
VAL: Automatic Plan Validation, Continuous Effects and Mixed Initiative

Planning using PDDL

Richard Howey, Derek Long and Maria Fox

Department of Computer and Information Systems, University of Strathclyde, Glasgow, UK

firstname.lastname@cis.strath.ac.uk

Abstract

This paper describes aspects of our plan validation tool,

VAL. The tool was initially developed to support the 3rd

International Planning Competition, but has subsequently

been extended in order to exploit its capabilities in plan

validation and development. In particular, the tool has

been extended to include advanced features of PDDL2.1

which have proved important in mixed-initiative planning in

a space operations project. Amongst these features, treat-

ment of continuous effects is the most significant, with im-

portant effects on the semantic interpretation of plans. The

tool has also been extended to keep abreast of developments

in PDDL, providing critical support to participants and or-

ganisers of the 4th IPC.

1. Introduction

This paper examines the development of VAL
1, the plan

validation tool for PDDL. The tool played an important role

in the 3rd International Planning Competition [9], allow-

ing reliable and automatic validation of the several thou-

sand plans produced by the competitors. It also provided

competitors with a basis for checking their planners as part

of their own development and debugging cycles and an un-

derstanding of the semantics of PDDL as described in Fox

and Long [5]. We have found that the capabilities of VAL

have been critical in understanding the structures of large

plans, with its visualisation and reporting facilities. This

role of VAL has continued into the 4th IPC, which has in-

cluded several minor extensions to PDDL and its semantics

and consequently to VAL.

The original definition of PDDL2.1 used in the 3rd IPC

included features not used, in particular the expression of

continuous change. Planning has traditionally been a sub-

ject of discrete change; a sequence of well defined discrete

changes to a world state model (with a minority of ex-

1Available at http://planning.cis.strath.ac.uk/VAL/

ceptions). Continuous change to numerical values has of-

ten been been modelled using discrete changes describing

a step function. However this is inadequate in modelling

many real world situations with continuously changing val-

ues that interact with one another and where (sufficiently)

accurate access to the values must be available at all times.

For example, consider the battery power model in figure 5

which is given by a non-trivial system of differential equa-

tions, where at any given point we must ensure that the bat-

tery charge does not cross a critical minimal threshold. The

interactions of continuously changing values are impossi-

ble to model as a step function and moreover checking the

battery has not ran out requires accessing the power level

at any given point due to its complex non-linear structure.

In VAL we have incorporated the validation of plans with

continuous effects, which includes: (i) the development of

the semantics of continuous effects in PDDL (section 3.2),

and (ii) the analysis of differential equations and continu-

ous functions with respect to the semantics (section 4).

In many real world examples the (initial) planning pro-

cess can only be carried out by humans. This could be due

to the tasks containing complex functions (continuous ef-

fects) that are not handled by current planning systems or

complex goals that cannot be expressed in any planning

language. These goals could be technical, political, am-

biguous, prioritized, secretive or changeable — so called

soft goals. In addition, in certain applications there is resis-

tance to wholesale replacement of human operators with au-

tonomous systems and it is important to build trust through

the initial deployment of mixed-initiative systems — sys-

tems that support human-machine interaction in the process

of plan construction [4, 12, 2]. However, if the essential in-

gredients can be modelled in a planning language then we

can at least validate the plan (using VAL) to see if the plan is

executable. VAL can report if the plan is flawed and then the

human planners can try to fix their plan. To support this pro-

cess, VAL has been further developed: if the plan is flawed

VAL will give advice on how the plan should be fixed. The

human planner can then use this advice to produce a new

plan and try again, completing a mixed-initiative planning

1



cycle. We are developing the plan advice and are aiming

towards a complete plan repair strategy (for certain classes

of invalid plans).

In section 2 we review the semantics of the planning

language PDDL2.1 used in the IPC series and managed by

VAL. An important extension to PDDL is the use of dura-

tive actions with continuous effects, discussed in section 3,

which includes the semantics of continuous effects within

PDDL2.1. The introduction of continuous effects into PDDL

not only creates problems in how they are to be integrated

semantically, but also the mathematical analysis problems

of real valued functions involved in the validation of plans

in VAL. These problems are reviewed in section 4. VAL is

written to be a useful tool in the planning community (re-

searchers, developers and users), so we discuss the LATEX

report generation facility in section 5. Section 6 describes

the plan repair advice generated by VAL for invalid plans.

In this facility VAL goes beyond validating a plan and sug-

gests ways to repair an invalid plan. This facility plays an

important role in a collaborative project undertaken by the

authors in space operations planning [13, 7]. The project is

currently concerned with mixed-initiative mode planning,

but it is intended to extend this work to include on-board

autonomy. In mixed-initiative mode, VAL is used to vali-

date and help to repair invalid plans.

2. A Brief Review of PDDL and its Semantics

Since PDDL was first proposed as a community standard

in 1998 the planning research community has seen incre-

mental extensions and modifications as the language has

adapted to various goals. The core of PDDL was a STRIPS

language, offering an ADL extension. This language has a

semantics that is widely accepted, based on a simple state-

transition model. This semantics has few areas of potential

ambiguity. Perhaps the most significant issue for which al-

ternative resolutions exist is that of concurrency: classical

plans are often considered to be sequences of steps, repre-

senting state transitions, but partial-order planning [11] and

Graphplan [3] both offer alternative models in which some

form of parallelism is considered. McDermott developed a

simple plan validation tool for PDDL that accepted only se-

quential plans. However, the question of interpretation for

more complex extensions of PDDL is more difficult. There

is no prior widely accepted model, so choices must be made

that are not necessarily universally accepted. Since the lan-

guage plays a central role in communication of domains be-

tween researchers, it is important that there be a standard

by which a common understanding may be developed for

the semantics of domains and plans for those domains. A

formal semantics is the first component of this. However, a

formal semantics is not sufficient by itself, because a formal

semantics is notoriously difficult to read. In practice, many

formal semantics are read in detail by few and understood

in all details by even fewer. To make the semantics accessi-

ble, their implementation as a validation tool is an important

step. In this form, it is possible to confirm understanding of

the semantics by testing various plans and domains with the

tool, confirming the behaviour is as expected. VAL supplies

a variety of forms of feedback, making it possible to explore

quite precisely what might be wrong with a flawed plan and

aiding in the interpretation of the more subtle details of the

semantics. Importantly, VAL can be used to ensure consis-

tent semantics between different planners - even if those

planners have been proven sound, since soundness proofs

are relative to the authors’ formulation of the semantics.

The introduction of timed actions instead of a sequence

of actions is a straightforward extension, this is achieved by

an embedding of the activity into a real time line (see [5]).

However, this introduces the problem of explaining under

what circumstances the end points of actions (when instan-

taneous change occurs) may coincide. This is resolved by

ensuring that for coinciding actions the preconditions and

effects of one action do not interfere with those of another

action. See [5] on mutex actions for details.

Discretized durative actions. When discretized durative

actions are used, the modeller specifies the local pre- and

post-conditions of the end-points of the interval, as well as

(optionally) invariant conditions that must hold throughout

the interval. This makes it possible to exclude as invalid

precisely those plans that violate the necessary conditions

for successful completion of the durative action without al-

lowing the modeller the expressive power required to model

complex temporal interactions.

It is straightforward to give formal semantics to dis-

cretized durative actions. If no invariant is specified then

a plan containing durative actions can be transformed into

one containing just instantaneous actions, one for each of

the end-points of every durative action in the original plan.

When invariants are specified it is necessary to confirm that

the invariant remains true after every action that occurs be-

tween the start and end-points of the durative action speci-

fying that invariant.

Continuous durative actions. Durative actions in

PDDL2.1 may also be defined so that the modeller can ac-

cess arbitrary time points within the interval of duration us-

ing a variable, #t, that refers to these points thus defining

a continuous function on this interval. This is achieved by

specifying the rate of change of a numerical value, for ex-

ample: increase (distance ?c) (* #t (speed ?c)).

3. Continuous Effects

A continuous effect can only affect metric quantities: it

is not possible to change a propositional fluent continuously.



A metric variable that can be changed by a continuous effect

is called a Primitive Numerical Expression (PNE). A dura-

tive action that has a continuous effect on a PNE changes it

so that the values taken are described by a continuous func-

tion of time. That is if v is changing continuously on an in-

terval [t1, t2] then for each t′ ∈ [t1, t2] the limit limt→t′v(t)
exists and is equal to v(t′). It is possible for other actions

to affect a PNE during the interval over which a continuous

effect is changing it. In this case, the compound continu-

ous effect will be decomposed into segments of continuous

behaviour, punctuated by points of discrete change. These

points can be either discrete changes in the value of the PNE

itself, where an action assigns directly to the PNE, so that

the value describes a discontinuous behaviour, or can be

discrete changes in the rate of change so that the value de-

scribes a piece-wise continuous, but non-differentiable be-

haviour. The latter case occurs when an action modifies

(instantaneously) the derivative of a PNE.

3.1. Interacting Continuous Effects

There may be a number of continuous effects active at

one time each of which additively modifies the derivative

of a PNE. If a PNE has its derivative modified more than

once then the derivative is given by the sum of the contri-

butions. The rate of change of a PNE may also depend on

the value of other PNEs which may themselves be contin-

uously changing. The values of all the changing PNEs are

thus given by a system of differential equations:

dfi

dt
= gi(f1, f2, · · · , fn) i ∈ {1, 2, · · · , n},

where the fi are the PNEs and the gi are some func-

tions depending on the set of continuously changing PNEs.

PNEs that are not changing continuously are treated as con-

stants. For example consider the following continuous ef-

fects which describe the motion of a car driving.

increase (distance ?c) (* #t (speed ?c))

increase (speed ?c) (* #t (acceln ?c))

The rate of change of the PNE for the distance of the car is

given by the PNE for the speed of the car. The PNE for

the speed of the car is in turn given by the PNE for the

acceleration of the car. To solve these differential equations

to give the functions of time describing the motion of the car

we must firstly determine the acceleration, then the speed,

and lastly the distance of the car.

3.2. Implementation: Semi­Simple Plans

The semantics of classical actions in terms of state transi-

tions is familiar. Following [5], we call these actions simple

actions and plans constructed only from simple actions we

call simple plans. For lack of space we briefly summarise

definitions given in full in [5]: a simple plan is a collection

of pairs (t, a), where t is a time and a is an action name.

Each distinct time in a simple plan defines a happening at

which point a set of simple actions in the simple plan oc-

curs. A plan extends a simple plan to include durative ac-

tion instances, each with an associated duration.

Durative actions with discrete effects can be given a se-

mantics in terms of the semantics of simple plans. This

is shown by mapping plans containing durative actions to

simple plans (details can be found in [5]), in which the end

points of the durative action are treated as simple actions

in a simple plan. Invariants of durative actions can also be

treated as simple actions with preconditions but no effects.

These appear at points in a simple plan corresponding to the

critical times at which the invariants must be checked dur-

ing the interval of the corresponding durative action. It is

not possible to give the semantics of durative actions with

continuous effects in terms of a simple plan, because the

values of PNEs may be required at arbitrary points over an

interval on which they are continuously changing.

We therefore define an extension of a simple plan, a

semi-simple plan.

Definition 3.1 Act An act is a happening labelled with an

act type. The act type can be one of three values: invariant,

continuous update or regular.

Definition 3.2 Semi-Simple Plan A semi-simple plan,

SSP consists of a finite collection of timed simple actions

which are 3-tuples (t, A, a), where t is a rational-valued

time, A is the act type and a is an action name.

Definition 3.3 Act Sequence for a Semi-Simple Plan The

act sequence for a semi-simple plan SSP , {(t, A)
i
}i=0...k,

is the lexicographically ordered (by time, then act type), se-

quence of time and act type pairs appearing in the timed

simple actions in SSP . The act types are ordered invari-

ant, continuous update, regular. For all i, ti > 0.

The definition of ground durative actions [5] is extended

to include continuous effects by introducing a simple action

to abstract out the continuous effects. A plan containing

actions with continuous effects can be mapped to a semi-

simple plan in a straightforward way: end points of a dura-

tive action are mapped to regular acts, invariant checks are

mapped to invariant acts and continuous effects are mapped

to continuous update acts. This is illustrated in figure 1. In

(1) we show how the interval of a durative action effect-

ing continuous change can be handled by updating contin-

uously changing PNEs discretely at the end of the interval.

Each invariant check is responsible for confirming correct-

ness over the preceding interval of continuous change. In

(2) we show that if a simple action occurs between the start



2)

1)

Start

Start

f

Time

0
T

3)

Some Action End

Continuous UpdateContinuous Update

Invariant Check Invariant Check

End

Continuous Update

Invariant Check

Time

Time

Figure 1. Durative action with continuous ef­

fects.

and end points of a durative action then a continuous up-

date and invariant act for that durative action is placed be-

fore this simple action. This mapping of P is called the in-

duced semi-simple plan, written semi-simplify(P ). Part (3)

shows how discrete effects can arise, due to parallel activity,

breaking the continuous change into piece-wise continuous

components.

To execute a regular act, we apply the state transition cor-

responding to all of its simple actions using the familiar add

and delete effect semantics, together with numeric updates

in the obvious way. To execute a continuous update act is

also straightforward: the continuously changing PNEs are

updated according to the functions of time describing their

behaviour on the interval from the preceding regular act. In-

variant acts are not straightforward and checking invariants

is considered in section 4.1.

Definition 3.4 Executability of a Semi-Simple Plan A

semi-simple plan, SSP , is executable if it defines an act

sequence, {(t, A)
i
}i=0...k with states, {Si}i=0...k+1. S0 is

the initial state and for each i = 0 . . . k, Si+1 is the result

of executing the act, Acti, for (t, A)i:

• If Ai is regular then the preconditions of Acti must

hold in Si and Si+1 is the result of removing delete effects,

adding add effects and applying numeric effects.

• If Ai is invariant then the conditions of Acti must hold

over the interval between the preceding regular act and ti
(taking into account any continuous change).

• If Ai is continuous update then the effects of Acti are

applied at time ti for the continuous effects over the interval

between the preceding regular act and ti.

The state Sk+1 is called the final state produced by SSP

and the state sequence {Si}i=0...k+1 is called the trace of

SSP . Note that an executable plan produces a unique

trace.

Definition 3.5 Validity of a Semi-Simple Plan and of a

Plan A semi-simple plan is valid if it is executable and pro-

duces a final state S, such that the goal specification is sat-

isfied in S. A plan, P is valid if semi-simplify(P ) is valid.

4. Plan Validation Challenges from Semantics

4.1. Invariants

Continuous effects have their most significant effect on

the validation of plans when they interact with invariants.

An invariant comparison containing PNEs that are contin-

uously changing can always be expressed as a function of

time, t, that must be greater than zero (or greater than or

equal to zero). For example

t4 − 3t+ 1 > 0 for t ∈ (0, 3)

may be an invariant condition to check. If the invariant ex-

pression is linear in time we can simply evaluate the expres-

sion at the end points of the interval to confirm the condition

holds. However, when checking an invariant condition with

a non-linear expression in time it is no longer sufficient to

check the condition at end points only. The key to the prob-

lem of checking invariants that are comparisons with non-

linear expressions in time is finding the roots of a non-linear

function. This problem is, in general, non-trivial, even in the

case of polynomials. There are many algorithms to find the

roots of equations but we need to be sure of finding all the

roots in a given interval in every possible case. It is there-

fore necessary to impose restrictions on the invariants that

may be expressed to guarantee that they can be validated

on a given interval. For one-clause invariant comparisons

which are given by an inequality that is strict we are in fact

only interested in the existence of real roots on a given open

interval.

Invariants with disjunctions provide an extra complica-

tion when the disjuncts depend on continuously changing

PNEs. For example consider the following invariant with a

disjunction

(t2 − 9t+ 14 ≥ 0) ∨ ((t− 1 > 0) ∧ (−t+ 8 ≥ 0))

for t in (0, 10). We must find the values of t in (0, 10)
for which each disjunct is satisfied, then take their union

and see if the result covers (0, 10). In general it is nec-

essary to find all the roots of all the continuous functions

involved: these points can be used as the end points of the

sub-intervals that each disjunct is satisfied on.

4.2. Differential Equations

The complexity of the differential equations that can be

expressed far exceeds the practicality and feasibility of solv-

ing them. It is therefore necessary to impose certain restric-

tions to guarantee that they can be solved. The following



proposition shows that the values taken by PNEs are given

by polynomials if certain restrictions are imposed.

Proposition 4.1 Let F = {f1, . . . , fn} be a finite set of

PNEs changing continuously on the interval [0, T ] given by

dfi

dt
= gi(f1, f2, . . . , fn) for all i ∈ {1, 2, . . . , n}

where gi is some function depending on F . The function

gi is restricted to addition, subtraction, multiplication and

division on its terms and division by a PNE in F is not per-

mitted. If the rate of change of no PNE depends on itself

(either directly or indirectly) then the value of every PNE

on [0, T ] is given by a polynomial in t.

Proof. Follows by induction on the dependency structure.

If the conditions in Proposition 4.1 were relaxed to al-

low division by a functional expression then a PNE could

take values given by a natural logarithm. If the dependen-

cies could contain loops then exponential functions could

occur, as well as trigonometric functions and so on. So far

VAL handles polynomials and certain classes of exponen-

tial functions involved in the space operations project we

are involved with, see section 6. We are also currently in-

vestigating solving certain classes of differential equations

numerically. We are using the Runge-Kutta-Fehlberg [10]

method and have had very encouraging results.

4.3. Summary of Challenges from Semantics

There are two main challenges in the implementation of

validating a plan with continuous effects:

1. Solving a system of differential equations.

2. Finding the roots of continuous functions on a given

interval (polynomials in particular).

Both these challenges are far from trivial and are described

in some detail in Howey and Long [6].

5. LATEX Plan Validation Report

One of the benefits of VAL is that it can automatically

produce a LATEX report of the plan validation. The report

includes: the original plan, the plan to be validated (semi-

simple plan), a step by step account of plan validation, plan

repair advice if necessary and graphical diagrams. The ad-

vantages of the LATEX report over a simple text output are

numerous, but foremost is its clarity of presentation. It is

easy to see each detail of the plan validation with simple

use of LATEX text formatting, which also provides a more

formal record. The features of the report may also be used

in other documents, for example figures 2, 3 and 5 are taken

from reports generated by VAL.

6

T
im

e

0
9
3
.0

7
9

54321
1

4

7
1
0

1
3

1
6

1
8

2
1

2
5

1
1

1
4

3
6

9
1
2

1
5

1
7

1
9

2
0

2
2

2
3

8

Figure 2. Gantt Chart

5.1. Gantt Chart

The LATEX report includes a Gantt chart of the original

plan given to VAL to validate, this shows the times over

which actions are active highlighting duration, concurrent

activity and dependency. The chart consists of a number of

rows against a time line axis, a durative action is shown as

a bar, a non-durative action as a line. The actions are sorted

into rows by considering each action in turn, as given in the

original plan, using the following rules:

1. An action is placed into the row where the last action

terminated most recently. (If there is more than one

such row it is placed into the first of these rows.)

2. If each row has an active action at the start time of the

action to be assigned a row then the action is placed in

a new row. (The first action is placed in a new row.)

Plans are usually structured so that dependent actions

immediately follow one another, thus rule 1. gives a sen-

sible way of arranging the actions. A domain may contain

a set of objects that represent executives, it may then be de-

sirable to highlight those actions that affect these executives

separately. Therefore, it is possible to group the actions with

the same tracked object as a parameter. An extra rule is then

followed:

3. If an action has a tracked object as a parameter then it



can only be placed in a row where the actions in this

row also have this tracked object as a parameter.

Figure 2 shows an example of a plan’s Gantt chart using

VAL (a key is included in the LATEX report), given from the

2002 planning competition using the simple time rover do-

main. Each tracked object has its rows coloured the same

colour and grouped together. Rows 1 and 2 (coloured blue)

show the actions for rover2, row 3 the actions for rover1

(coloured red) and rows 4 and 5 the actions for rover3

(coloured green).

5.2. Primitive Numerical Expressions

The LATEX report contains graphs showing the values

taken by PNEs over the duration of a plan. These graphs

show discrete changes, linear changes, and non-linear

changes in value. The interaction between PNEs can be

clearly observed as shown by the two graphs showing the

distance and speed respectively of a car driving (figure 3).

Graphs of PNEs can be useful when trying to repair an in-

valid plan, for example when refuelling a fuel tank which

overflows. It could be seen from the graph when is a more

suitable time to refuel.

-Time

6
Value

160

50

-Time

6
Value

160

5

Figure 3. Graphs of the distance and speed of

a car from VAL’s LATEX report.

6. Mixed Initiative Planning

6.1. Mixed­Initiative Planning and Plan Repair

When VAL is used in its simplest form, without any pa-

rameters, in the case of plan failure it reports only that the

plan has failed. An option is available for verbose output

in which the system generates a report explaining which ac-

tions in a plan have failed. However, this is still of limited

use since no indication is given of why an action precondi-

tion is unsatisfied. The action precondition might be very

complex, but only have failed due to one literal with the in-

correct truth value. For example, a large factory machine

may have an action for starting processing with a compli-

cated precondition, but an instance of the action in a plan

might fail simply because the machine is not switched on

prior to planned execution of the start action. Feedback

VAL

Plan

Plan Repair

Advice

Human Planner

Accepted Plan

Domain and

Problem Model

Figure 4. Mixed­initiative planning with

validation­repair component.

from the plan validation reporting that the machine needs

to be switched on would be invaluable advice on how to fix

the plan. In complex plans identifying even simple failures

such as this can be difficult due to the obscuring effects of

the actions surrounding the failure.

With the intention of supplying more informed feedback

we have developed in VAL a detailed advice sub-system in-

dicating how to satisfy unsatisfied preconditions in an in-

valid plan. The advice can be used in a mixed-initiative

planning cycle in which the human planner firstly produces

a plan either by hand or with the aid of software before VAL

simulates execution of the plan giving detailed advice on

how to repair the plan for each unsatisfied action precondi-

tion (or invariant condition or goal). The advice can then be

used by the human planner to produce a new plan correct-

ing the errors, or at least some of them. The new plan can

then be executed using VAL which produces new plan repair

advice, and so on. The process is illustrated in figure 4.

In general, the advice offered by VAL indicates why a

given plan failed and what conditions must be achieved in

order to repair it. It does not indicate which actions might

be applied to achieve those conditions or explore the inter-

actions they might introduce into the plan if they are added

to it. Therefore, the advice from VAL must be seen as the

first stage in the repair or reconstruction of a flawed plan:

other components are necessary to decide how best to act

on the advice if this decision is to be made automatically.

Structure of plan repair advice. The advice given for a

failed precondition is derived from a PDDL precondition ex-

pression and stored in a structure called an advice proposi-

tion.

Definition 6.1 Advice Proposition For a given PDDL pre-

condition of an action in a plan the advice proposition pro-

vides instructions on how the state, S, must be altered at

this point in the plan in order to satisfy the precondition.

An advice proposition (AP) is one of the following:

• Instructions to set A to true, for some literal A.



• Instructions to set A to false, for some literal A.

• Instructions to satisfy a comparison consisting of nu-

merical expressions where each PNE has its current value

reported.

• A list of APs where all must be followed (conjunction

AP).

• A list of APs where at least one must be followed (dis-

junction AP).

• No advice (the empty advice case).

VAL produces an advice proposition for each unsatisfied

precondition given by a mapping of a PDDL precondition

and state to an advice proposition.

Definition 6.2 Let φ be the mapping from a PDDL precon-

dition, P , and a state, S, to an advice proposition defined as

follows if P is a literal, comparison, conjunction, disjunc-

tion and implication respectively.

φ(P, S) := if S |= P then no advice else set P to true

φ(P, S) := if P is an unsatisfied comparison then satisfy P

φ(∧i Xi, S) := ∧i φ(Xi, S), for each unsatisfiedXi in S

φ(∨i Xi, S) := ∨i φ(Xi, S), for each unsatisfiedXi in S

φ(X → Y, S) := φ(¬X ∨ Y, S)

If P is a negation, P = ¬Q, then φ(P ) = ψ(Q) where
ψ is defined as below ifQ is a literal, comparison, conjunc-

tion, disjunction, implication and negation respectively.

ψ(Q,S) := ifQ 6|= S then no advice else set Q to false

ψ(Q,S) := ifQ is a satisfied comparison then do not satisfy Q

ψ(∧i Xi, S) := ∨i φ(¬Xi, S), for each satisfiedXi in S

ψ(∨i Xi, S) := ∧i φ(¬Xi, S), for each satisfiedXi in S

ψ(X → Y, S) := φ(X ∧ ¬Y, S)

ψ(Q,S) := φ(Q′, S), ifQ = ¬Q′

Notice that the map φ is well defined since PDDL precon-

ditions and states are finite, and that starting from a PDDL

precondition that is not satisfied always yields a non-empty

advice proposition. The advice will take the form of lists of

advice which must either all be followed or one of which

must be followed, further advice lists may then be nested.

The actual conditions that need to be changed in the state

will be the truth value of predicates and the numerical val-

ues of PNEs.

Advice on invariants depending on continuous effects

The introduction of continuous effects into a plan further

complicates the validation of an invariant over a given inter-

val, as discussed in section 4.1. There is a natural extension

to the plan repair advice given by φ to invariant conditions

depending on continuously changing PNEs. An invariant

condition must hold for all values on a given interval, this

further consideration only changes the advice given by φ for

comparisons that depend on continuously changing PNEs.

Instead of considering just one state the advice for satis-

fying an invariant must consider: one logical state (for the

predicates), and a continuously changing numerical state on

the interval in question for comparisons depending on con-

tinuous effects. The advice for such a comparison is that

it needs to be satisfied on an interval with a report of the

subset of values of the interval on which the comparison is

satisfied.

For a disjunctive advice proposition which states that one

of the several disjuncts be satisfied the meaning should be

interpreted appropriately when referring to invariants con-

ditions. That is, for each time value in the invariant interval

one of the advice propositions must be followed. The ad-

vice proposition that is followed need not be the same ad-

vice proposition for each time value. See Howey and Long

[6] section 7.2 for more details on disjunctive invariants.

Extending advice into plan repairs. The advice generated

by VAL identifies the flaws in a plan and what conditions

must be achieved to repair the plan. To actually construct a

repair requires further identification of the means of achiev-

ing these conditions. In the worst case, this is equivalent

to planning, but in many cases there are limited choices

that can be used and that represent simple repairs to the

flaws. In particular, where there is an achieving action al-

ready present in the plan, or where only one action could be

used to achieve the condition, the repair is clear. We iden-

tify these cases and enact the repairs directly. Where there

are choices we report these to the human in order to make a

useful selection between them.

Repairing plans with continuous effects (example). Con-

sider a battery power model, as shown in figure 5. The

graph shows how power consumption by a system varies

over a temporal interval in which the system is both recharg-

ing (from solar-power) and is engaged in various power-

consuming activities. This example is taken from our work

on operations planning for Beagle 2 (for more details see

[7]). Interacting activities can cause the power level to dip

below a minimum threshhold. In such a case, VAL observes

that the invariant (that the charge remain above the critical

level) is unsatisfied over certain intervals. The curve that

-Time

6Charge

0 3615
8

16

Figure 5. Graph of Charge.



VAL produces shows that the charge dips low early in the

interval when powerdraw exceeds solar-power generation.

The shape is complex due to the changing demands of the

activities across the interval. VAL is able to recognise this

flaw and propose advice about how to resolve the conflict.

The process of repair depends on a rich plan represen-

tation, capturing the dependency structure between the ac-

tions and possible external events. This temporal aspect of

the structure is an important additional element, along with

the effect of continuous change, that is not considered in

the otherwise closely related work of Lemai and Ingrand [8]

on plan repair. In their work they consider plans as partial

order structures and build repairs using traditional partial-

order planning flaw repair strategies. This is a valuable ap-

proach to handling plan flaws and can be generalised to han-

dle metric conditions to some extent. However, they do not

consider continuous change or its impact on invariants and

this is an important aspect of the current work.

7. Conclusions

Polynomials were the first continuous effects to be han-

dled by VAL [6]. The approach can be extended to continu-

ous effects described by more complex functions, by using

polynomials to approximate the functions. In our imple-

mentation of exponential functions in VAL we have repre-

sented them directly for improved performance. This exten-

sion has been an important step in the exploitation of VAL

in the context of the Beagle 2 operations, since the power

models are sufficiently complex that they cannot easily be

modelled using simple polynomials. In fact, it has been

necessary to numerically solve certain classes of differen-

tial equations.

The mixed initiative aspect of VAL is part of a larger

project to explore the transfer of a variety of planning tech-

nologies into space operations planning in European space

missions. This should be seen in the context of the world-

wide efforts in space exploration and the NASA mobile

robots missions currently being pursued on Mars. These

missions also make extensive use of mixed-initiative plan-

ning aids, including MAPGEN [1], which has proved a very

successful tool in the Mars Exploratory Rover missions.

As planning technology is applied to real application

problems, the need to provide solutions to problems that

are often not considered in the pure planning research com-

munity becomes more apparent. Mixed-initiative planning

has long been considered an important bridging technology

in moving towards automatic planning, while also solving

some of the difficulties faced by planners in complex and

realistic domains. We have used VAL, our plan validation

technology, as a tool in mixed-initiative planning for space

operations. An important aspect is that it is directly linked

to our development of the semantics of PDDL, therefore pro-

viding a basis for formal validation of the domain descrip-

tions we are constructing. The importance of continuous

change in this domain is an added complication. We have

advocated the role of continuous change in planning domain

models for some time and this domain is an illustration that

it can be of key importance in real problems.

Plan validation and plan repair are important aspects of

a mixed-initiative planning system, but they also form the

foundations of fully automated planning. The extension

of existing planning technology to address continuous re-

sources and complex metric constraints is a challenge that

we believe must be addressed in order to apply planning in

a wide range of application scenarios.

References

[1] M. Ai-Change, J. Bresina, L. Charest, J. Hsu, A. Jónsson,

R. Kanefsy, P. Maldegue, P. Morris, K. Rajan, and J. Ygle-

sias. MAPGEN: Mixed intitive activity planning for the Mars

Exploratory Rover mission. In Proceedings of Demonstration

Systems Track, ICAPS’03, 2003.
[2] J. Allen and G. Ferguson. Human-machine collaborative

planning. In Proceedings of 3rd International NASA Work-

shop on Planning and Scheduling for Space, 2002.
[3] A. Blum and M. Furst. Fast Planning through Plan-graph

Analysis. In Proceedings of IJCAI, 1995.
[4] M. Burstein and D. McDermott. Issues in the development of

human-computer mixed-initiative planning. In B. Gorayska

and J. Mey, editors, Cognitive Technology. Elsevier, 1996.
[5] M. Fox and D. Long. PDDL2.1: An extension to PDDL for

expressing temporal planning domains. Journal of AI Re-

search, 20, 2003.
[6] R. Howey and D. Long. Validating plans with continuous ef-

fects. In Proc. of the 22nd Workshop of the UK Planning and

Scheduling Special Interest Group, pages 115–124, 2003.
[7] R. Howey, D. Long, and M. Fox. Plan validation and mixed-

initiative planning in space operations. In D. Borrajo, editor,

Proceedings of ECAI Workshop on Planning: Bridging the

Gap between Theory and Practice, 2004.
[8] S. Lemai and F. Ingrand. Interleaving temporal planning and

execution in robotics domains. In Proc. AAAI’04, 2004.
[9] D. Long and M. Fox. The 3rd International Planning Com-

petition: Results and analysis. Journal of AI Research, 20,

2003.
[10] J. H. Mathews and K. K. Fink. Numerical Methods Using

Matlab. Prentice-Hall Inc., New Jersey, USA, 4th edition,

2004.
[11] D. McAllester and D. Rosenblitt. Systematic nonlinear plan-

ning. In Proceedings of the Ninth National Conference on

Artificial Intelligence (AAAI-91), volume 2, pages 634–639,

Anaheim, California, USA, 1991. AAAI Press/MIT Press.
[12] M. Veloso, A. Mulvehill, and M. Cox. Rationale-supported

mixed-initiative case-based planning. In Proceedings of the

14th National Conference on AI and 9th Innovative Applica-

tions of Artificial Intelligence Conference, 1997.
[13] M. Woods, R. Aylett, D. Long, M. Fox, and R. Ward. Assess-

ing planning and scheduling technologies for deep space ex-

ploration. In Proceedings of 4th British Conference on (Mo-

bile) Robotics: Towards Intelligent Mobile Robots, 2003.




