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Abstract—To improve the execution speed and efficiency of
neural networks in embedded systems, it is crucial to decrease
the model size and computational complexity. In addition to
conventional compression techniques, e.g., weight pruning and
quantization, removing unimportant activations can reduce the
amount of data communication and the computation cost. Unlike
weight parameters, the pattern of activations is directly related
to input data and thereby changes dynamically. To regulate the
dynamic activation sparsity (DAS), in this work, we propose
a generic low-cost approach based on winners-take-all (WTA)
dropout technique. The network enhanced by the proposed WTA
dropout, namely DASNet, features structured activation sparsity
with an improved sparsity level. Compared to the static feature
map pruning methods, DASNets provide better computation cost
reduction. The WTA technique can be easily applied in deep
neural networks without incurring additional training variables.
More importantly, DASNet can be seamlessly integrated with
other compression techniques, such as weight pruning and quan-
tization, without compromising on accuracy. Our experiments
on various networks and datasets present significant run-time
speedups with negligible accuracy loss.

Index Terms—DNN acceleration, Winners-take-all Dropout, Ac-
tivation Sparsity, Feature Selection, Feature Map Pruning.

I. INTRODUCTION

With rapid performance improvement in cognitive tasks,
deep neural networks (DNNs) have become a main horse-
power of artificial intelligence (AI) applications. In spite of
the promising success on large-scale CPU- and GPGPU-based
platforms, the embedded AI is facing rigorous challenges.
First, the limited on-chip memory can accommodate only
a small portion of model parameters and inter-layer data,
inducing continuous data exchanges with the off-chip main
memory. Moreover, the intensive 2-D convolutions demand
high computational complexity and inter-layer data traffic.
For example, to process one image, AlexNet [1] owning a
model size of 243MB involves about 748M multiply-and-
accumulate (MAC) operations. To overcome the challenges in
large model size and high computational complexity of DNNs,
weight quantization and pruning have been widely utilized in
embedded AI deployment.

The quantization is a popular approach to reduce model size
by lowering the weight precision (aka bit-width), e.g., to 8-bit
integer [2] or even binary levels [3]. BinaryNet [4] and XNOR
net [5] further applied the quantization to neuron activations
to reduce inter-layer data traffic. Low-precision operations are
more efficient when implementing on hardware. For example,

the power consumption of 8-bit integer multiplication is only
5.4% of the 32-bit floating-point counterpart [6]. Inevitably,
deeply quantized models suffer from performance loss. For
example, more than 12% accuracy drop was observed when
applying XNOR net on ImageNet [5].

Weight pruning is usually realized by applying `1 or `2
regularization on the weights. Wen et al. [7] proposed struc-
tured sparsity learning (SSL) which utilizes group lasso to
get rid of redundant weight groups with user-defined shapes
in convolution layers. Molchanov et al. [8] included the first-
order Taylor series expansion of the loss function on feature
map channels to determine unimportant channels before fil-
ter pruning. It’s worth mentioning that the weight pruning
degrades the model’s representation capability and thereby
hinders the utilization of low-precision weights. As an example
of integrating model quantization and weight pruning, Han et
al. [9] managed to fine-tune a dedicated non-linear code book
for each layer to indicate the weight sharing. The quantized
model still relies on the weights in a high-precision level (e.g.,
32-bit fixed-point) after looking up the actual weights from
nonlinear code books.

Activation sparsity is another essential feature that can be
used for DNN acceleration. The widely adopted activation
function, rectified linear unit (ReLU), can be taken as a
formation of activation sparsity, as it produces many zero
activations. It brings the potential of reducing the inter-layer
data movement by integrating with data compression. For
example, Eyeriss [10] implemented an on-chip run-length
compression module, which achieved up to 1.9× reduction in
memory accesses. Rhu et al. [11] proposed a dedicated com-
pressing direct memory access (cDMA) engine to exploit the
inherent sparsity in activations to speedup the data movements
between the CPU memory and the GPU memory. In addition,
EIE [12] and ZeNA [13] utilized non-zero detection logic unit
to select non-zero activations for processing engines, achieving
significant energy saving and speedup.

Although the activation sparsity has great potential in saving
computation cost and power consumption, two fundamental
issues prevent the utilization of its full advantage in practice.
(i) The intrinsic activation sparsity pattern from ReLU is
random. Fig. 1(a) is an example of the flattened feature map
after the first convolution layer in AlexNet on ImageNet
dataset, where the white dots stand for zero activations. To
leverage the random activation sparsity distribution, specific
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(a) Original. (b) With WTA masks.

Fig. 1. An example of the activation distribution of the first convolution layer
in AlexNet on ImageNet dataset.

hardware designs are compulsive. In other words, it is hard
to achieve the equivalent speedup on conventional embedded
systems without the support of dedicated circuit components.
(ii) The sparsity levels for different input images are not
identical. The overhead of non-zero detection and compres-
sion/decompression techniques can be amortized for sparse
activations, which might not be true for dense activations
incurred by certain input data.

This work aims to overcome the aforementioned difficulties,
enable the feasible activation sparsification and improve the ef-
ficiency of DNN deployment in embedded systems. We exploit
the dynamic activation sparsity (DAS) and propose a dynamic
winners-take-all (WTA) dropout technique. In each layer, the
neurons will be tagged with rankings based on their activation
magnitudes at run-time. Only those neurons with top rankings
will be selected to participate in the computations for the
following layers. In other words, the WTA dropout serves as
a dynamic WTA mask to prune neuron activations layer-wise.
Thus, we are able to obtain the structured activation sparsity
by removing certain channels in feature maps for improving
the sparsity level, as shown in Fig. 1(b). Moreover, the rate
of WTA dropout can be adjusted layer by layer, ensuring the
overall system accuracy. Our experiments on various datasets
show that the derived networks enhanced by WTA dropout,
namely DASNets, can achieve 1.12× ∼ 1.8× speedup by
paying at most 0.5% accuracy drop. In addition, the DASNets
can be integrated with state-of-the-art model compression
techniques, such as weight pruning and quantization, to further
improve the execution efficiency. For example, combined with
weight pruning (or 8-bit quantization), the DASNet obtained
based on AlexNet can be safely compressed 4.7× (or 4×)
without compromising on the accuracy.

II. RELATED WORKS

Some DNN accelerator architectures manage to regulate
the neuron activation sparsity beyond the intrinsic sparse
patterns obtained from ReLU. For example, Cnvlutin [14] and
Minerva [15] removed activations with small magnitudes to
further increase the activation sparsity level. Without model

accuracy loss, however, the increment in the activation sparsity
is limited. Moreover, dedicated circuit modules for the data
compression and decompression are required on irregular
sparse patterns, which shares the similarity with Eyeriss [10]
and cDMA engine [11].

At the algorithmic level, Spring et al. [16] utilized the
locality-sensitive hashing (LSH) to predict the neurons with
top activation magnitudes for DNNs with only fully-connected
(fc) layers. In both training and inference stages, only the
selected neurons are activated. The LSH-based method pro-
duces a higher sparsity in activations (e.g., on average only 5%
activations remain). However, it is hard to be applied to con-
volution (conv) layers. Feature map pruning has been studied.
For example, Molchanov et al. [8] analyzed the importance of
feature map channels based on the partial derivative of the loss
function and eliminated those less important ones. The scaling
factor in batch normalization can also be utilized to indicate
the significance of each feature map channel [17], [18]. The
idea of adding scaling factors on feature maps can be extended
to any conv layers even without batch normalization [19]. In
the training stage, all scaling factors are learned by adding
a specified regularization term in the original loss function.
A feature map channel whose scaling factor is less than a
predefined threshold can be safely removed once the training
is completed. The partial selection of feature map channels can
also be dynamically determined at run-time during inference to
optimize the accuracy loss [20], [21]. However, the existing
dynamic approaches introduce intricate branching structures
built with the original model, which increases the model size
and complicates the training process.

Compared to the existing techniques, our proposed DAS-
Net comes with three major improvements: higher sparsity
levels with structured sparse patterns, simpler training process
without additional regularization terms, and no need of extra
trainable parameters beyond the original models. The details
of our method will be described in the following sections.

III. DASNET WITH WTA DROPOUT

In this work, we propose dynamic WTA dropout which
regulates the neuron activation sparsity based on the activation
magnitudes, as stronger activations potentially contribute more
to the computation results in both forward and backward prop-
agation phases. Fig. 2 depicts the basic concept of the proposed
dynamic WTA dropout. It behaves as a mask between layers
and prunes low-ranking neurons at run-time. We first rank all
the neurons of a layer based on their activation magnitudes.
Only those top-ranking neurons (namely, winner neurons) will
remain and propagate their outputs to the following layer.
DASNets with WTA masks need to be finetuned in order to
maintain the model accuracy. In the backward propagation
phase during finetuning, accordingly, we update only the
winner neurons selected by the WTA masks along the forward
path. The winner rate (p) of a layer is defined as:

p = Nwinner/Ntotal, (1)



K

3

2

1

O

3

2

1

Input Hidden 1 Hidden 2 Output

(a) Original.

Input Hidden 1 Hidden 2 Output

WTA Masks

(b) With WTA masks.

Fig. 2. The DASNet with dynamic WTA dropout.

where Nwinner and Ntotal denote the sizes of the winner
neuron set Swinner and the total neuron set Stotal, respectively.
p is adjustable to balance the sparsity level and accuracy.
The finetuning process is clarified in Algorithm 1, which
shares the same loss function used for training the original
model. Because of the WTA dropout, a new term ∂Aw,l

∂Ao,l
will

be applied on the weight updates during the backpropagation
phase. Actually, ∂Aw,l

∂Ao,l
is the binary mask generated by WTA

dropout, determining which neurons should be updated for the
particular input data xi.

A. Ranking and Winner Rate Selection

The selection of the winner rate p for each layer is a tradeoff
process between the activation sparsification level and the
model inference accuracy. From the one hand, a DASNet with
more activations pruned potentially obtains faster acceleration;
from the other hand, it becomes harder to keep the accuracy of
such a DASNet intact. To explore the relation between model
accuracy and activation pruning strength (i.e., p), we first
adopt three basic networks (MLP-3, LeNet-4, and ConvNet-
5) on two simple datasets (MNIST and CIFAR-10). More
experiment for deep networks will be presented in Section IV.
Table I summarizes the configurations of the three models. The

Algorithm 1: DASNet Finetuning. Loss is the loss func-
tion with input-output pair (xi, yi), and the learning rate
is η. Wl denotes the weight variables per layer. Ao,l and
Aw,l are the original activation and pruned activation after
the WTA mask, respectively. The total layer number is L.

while not reaching the stop criteria do
1. Forward Propagation:
For layer l = 1, compute Ao,1 = g(xi,W1);
for l = 2→ L do

get the activation Aw,l−1 for Swinner,l−1;
compute Ao,l = g(Aw,l−1,Wl);

end
2. Backward Propagation:
For layer l = L, Aw,L = Ao,L;
for l = (L− 1)→ 1 do

propagate ∂Loss
∂Aw,l

;
update Wl = Wl + ∆Wl, where
∆Wl = −η ∂Loss

∂Wl
= −η ∂Loss

∂Aw,l
· ∂Aw,l

∂Ao,l
· ∂Ao,l

∂Wl
;

end
end

TABLE I
THE NETWORK CONFIGURATION.

Model MLP-3 LeNet-4 ConvNet-5
Dataset MNIST MNIST CIFAR-10

Accuracy 98.4% 99.4% 86.0%
conv1 - 5×5, 32 5×5, 64
conv2 - 5×5, 64 5×5, 64

fc1 784×300 3136×1024 2304×384
fc2 300×100 1024×10 384×192
fc3 100×10 - 192×10

thumb rule to determine winner neurons in conv and fc layers
is also explained as follows.

1) Fully-connected layers: In fc layers, each neuron gen-
erates one single activation. The rankings of their activation
magnitudes can be directly used to determine the winner
neurons. The winner neuron selection is a relaxed partial
sorting problem. It can be solved by using recursive method
such as [22] in linear time complexity O(n), or O(n log n)
under the worst-case condition. Here, n is equal to Ntotal as
defined in Equation (1).

The standard dropout [23] has been used to avoid overfitting
for large fc layers. Our experiments is conducted by including
the standard dropout with a dropout rate of 50%. We observe
that although half of the neurons are activated in each layer,
the proportion of neurons with non-zero activation is usually
close to or even below 20%. That is, only a small portion
of neurons in a layer fire each time. Furthermore, the same
dropout rate is usually applied across all the layers of a model,
without considering the different sparsity levels presented by
different layers. Instead, our method determines p in WTA
masks according to the cumulative energy Ecum of the winner
set Swinner, such as:

Ecum =

∑
aj∈Swinner

aj
2∑

ai∈Stotal
ai2

, (2)

where ai and aj denote the neuron activation. We set an
threshold θ. The size of Swinner and the winner rate p then
can be decided by satisfying the constraint of Ecum ≥ θ.

MLP-3 and ConvNet-5 are adopted to explore the appro-
priate energy threshold θ and the effects of winner rate p
on model accuracy. WTA masks are attached after all the fc
layers except the output layer. The activation sparsity level
is controlled by configuring p according to the setting of
θ. Fig. 3 shows the changes of model accuracy and the
corresponding activation pruning strength when varying θ.
The pruned percentage of activations directly reflects the
sparsity level and inter-layer data traffic reduction and is
used to measure the pruning strength here. As expected, the
model accuracy has an explicit inverse correlation with the
pruning strength. Majority of the activations can be removed
by scarifying a slight accuracy drop. For instance, pruning
93.6% activations from MLP-3 induces 0.4% accuracy drop,
and ConvNet-5 can mask out 81.7% activations in its fc layers
with 0.8% accuracy drop. It’s worth noting that ConvNet-5 is
more sensitive to activation pruning compared to MLP-3 due
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Fig. 3. Accuracy vs. activation pruning for fc layers.

to the higher complexity of CIFAR-10 dataset. For this reason,
different models require different constraints on θ in practice.

2) Convolution layers: In conv layers, each filter is re-
garded as a neuron. Every neuron generates a channel in a
feature map. We cannot directly adopt the ranking method used
in fc layers as it is based on single activation. More specific, it
is inefficient to rank all the activations in the feature map, as it
involves with significant computation resources. We propose
to get the winner set Swinner in a conv layer through a two-
step ranking process: (i) construct a feature vector (fv) with
elements representing the importance of feature map channels.
The vector length is equal to the number of filters; and (ii)
apply the ranking method used in fc layers to fv.

There are two efficient ways to obtain the feature vector.
Considering a feature map fm ∈ <H×W×C as depicted in
Fig. 4(a), the feature vector fv = [v1, v2, . . . , vC ] ∈ <C can
be constructed with the mean activation per channel:

vj = mean(fm[:, :, j]), where j = 1 . . . C. (3)

As previous studies [24], [25] discovered that the maximum
activation in a feature map likely dominates the feature repre-
sentation in the corresponding feature dimension. fv can also
be abstracted from fm by:

vj = max(fm[:, :, j]), where j = 1 . . . C. (4)

Each feature map channel can be regarded as a feature
dimension. Thus the eigenvalue for a feature dimension is a
good indicator for the significance of a feature map channel.
We propose to use the eigenvalues Λ = {λc, c = 1 . . . C}
to replace ai and aj in Equation (2) to determine Ecum of
the winner neuron set Swinner in conv layers. Singular value
decomposition (SVD) is adopted to derive the eigenvalues for
the feature map fm and thereby seek for the optimal p. Before
deriving SVD, fm is reshaped into a matrix Mfm ∈ <S×C

by arranging all the activation vectors fm[h,w, :] at each
pixel position [h,w] into rows, where S is the total number
of activation vectors. S is then enlarged by gathering all the
feature maps for a random set of training images (1,000 is
enough by our experiments). Apply SVD on Mfm such as

Mfm
S×C = US×SΣS×CV

T
C×C , (5)

where U and V T are unitary matrices, and Σ is a diagonal ma-
trix comprising the eigenvalues Λ. Mfm can be converted into

(a) Original. (b) With WTA masks.

Fig. 4. Working scheme of WTA dropout in conv layers. The feature map is
a 3-D matrix with dimensions of height H , width W and channel C.

a new feature space as MfmV , which is equal to US×SΣS×C .
Due to the low-rank behavior of the responses of filters in the
conv layer [26], ΣS×C can be reduced to ΣS×C′ , where C ′

is much smaller than C by removing negligible eigenvalues.
The winner rate p can be determined by setting an appropriate
cumulative energy threshold θ for the eigenvalues in Σ. Once
p is set, the winner set Swinner can be selected using the
two-step ranking method aforementioned. After finetuning, the
DASNet is trained to obtain the sparse feature representation
US×SΣS×C′ .

We adopt LeNet-4 and ConvNet-5 in Table I to evaluate
the effectiveness of different feature vectors as defined in
Equations (3) and (4). For the comparison between two fv
extraction methods, the WTA masks are configured with iden-
tical winner rates according to the cumulative energy threshold
θ settings. Interestingly, the max(·) method outperforms the
mean(·) method regarding to the model accuracy as shown in
Fig. 5. As θ is approaching 100%, the accuracy gap between
the two methods decreases. In the following experiments,
max(·) will be adopted to derive the feature vector fv if
not specially indicated.

Fig. 6 shows that different cumulative energy threshold θ for
Swinner results in different sparsity levels in the feature map.
Lowering θ can aggressively increase the feature map sparsity.
Again, we adopt different θ for LeNet-4 and ConvNet-5 for
their different pruning sensitivity. Similar to the findings in fc
layers, the accuracy drops along with the increment of sparsity
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Fig. 5. Comparison between different feature vectors.
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Fig. 6. Accuracy vs. feature map pruning for conv layers.

level. As can be seen in Fig. 6, 61.9% of the feature maps
among all conv layers can be pruned for LeNet-4 with a mere
0.05% accuracy drop, while ConvNet-5 can prune 35.1% of
the feature maps by keeping the accuracy loss by 1%. The
feature map has a less pruning strength than the activations in
fc layers because the feature map is more complicated in the
feature space.

B. Theoretical Analysis

1) Ranking cost: A lightweight ranking process is nec-
essary to guarantee the benefit of saved computation via
activation sparsification. The ranking overhead should be much
less compared to the saved matrix computational complexity.
Assume a fc layer has K inputs and O outputs as illustrated in
Fig. 2(a). Its computational complexity is KO. After applying
the dynamic WTA dropout, only the winner neurons from the
previous layer, pK input activations, are kept. So the lightened
computation complexity is pKO. The ratio of the ranking cost
over the saved computation complexity of the fc layer is:(Ranking Cost

Saved Comp.

)
fc

=
K logK

(1− p)KO

=
logK

(1− p)O � 1,

(6)

as K and O are usually in the similar magnitudes and p in fc
layers can be smaller than 20% according to our experiments.

Assume a conv layer has N filters with the same configura-
tion as shown in Fig. 4. Its computation complexity originally
is F 2HWCN and reduces to pF 2HWCN after applying the
WTA dropout with a winner rate of p. Here the ranking cost is
composed of two components: finding the maximum in each
feature map channel with a complexity of HWC and ranking
with a complexity of C logC. So the ratio of the ranking cost
to the saved computational complexity for the conv layer is:(Ranking Cost

Saved Comp.

)
conv

=
HWC + C logC

(1− p)F 2HWCN

≈ HW

(1− p)F 2HWN

=
1

(1− p)F 2N
� 1,

(7)

where p of conv layers commonly is less than 70% according
to our experiments.

Ao,l

Aw,l-1
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WTA Mask 

Ao,l+1
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g'(·)

WTA Mask 

δAo,l+1

g'(·)

element-wise
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δAw,l-1
backward
propagation

rankingranking

Fig. 7. WTA mask in the forward and backward propagation.

2) Memory accesses and computational complexity: The
computations in DNNs are intensive matrix multiplications.
From a mathematical view, the matrix computation in layer l
works as Wl · Xl, where Wl denotes the weight matrix, Xl

is the input vector/matrix derived from the previous layer’s
activations. The dynamic WTA method attempts to improve
the sparsity level of the neuron activation. As such, the number
of MACs involved is reduced. Moreover, sparse Xl can reduce
the memory allocation.

For fc layers, it’s straightforward to reduce the computation
cost by 1/p times with a winner rate p in vector Xl. For conv
layers, the gains in the reduction of memory accesses and
MACs can also be obtained from the WTA dropout. As the
example depicted in Fig. 4(a), the dimension of filters is F×F ,
where F is the window size of the 2-D convolution sliding
over the feature map. When the convolution stride is 1, the
feature map will be unrolled into a matrix Xl in the dimension
of F 2C × HW . After applying the dynamic WTA dropout,
the feature map will contain structured sparse patterns, where
the matrix Xl derived from the feature map unrolling can be
condensed in the row direction. With a winner ratio of p in
the conv layer, both the data volume of Xl and the MACs
needed in Wl · Xl reduce 1/p times. Very importantly, the
method doesn’t require any specific compression techniques,
e.g., compressed sparse row.

3) WTA mask reuse in backpropagation: The reduction in
memory accesses and computational complexity is also appli-
cable to the backpropagation phase. As shown in the forward
propagation graph in Fig. 7, the WTA mask is generated at
run-time by ranking the activations Ao,l = g(Aw,l−1), where
the function of layer l is modeled as g(·). Only the activations
from winner neurons are propagated to the next layer l + 1,
i.e., Ao,l is element-wise multiplied with the WTA mask to
obtain Aw,l. In the training process, the errors δAw,l = ∂Loss

∂Aw,l

and δAo,l = δAw,l · ∂Aw,l

∂Ao,l
, where ∂Aw,l

∂Ao,l
is the WTA mask, are

needed to be backward propagated to derive weight updates
as shown in Algorithm 1. Consistent with the dimension
reduction in Aw,l by the WTA dropout, the size of δAw,l

is reduced accordingly. The WTA mask is reused as shown
in the backward propagation graph in Fig. 7. So there is no
ranking overhead in the back-propagation phase.
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Fig. 8. The finetuning flow to obtain DASNet.

C. DASNet Finetuning Flow

In practice, a finetuning flow in Fig. 8 is used to obtain
the final DASNet from the pretrained baseline model. Section
III shows the tradeoff between the activation pruning strength
and model accuracy. To meet the various requirements on
prediction accuracy and inference speed for embedded ap-
plications, the finetuning procedure is iterated several times
through tuning the cumulative energy threshold θ. In all the
experiments as we shall show in the following section, the
accuracy drop for all the DASNets is kept within 0.5%. These
models can be further accelerated by releasing the constraint
on θ if the acceptable accuracy loss is larger. While more MAC
reduction can be achieved with a smaller θ, the DASNets are
more vulnerable to accuracy loss.

IV. EVALUATION

A. Model Setup

We verify the WTA dropout on real-world DNN models in
Table II: ResNet [27], AlexNet and MobileNet [28]. Compared
to conventional CNN models like ResNet and AlexNet, Mo-
bileNet is designed specially for embedded systems featuring
a conv block by concatenating a depth-wise conv layer and a
point-wise conv layer. MobileNet consists of 1 conv layer,
13 optimized conv blocks and 1 fc layer. We adopt four
datasets including CIFAR-10, GTSRB (German Traffic Sign
Recognition Benchmark), SVHN (Street View House Number)
and ImageNet. Besides the CIFAR-10, GTSRB has 43 classes
of traffic signs, SVHN is a color-version of MNIST with
10 digits collected from natural scene images, and ImageNet
contains 1000 class labels. The number of MACs is measured
under minibatch size = 1, which is the typical scenario for
real-time applications in embedded systems.

B. DASNet Measurement Results

Our DASNets are deployed and experimented on LG Nexus
5X with a 1.8 GHz processor and 2GB RAM, running Android
6.0.1 (API level 23). We deploy the neural network models
based on MXNet [29], a high performance deep learning li-
brary developed by Distributed Machine Learning Community
(DMLC) team using C++. We modified the MXNet library
and cross compiled it with Android Standalone Toolchain so
that it can support general matrix multiplication (GEMM)
operations with our customized WTA dropout and neuron
activation sparsity features on ARM-based platforms.

As summarized in Table II, 1.12× ∼ 1.8× wall-clock time
speedup is achieved, which indicates that the structured spar-
sity in DASNets is easily to be utilized for acceleration. The

0.0 0.5 1.0
winner rate p

0
25%
50%
75%

100%

en
er

gy
 th

re
sh

ol
d 

conv1

0.0 0.5 1.0
winner rate p

conv2
conv3
conv4
conv5

(a) The conv layers.

0.0 0.5 1.0
winner rate p

0
25%
50%
75%

100%

en
er

gy
 th

re
sh

ol
d 

fc6

0.0 0.5 1.0
winner rate p

fc7

(b) The fc layers.

Fig. 9. An example of winner rate analysis for AlexNet.

DASNet acts differently on different datasets. For example,
The speedup for AlexNet on GTSRB is 1.8× when keeping
65.1% MACs and the accuracy drops 0.5%. When changing
the dataset to ImageNet, AlexNet even has a 0.41% (0.12%)
improvement for Top-1 (Top-5) accuracy with a 1.6× speedup.
The MobileNet is more sensitive to the WTA dropout method.
Through the SVD analysis on the feature maps in MobileNet
on ImageNet, less redundancy is observed as in AlexNet. By
saving 12% MACs according to θ = 99%, the inference is
accelerated by 1.12× with an 0.39% drop for Top-1 accuracy,
and it has no loss for the Top-5 accuracy. In contrast, more
feature maps can be pruned for MobileNet on the less complex
dataset SVHN, and thus a higher speedup (1.75×) is achieved.

C. Case Study on Winner Rate Configuration

Before setting winner rate p per layer, the relation between
p and the threshold θ of Ecum is analyzed for each network.
Similar to the setup in Section III-A, 1,000 images are ran-
domly selected from the training set to analyze the selection of
p for feature maps in conv layers and activations in fc layers.
Without loss of generality, the relation of p and θ for AlexNet
on ImageNet dataset is shown as an example in Fig. 9. Since
layer fc8 is the output layer, the analysis on the activations in
fc layers are only applied for fc6 and fc7.

As seen from the analysis results, different layers have
distinct behavior of winner rates. For example, the winner rate
p of conv1 is 0.54 by setting θ = 99%, while p = 0.72 for
conv2 at the same θ. The divergence in the derived p values
indicates the different feature redundancy in the generated
feature space per layer. It’s worth noting that the cumulative
energy in fc layers increases rapidly with the increment of
winner rate. When p is set around 0.1, Ecum can be easily kept
more than 95%, which means the activations of fc layers can
be deeply sparsified. The analysis in Fig. 9 can be generalized
to different combinations of datasets and model structures to



TABLE II
THE EXPERIMENT SETUP AND RESULTS.

Model Dataset MAC # Top-1 Accuracy Top-5 Accuracy MAC # Reduction ∆Top-1 Accuracy ∆Top-5 Accuracy Speedup
ResNet-164 CIFAR-10 384.5M 94.54% - 32.2% -0.14% - 1.5×

AlexNet GTSRB 724.3M 97.21% - 34.9% -0.5% - 1.8×
ImageNet 748.1M 57.22% 80.2% 27% +0.41% +0.12% 1.6×

MobileNet SVHN 11.9M 93.3% - 45% -0.1% - 1.75×
ImageNet 610.4M 70.9% 89.9% 12% -0.39% +0% 1.12×
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Fig. 10. The layer-wise decomposition for the inference time in DASNets.
The input layer is omitted here, because the WTA dropout is not applicable
on the input data.

explore activation sparsity. Thereafter, the DASNet with WTA
dropout will efficiently utilize the improved activation sparsity
derived from the winner rate analysis.

D. Case Study on Layer-wise Speedup

The speedup results for each layer in AlexNet and Mo-
bileNet on ImageNet are shown in Fig. 10. The time con-
sumption per layer consists of both the ranking process and
the remaining MAC computation for the winner neurons. For
AlexNet and MobileNet, no WTA dropout is applied on the
input image. To have a clear view of time distribution among
all layers, the time is normalized to the computation time of
the original dense layer. As shown in Fig. 10(a), for conv
layers 2-5 in AlexNet, 1.13× ∼ 1.84× speedup is achieved.
It’s worth noting that fc layers 6-8 obtain better speedup
results of 3.6× ∼ 7.6×. This is due to that the WTA masks
before fc layers usually generate a deeply sparsified input. For
MobileNet, the 13 conv blocks account for more than 90%
computation of the whole network. As the results shown in
Fig. 10(b), 1.07× ∼ 1.96× speedup per block is obtained.

TABLE III
INTEGRATION WITH WEIGHT PRUNING.

Layer Weights Weights % Actications %
θ=99% θ=95%

fc6 37.75M 17.2% 27.7% 25.6%
fc7 16.78M 17.2% 12.5% 10.1%
fc8 4.10M 31% 11.9% 9.4%

Total 58.63M 18.2% 20.4% 18.1%

For both AlexNet and MobileNet, the time consumption on
ranking process can be negligible, which accounts for a small
portion (< 2%) of the original model execution time.

E. Integration with Weight Pruning or Quantization

A significant feature of DASNets is that they can be
seamlessly integrated with weight pruning and quantization.
To explore the integration with weight pruning, the three
dense fc layers in AlexNet are adopted as shown in Table
III, which account for ∼ 96% of the total model size. After
successfully compressing the fc weights by 5.5× without
accuracy loss, two cases of cumulative energy threshold θ are
applied for the WTA dropout. When θ = 99%, 79.6% of the
input activations can be masked out with no accuracy loss.
To further improve the activation sparsity using θ = 95%,
only 18.1% activations are kept with a mere 0.07% Top-1
accuracy drop. To explore the integration with quantization,
the 8-bit linear quantization as [2] is adopted. All quantized
models are derived at one-shot without intricate finetuning.
For the AlexNet on GTSRB in Table II, the corresponding 8-
bit DASNet has little accuracy loss (< 0.01%) compared to
the 32-bit floating-point counterpart. For the ImageNet dataset,
the 8-bit DASNets for AlexNet and MobileNet have marginal
0.5% and 0.8% accuracy loss respectively.

F. Comparison with State-of-the-art

Many methods have been proposed for feature map pruning.
The comparison between the our WTA dropout method with
state-of-the-art is shown in Table IV. The models denoted
with ‘X’ dynamically prune feature maps in contrast to
the static pruning in others. Compared to the static pruning
methods, our WTA dropout method obtains a better accuracy
with similar reductions of MACs. In the cases with a small
computation save, DASNet models even boost the accuracy
over the original models. For the existing dynamic feature map
pruning methods, they actually complicate network structures
and lack experiments on deeper models than ResNet-18. Our
WTA dropout method is more supportive to DNNs as it
doesn’t increase training variables. Compared with the existing



TABLE IV
COMPARISON WITH EXISTING FEATURE MAP PRUNING METHODS.

Model Top5
Accuracy Pruned Model ∆ Top5

Accuracy
MAC #

Reduction

AlexNet 80.2% Ours (X) +0.12% 27%
Molchanov et al. -1.4% 22.4%

ResNet-18 89.68%
Hua et al. (X) -1.87% 37.9%
Gao et al. (X) -1.46% 49.5%
Ours (X) -1.24% 50.4%

ResNet-50 92.8%
Ours-v1 (X) +0.26% 15.9%
Huang & Wang -0.19% 15.1%
Ours-v2 (X) -0.37% 29%

dynamically pruned ResNet-18, the accuracy drop of DASNet
is smaller with comparable computation reduction.

V. CONCLUSION

In this paper, we propose the dynamic WTA dropout to
generate structured sparsity in feature map for conv layers
and deeply sparsify the activations for fc layers. The DAS-
Net equipped with dynamic WTA dropout can be efficiently
utilized by conventional embedded systems without requiring
dedicated hardware. The proposed WTA dropout is a generic
approach to explore the dynamic activation sparsity which can
be easily applied to DNN applications beyond the models and
datasets in this paper. Our experiments on the mobile platform
show an 1.12× ∼ 1.8× speedup on various DNN models
by keeping a 0.5% accuracy loss. The DASNets can also
be integrated with weight pruning and quantization without
compromising on accuracy, which presents a great potential
for the efficient DNN deployment in embedded systems.
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