VI. CONCLUSION

In conclusion, this paper presents a comprehensive study
on the development and validation of a sensor-fusion-based
system for autonomous indoor UAV navigation in confined
spaces. Through a series of experiments, we have demon-
strated the system’s robustness and efficacy in real-world sce-
narios. Our sensor fusion approach, combining depth sensing
from the ZED 2i camera, IMU data, and LiDAR measure-
ments, has shown definitive results. The system achieved a
navigation accuracy as low as 0.4 meters, a mapping quality



Fig. 8. The flight log data of the drone mid-flight highlighting the actual vs.
desired Roll, Pitch, and Yaw values for the Autonomous Indoor Navigation
Test

with a Root Mean Square Error (RMSE) of only 0.13 m,
and a trajectory mapping capability that enables autonomous
UAV flight in confined spaces. Importantly, these results are
achieved while keeping energy consumption balanced, with
the LiDAR-equipped system consuming 1440 joules, and
demonstrating the system’s reliability and energy efficiency.
Furthermore, the flight tests substantiate the system’s orienta-
tion control, with a negligible error rate of 0.1%, attesting to
its precision in maintaining desired flight attitudes. This work
marks a significant step forward in developing autonomous
indoor UAV navigation systems, offering practical solutions
for applications in search and rescue, facility inspection, and
environmental monitoring within GPS-denied indoor environ-
ments.

Thus, future research directions may focus on enhancing
the system’s adaptability and obstacle avoidance capabilities in
dynamic indoor settings. In conjunction with this, the research
presented in this study establishes a path for the effective use
of autonomous UAVs in difficult indoor scenarios, offering
major advances in numerous domains where precise, GPS-free
navigation is essential.
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[5] M. Labbé and F. Michaud, “Multi-Session Visual SLAM for
Illumination-Invariant Re-Localization in Indoor Environments,” Front.
Rob. AI, vol. 9, p. 801886, Jun. 2022.

[6] Y. Wang, F. Yang, T. Wang, Q. Liu, and X. Xu, “Research on
visual navigation and remote monitoring technology of agricultural
robot,” International Journal on Smart Sensing and Intelligent
Systems, vol. 6, no. 2, pp. 466–481, 2013. [Online]. Available:
https://doi.org/10.21307/ijssis-2017-550

[7] K. Qian, X. Ma, X. Z. Dai, and F. Fang, “Spatial-temporal collaborative
sequential monte carlo for mobile robot localization in distributed
intelligent environments,” International Journal on Smart Sensing

and Intelligent Systems, vol. 5, no. 2, pp. 295–314, 2012. [Online].
Available: https://doi.org/10.21307/ijssis-2017-482

[8] Z. Li, C. Zhao, J. Wang, X. Hou, J. Hu, Q. Pan, and C. Jia, “High-
Accuracy Robust SLAM and Real-Time Autonomous Navigation of
UAV in GNSS-denied Environments,” in Lecture Notes in Electrical
Engineering, vol. 644 LNEE. Springer Science and Business Media
Deutschland GmbH, 2022, pp. 1099–1108.

[9] A. N. Wilson, A. Kumar, A. Jha, and L. R. Cenkeramaddi, “Embedded
Sensors, Communication Technologies, Computing Platforms and Ma-
chine Learning for UAVs: A Review,” IEEE Sens. J., vol. 22, no. 3, pp.
1807–1826, Dec. 2021.

[10] J. Sandino, F. Vanegas, F. Maire, P. Caccetta, C. Sanderson, and
F. Gonzalez, “UAV Framework for Autonomous Onboard Navigation
and People/Object Detection in Cluttered Indoor Environments,” Remote
Sens., vol. 12, no. 20, p. 3386, Oct. 2020.

[11] N. Boonyathanmig, S. Gongmanee, P. Kayunyeam, P. Wutticho, and
S. Prongnuch, “Design and Implementation of Mini-UAV for Indoor
Surveillance,” in 2021 9th International Electrical Engineering Congress
(iEECON). IEEE, 2021, pp. 10–12.
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