
HAL Id: hal-03482429
https://hal.science/hal-03482429v1

Submitted on 22 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decentralized Coalition Structure Formation for
Interdependent Tasks Allocation

Douae Ahmadoun, Elise Bonzon, Cédric Buron, Pavlos Moraitis, Pierre
Savéant, Onn Shehory

To cite this version:
Douae Ahmadoun, Elise Bonzon, Cédric Buron, Pavlos Moraitis, Pierre Savéant, et al.. Decentralized
Coalition Structure Formation for Interdependent Tasks Allocation. International Conference on Tools
with Artificial Intelligence, Nov 2021, Virtuel, United States. �10.1109/ICTAI52525.2021.00018�. �hal-
03482429�

https://hal.science/hal-03482429v1
https://hal.archives-ouvertes.fr

Decentralized Coalition Structure Formation
for Interdependent Tasks Allocation

Douae Ahmadoun
LIPADE, University of Paris

Thales Research and Technology
Paris, France

douae.ahmadoun@etu.u-paris.fr

Elise Bonzon
LIPADE, University of Paris

Paris, France
elise.bonzon@u-paris.fr

Cédric Buron
Thales Research and Technology

Palaiseau, France
cedric.buron@thalesgroup.com

Pavlos Moraitis
LIPADE, University of Paris

Argument Theory Paris, France
pavlos.moraitis@u-paris.fr

Pierre Savéant
Thales Research and Technology

Palaiseau, France
pierre.saveant@thalesgroup.com

Onn Shehory
Bar Ilan University
Ramat-Gan, Israel

onn.shehory@biu.ac.il

Abstract—This paper addresses the problem of task allocation
among multiple autonomous agents that must accomplish a
complex global task. Solutions to the problem have real-world
applications in defense, space, disaster management, etc. We solve
this problem via agent coalition formation. Multiple coalition
formation mechanisms were introduced in prior art, seldom
accounting for interdependent tasks. We address this challenge.
We introduce an anytime decentralized coalition formation mech-
anism that enables agents with complementary capabilities to
form, autonomously and dynamically, feasible coalition structures
that accomplish a global, composite task. The formed structures
are incrementally improved via agent replacements to optimize a
global utility. We analyze the complexity and show that, although
the general problem is NP-hard, our mechanism provides a so-
lution within acceptable time. We present extensive experimental
results that illustrate the added value of our approach.

Index Terms—coalition formation, decentralization, agents,
task allocation, task interdependence, constraint solving

I. INTRODUCTION

With the rise of low-cost robotics and drones, multi-agent
coordination (MAC) has proven very effective for robotic
teamwork (e.g., [20] [11]). Many MAC problems require mul-
tiple heterogeneous agents to concurrently perform a joint task,
comprised of sub-tasks. E.g., in search and rescue problems
[2], robots with complementary capabilities perform a set of
tasks that jointly address a global task. Yet, the vast majority
of such solutions assume task independence. In this study we
assume task interdependence.

Such MAC problems are commonly solved via agent coali-
tion formation [19]. Thus, the global task is accomplished
by a set of coalitions comprising a coalition structure [16].
Optimal coalition formation and coalition structure generation
are exponentially complex. Recent progress lead to complex-
ity reduction in specific domains, however optimal solutions
remain exponential. Task interdependence further increases
complexity as the formation of a coalition and its utility may
depend on other coalitions. Distributed solutions that attempt
to ease complexity, e.g. [12], opt for an anytime approach,
where quality improves as the formation process progresses.

In this paper we present a novel decentralized, anytime
coalitions formation and task allocation mechanism, that di-
verges from the art in several ways. Specifically, we address
coalition formation where sub-tasks and coalition utilities
are interdependent, thus affecting the global utility of the
coalition structure. To address this, our mechanism simultane-
ously considers local and global task requirements, account-
ing for interrelations thereof. Such interrelations are seldom
considered in prior art. Additionally, our approach explicitly
represents both qualitative and quantitative information on
agent characteristics and task requirements.

Our coalition formation and task allocation mechanism is
fully decentralized, thus preventing a single point of failure.
Initially, agents only know their own characteristics, the global
task and its sub-tasks and their respective requirements, and
the set of the available agents. Gradually, agents may accu-
mulate information on the characteristics of other agents and
on potential coalitions and coalition structures. Throughout
the process, each agent matches task requirements against its
characteristics (and characteristics of other agents it learned
about) and accordingly decides which coalition it should join
to maximize global utility.

Our mechanism comprises 2 stages. Stage I finds a fea-
sible coalition structure if one exists. Denote the method
of stage I as Feasible Interdependent Coalition Structure
Anytime Method (FICSAM). If a solution is found, in stage II
agents incrementally improve it in a decentralized manner
via replacements of single agents in the coalition structure,
while maintaining feasibility (i.e. no single or global task
requirements are violated). Thus, we guarantee at anytime,
the generation of a solution that systematically increases the
global utility. Denote the method of stage II as Improved
Feasible Interdependent Coalition Structure Anytime Method
(IFICSAM).

Extensive experiments show promising performance: the
global utility with up to 100 agents and up to 20 tasks is close
to the optimum and obtained within a reasonable runtime.

II. PROBLEM FORMULATION

Given a global task T = {t1, t2, .., t|T |} and a set of agents
A = {a1, a2, .., a|A|}, we solve the problem of decentralized
allocation of tasks tj ∈ T to agents ai ∈ A, to accomplish T .

Definition 1 (Agent characteristics). ai ∈ A is described by a
set of attributes X = {x1, .., x|X|}, xk(ai) is the value of ai
under attribute k. Without loss of generality (w.l.o.g.) consider
each attribute as a function xk : A→ Dk, Dk the domain of
values for k. We call these attributes agent characteristics.

The agents have to perform tasks as defined below:

Definition 2 (Single task requirements). tj ∈ T is described
by a set of attributes Γtj ={γ1, .., γm}, γl(tj) is the value of
task tj under attribute l. W.l.o.g. we consider each attribute as
a function γl : T → Kl, Kl the domain of values for attribute
l. We call the attributes Γtj single task requirements.

Definition 3 (Task combinations requirements). Consider a set
of attributes Λcbtj ={λ1, .., λn} concerning task combinations
s.t. λk(cbtj) the value of task combination cbtj ∈ Tcbt, Tcbt ⊆
2T , under attribute k. W.l.o.g. consider each attribute as a
function λi : Tcbt → Lk, Lk the domain of values for k. We
call the attributes Λcbtj task combinations requirements.

Single task requirements can be seen as constraints that
have to be satisfied for the tasks to be accomplished. Task
combinations requirements can be seen as constraints that have
to be satisfied to address interdependence among tasks (e.g.
temporal constraints imposing accomplishment order).

Example 1. Consider A = {a1, a2, a3, a4} scattered on a
10m × 10m grid, that must perform T = {t1, t2}. Agent
characteristics are location x1, energy x2 and payload x3
(normal camera C or thermal one R). See Table I.

xk xk(a1) xk(a2) xk(a3) xk(a4)

x1 (0, 0) (3, 3) (1, 2) (5, 3)

x2 10 5 7 8
x3 C R C R

TABLE I: Example of characteristics of agents

Each task has 4 requirements. γ1: task location and the
maximal allowed distance of an agent from that location. γ2:
minimum energy needed to perform the task. γ3 minimum
required payload for the task (brought by all the agents). γ4:
minimum number of agents needed to accomplish the task.
Requirements of {t1, t2} are presented in Table II.

γl γl(t1) γl(t2)

γ1 〈(3, 0),≤ 4〉 〈(4, 4),≤ 10〉
γ2 ≥ 3 ≥ 7

γ3 ⊇ {(C, 1)} ⊇ {(C, 1), (R, 1)}
γ4 ≥ 1 ≥ 2

TABLE II: Example of requirements of tasks

We also define a requirement on combinations of tasks over
the maximum number of agents allocated to the tasks. Here
Λcbt = {λ1}, where λ1({t1, t2}) ≤ 3.

Combined characteristics of a set of agents may allow to
fulfil task requirements, or conflict with such requirements.

Definition 4 (Fulfillment relation). Let s = {a1, .., a|s|} a set
of agents, Xs = {Xa1 , .., Xa|s|} their characteristics, tj ∈ T
a task and ./ denoting the satisfaction (w.r.t. a mathematical
operator e.g. =,≤,≥,... according to the case) of the assign-
ment of a value to a requirement γl(tj) by the assignment
of a value to some characteristic xk(ai). We say that s can
fulfil a requirement γl ∈ Γtj denoted scc 	 γl(tj) if there
exists a combination of characteristics cc = {xk, .., xr} ⊆
Xa1
∪, ..,∪Xa|s| such that

∑|s|
i=1 xk(ai) ./ γl(tj) for some

xk ∈ cc or xr(ai) ./ γl(tj) for some xr ∈ cc with r 6= k,
saying (slightly abusing the notation) that cc ./ γl. In contrast,
we say that scc has a conflict with the requirement γl ∈ Γtj , if
∃xk ∈ cc s.t. xk is in conflict with this γl denoted as xk 6./ γl.

Example 1. Continued. To assess requirement fulfilment, we
first compute agent distances from task locations (see Table
III). For simplicity, w.l.o.g., we use Manhattan distances.

d(ai, tj) a1 a2 a3 a4 d(ai, tj) a1 a2 a3 a4

t1 3 3 4 5 t2 8 2 5 2

TABLE III: Manhattan distance between agents and tasks

For example, {a1} 	 γ1(t1), as a1 respects the maximal
distance from t1; {a1, a3, a4} 	 γ2(t2), as these agents have
the minimal energy needed to perform t2; {a1, a2} 	 γ3(t1),
as a1 brings the resource C. However, x2(a2) 6./ γ2(t2) as a2
does not have enough energy to perform t2.

Agents can form coalitions to accomplish a task tj ∈ T .

Definition 5 (Coalition). Let τ : A→ T a function assigning
ai to tj when ∃xk ∈ Xai

, ∃γl ∈ Γtj s.t. xk ./ γl, and @xm ∈
Xai

s.t. xm 6./ γp for any γp ∈ Γtj with p 6= l. Coalition Ctj

whose task is tj is Ctj = {ai ∈ A | τ(ai) = tj} ∈ 2A.

A global task T requires a set of coalitions S, called
coalition structure. Each Ctj ∈ S is assigned a task tj ∈ T .
When S can accomplish T it is a feasible coalition structure.

Definition 6 (Feasible coalition structure). Let a coalition
structure S = {Ct1 , Ct2 , ..., Ct|T |} over T . S is a feasible
coalition structure (or feasible solution) denoted Sf iff ∀tj ∈ T
s.t. Ctj ∈ Sf it holds that ∀γl ∈ Γtj , ∃scc ⊆ Ctj s.t.
scc 	 γl(tj) and if Λcbt is a set of requirements concerning
combination of tasks then XSf ./ Λcbt.

We use coalition structure modification functions:
• ⊕ : S×(A×T)→ S, to add a specific agent to a specific

coalition. S⊕(ai, tj) is a structure in which Ctj ← Ctj ∪
{ai} and ∀k 6= j, Ctk does not change.

• 	 : S × (A × T) → S, to remove a specific agent from
a specific coalition. S 	 (ai, tj) is a structure in which
Ctj ← Ctj \ {ai} and ∀k 6= j, Ctk does not change.

Example 1. Continued. Sf
1 = {{a1}, {a3, a4}} and Sf

2 =
{{a3}, {a1, a4}} are the only two feasible coalition struc-
tures: the requirements of t1, t2 and T are all fulfilled.

One can observe that no other structure is feasible. E.g.,
S = {{a1, a2}, {a3, a4}} is not feasible: if t1, t2 requirements
are fulfilled, the requirement over T is not.

We refer to single-task agents [9], i.e., can accomplish only
one task at a time. Thus, Ctj , Ctk ∈ S, j 6= k⇒ Ctj∩Ctk = ∅.
Some agents have no task assignment, thus

⋃|T |
j=1 Ctj ⊆ A.

We define means to evaluate coalition structures w.r.t. T .

Definition 7. Let CS be the set of all possible coalition
structures that could be assigned to a global task T . Let G be
a set of criteria s.t. ∀gk ∈ G there exists a weak order Gk upon
the set CS, Gk ⊆ CS2 s.t. if (S, S′) ⊆ Gk, then S � S′ and
∃gk : CS → R, gk(S) ≥ gk(S′). Then, w.l.o.g., we define the
decision problem: ∀k,maxS∈CS gk(S), which should identify
the coalition structures S maximizing “simultaneously” the
performance of such structures upon all gk ∈ G for T .

To consider task interdependence, we need to define a
function that evaluates a coalition structure S as a whole,
accounting for coalition interdependence. Provided that the
conditions of commensurability, compensation and preferential
independence are satisfied among the criteria in G (see [4]),
a global additive value function uglobal is applicable:

uglobal(S) = Σkuk(gk(S))

We normalize to the interval [0,1]. ūk are the normalized
functions and wk are criteria importance weights. We get:

uglobal(S) = Σkwkūk(gk(S))

Our study aims to design an algorithm that finds a feasible
coalition structure S∗f that maximizes uglobal(S). Our generic
approach allows considering other evaluation functions too.

uglobal(S
∗f) = max

S∈CS
Σkwkūk(gk(S))

Example 1. Continued. We define 5 criteria to evaluate a
coalition structure S:
• # agents near (w.r.t a threshold) the task they are allo-

cated: g1(S) = ΣCtj
∈S |{ai ∈ Ctj |dist(ai, tj) ≤ th

tj
1 }|

• # agents whose energy is greater than a threshold:
g2(S) = ΣCtj

∈S |{ai ∈ Ctj |x2(ai) ≥ th
tj
2 }|

• # agents that bring the resources that are needed:
g3(S) = ΣCtj

∈S |{ai ∈ Ctj |x3(ai) = th
tj
3 }|

• # agents allocated to each task, given task threshold:
g4(S) = ΣCtj

∈S(1 if |Ctj | ≥ γ4(tj); |Ctj |/γ4(tj))
• otherwise, g5: 1 if the maximum # agents allocated to the

global task is respected, 0 otherwise.
With equal criteria weights, we define the normalized functions
ūk(gk(S)) to compute the utilities of coalition structures.

uglobal(S) = 1/5((g1 + g2 + g3)/|A|+ g4/|T |+ g5)

If we assume that tht11 = tht21 = 3, tht12 = 4, tht22 = 9,
tht13 = C, tht23 = C ∨R, we have:

uglobal(S
f
1) = 1/5((2 + 1 + 3)/4 + 2/2 + 1) = 0.7

uglobal(S
f
2) = 1/5((2 + 2 + 3)/4 + 2/2 + 1) = 0.75

III. OUR APPROACH

A. General Description

As stated above, we aim at finding the best feasible coalition
structure (w.r.t. uglobal), if it exists, or detect nonexistence
early on. In our solution, a structure comprises agent coalitions
and a task assigned to each coalition. We propose a decen-
tralized solution approach based on token passing among the
agents. The process is divided into rounds. In each round the
token is circulated among the agents. The round ends when all
agents have received the token once. Agent ordering depends
on application-based criteria.

At start, each agent knows its own characteristics and the
global task to be accomplished. Information about the other
agents and the evolution of the coalition structure formation ar-
rives via the token passing process. When ai sends the token to
aj , it adds information on the best feasible coalition structure
S formed so far, XS , and the round of the process. Holding
the token, ai may decide to join (or initiate) a coalition Ctj

assigned to tj , if it can contribute to the accomplishment of
tj or its participation can increase uglobal. Where applicable,
ai updates the information it received with the changes it
has applied. Then, ai passes the token to the next agent.
We assume agents can exchange messages, yet the underlying
communication infrastructure is beyond this article’s scope.

Our mechanism has 2 stages. Stage I coincides with the first
round, implementing the FICSAM method. It finds a feasible
coalition structure Sf , if one exists. Hence, an agent joins a
coalition only if it can satisfy some task requirements not yet
satisfied by other coalition members, regardless of the impact
on uglobal. If no Sf is found in stage I, no such Sf exists.

Stage II implements the IFICSAM method, incrementally
improving feasible the feasible coalition structure found so far.
It starts from round 2, once Sf was found in round 1. Agents
improve uglobal via replacements or swaps between agents.
The resulting improved structure must preserve feasibility,
respecting all requirements.

B. Agent Decision Process

Algorithm 1 describes the decision process of agent ai,
triggered when ai gets a message from some aj during
the coalition formation process. Its decision depends on the
message content and the round R of the process. Firstly (line
3), ai checks the feasibility of the received coalition structure
S according to feasibility criteria of the given application.
Then, if R[i] = 1 and S not yet feasible, it computes a
feasible structure w.r.t. T , task-level and combination-level
requirements, and its potential contribution if it joins S.
For this, it uses procedure s-f-st (line 5) that models this
problem as a constraint satisfaction problem (CSP) where
variables represent agents (i.e. {ai} ∪ S) decisions, each
variable’s domain is the task set T and constraints implement
tasks requirements satisfaction w.r.t. agents characteristics, i.e.,
(Xai

∪ XS\ai
) ./ ΓT and (Xai

∪ XS\{ai}) ./ Λcbt. We use
the Lazy Clause Generation based constraint solver Chuffed
[6] but other solvers can be used as well.

As said earlier, when ai holds the token it adds the in-
formation about its characteristics to XS . Thus, in round 1,
when ai gets the token, it has to solve a centralized coalition
formation problem based on the knowledge accumulated so
far. ai tries to find whether the characteristics in XS are
sufficient to satisfy all requirements of both individual tasks
and task combinations. Requirements are modeled as hard
constraints [8] and a CSP is solved. Other centralized coalition
formation methods, e.g., [19], can be applied too. If no feasible
structure is found in round 1 (i.e., the CSP has no solution),
the process terminates as there is no solution. Else, the process
proceeds to gradually improve the initial feasible structure.

In line 6 ai checks the feasibility of S returned by s-f-st
by executing check-feasibility. The latter is implemented as a
CSP whose input includes agent variables, tasks, constraints
corresponding to local and global requirements and the so-
lution represented as the variables domains. If the structure
is feasible the solver returns it. Otherwise it proves that no
solution exists. If S is feasible, we found the first feasible
solution Sf . This structure is sent by ai to all members of
the coalitions of the structure formed so far, along with XS

and initializes counter nd ← 0 (”nd” stands for ”number of
decisions”). nd is initialized when a new solution is introduced
in the process by an agent. It is incremented when an agent
is unable to improve the current feasible structure.

When ai cannot find a feasible structure with XS , it
examines ways to contribute to feasible structures by agents
that have not yet had the token in that round. It examines
tasks whose requirements match its characteristics, i.e., tasks
in Ti (line 16). Then ai picks a task tj ∈ Ti (line 18), joins
Ctj ∈ S, and adds its characteristics to XS . As before, ai
checks whether the updated S improves uglobal. ai sends the
token to the next agent, including S and XS in the message.
However, if ai is the last to receive the token, it implies that
there is no feasible solution. ai informs the agents in S about
this.

If R[i] > 1, a feasible solution was already found (line 34)
and the agents seek another feasible solution that maximizes
uglobal. For this, ai can use Algorithm 2, (line 35), presented
later. If the returned improved coalition structure is feasible
(line 37) then it becomes the best current feasible one (line
38). In this case ai sends this solution to all the agents in
the structure. If the returned structure is not feasible, it is not
further considered. Hence, ai reconsiders the feasible structure
that it received from the previous agent (line 41).

Lines 42−47 concern cases where S is feasible but ai could
not improve it. Here, if nd < |A|, ai increments nd and passes
the token to the next agent. Otherwise S cannot be improved
anymore and ai informs the agents that the process is ending
with S as the best feasible solution found so far.

C. Improved FICSAM (IFICSAM)

Algorithm 2 allows agents to improve in R > 1. Once ai
receives the token, it assumes that the received structure S
maximizes uglobal (line 1). It then checks whether it can in-
crease uglobal in two ways. The first consists of ai switching to

Algorithm 1: decide(ai, Xai
, T,ΓT ,Λcbt, S,XS , R, nd,A,

is f(S))
1 Sold ← S; R[i]← R[i] + 1
2 if R[i] = 1 then
3 if not(is f(S)) then
4 Smax ← S
5 S ← s-f-st(T,ΓT ,Λcbt, {ai} ∪ S, ai,

Xai ∪XS\{ai})
6 is f(S)← check-feasibility(T,ΓT ,Λcbt, A,S)
7 if is f(S) then
8 Sf ← S; nd← 0
9 Smax ← Sf

10 for Ctj ∈ S do
11 for al ∈ Ctj do
12 send(propose(ai, al, 〈”ats”, S,XS , R, nd〉))

13 else
14 if R 6= 〈1, ..., 1〉 then
15 Ti ← ∅
16 for tj ∈ T s.t. Xai ./ Γtj do
17 Ti ← Ti ∪ {tj}
18 Get tj ∈ Ti
19 S ← S ⊕ (ai, tj)
20 XS ← XS ∪Xai
21 if uglobal(S) > uglobal(Smax) then
22 Smax ← S; nd← 0
23 send(propose(ai, next(ai), 〈”gt”, S,XS ,

R,nd〉)
24 S ← Smax; nd← nd+ 1
25 send(propose(ai, next(ai), 〈”gt”, S,XS ,

R,nd〉))
26 else
27 (i.e. R = 〈1, ..., 1〉)
28 Sf ← 〈[], [], ..., []〉
29 for Ctj ∈ S do
30 for al ∈ Ctj do
31 send(inform(ai, al, 〈”end”, ∅, ∅, 1〉))

32 else
33 (i.e. R[i] > 1)
34 Sf ← S
35 call IFICSAM(ai, Ti, S)
36 is f(S)← check-feasibility(T,ΓT ,Λcbt, A, S)
37 if is f(S) and S 6= Sf then
38 Sf ← S; nd← 0
39 for tj ∈ T do
40 for al ∈ Ctj do

send(propose(ai, al, 〈”ats”, S,XS , R, nd〉))

41 else S ← Sold

42 if nd < |A| and S = Sold then
43 nd← nd+ 1
44 send(propose(ai, next(ai), 〈”gt”, S,XS , R, nd〉))
45 else
46 for al ∈ A do
47 send(inform(ai, al, 〈”end”, S,XS , R〉))

another task (and coalition). Agent ai examines its contribution
to its coalition Ctj ∈ S. There may be tk ∈ Ti that, if ai
contributes to its performance instead of contributing to tj ,
uglobal increases. Task switching is relevant if no requirement
of tj is violated and if uglobal increases when ai participates
in the accomplishment of tk instead of tj (line 3). In that case
the new structure becomes the maximal one (line 4).

The second consists of agent switching. ai checks whether
it can replace another agent al that currently fulfils the
requirements of tj assigned to Ctj ∈ S (i.e. al leaves S) or
to swap with it, by fulfilling the requirements of tk currently
fulfilled by ai in the coalition assigned to tk. If the change
increases uglobal it is implemented, and S is updated to a new
structure S′, uglobal(S′) > uglobal(S) (lines 6-13). Feasibility
of this new solution is verified in Algorithm 1 (line 36).

Algorithm 2: IFICSAM(ai, Ti, S)
1 Smax ← S
2 for tj ∈ Ti \ τ(ai, S) do
3 if doesn’t exist γm ∈ Γtj s.t. Xai 6./ γm(tj) and

uglobal(S ⊕ (ai, tj)	 (ai, τ(ai, S)) > uglobal(Smax)
then

4 Smax ← S ⊕ (ai, tj)	 (ai, τ(ai, S))

5 for ak ∈ Ctj s.t. doesn’t exist γl ∈ Γτ(ai,S) with
Xk 6./ γl(τ(ai, S)) do

6 if uglobal
(
S ⊕ (ai, tj)	 (ak, tj)	 (ai, τ(ai, S))

)
>

uglobal
(
S ⊕ (ai, tj)⊕ (ak, τ(ai, S))	

(ai, τ(ai, S))	 (ak, tj)
)

then
7 Snew ← S ⊕ (ai, tj)	 (ak, tj)	 (ai, τ(ai, S))

8 else
9 Snew ← S ⊕ (ai, tj)⊕ (ak, τ(ai, S))	

(ai, τ(ai, S))	 (ak, tj))

10 if uglobal(Snew) > uglobal(Smax) then
11 Smax ← Snew

12 if uglobal(Snew) > uglobal(Smax) then
13 Smax ← Snew

14 return Smax

D. Coalition Formation Global Procedure

Algorithm 3 implements the global behavior of agents par-
ticipating in the process and acting either as process initiators
(lines 1-15) or as candidate members of coalitions in S (lines
16-34). An initiator starts by initializing round 1 (line 2),
then looking for tasks in T with requirements that match its
characteristics (i.e. Xai

./ Γtj) (line 4). It builds Ti ⊆ T , the
list of tasks it can perform (line 5). It picks one, say tj (line
6), and initializes a coalition in S (line 7) that is assigned to
tj . It adds its characteristics to XS (initially empty) (line 8).
XS will accumulate the characteristics of all members of the
coalitions in S. Then, it checks feasibility of S using check-
feasibility. In the (less probable) case that S is feasible (e.g.,
if T contains only task tj), S becomes an anytime solution.
ai considers S as a feasible structure to explore (nd ← 0)
and sends this proposal to all agents in A (lines 12-13). Thus,
it initiates a process that checks whether there exists another

feasible coalition structure S′ that improves uglobal(S). If S
is not feasible, ai initializes a coalition structures formation
process by sending a message to the next agent aj (line 15).
With this message ai passes the token to aj who will enter the
process. ai informs aj about S, the characteristics accumulated
so far and the current round (i.e. round 1).

When agent ai acts as a candidate member of a
coalition structure its activity depends on the mes-
sages it receives from other agents. In case of a pro-
pose(al, ai, 〈”ats”, S,XS , R, nd〉) message, if an anytime so-
lution is required, the process terminates with S as the best
feasible structure found so far (w.r.t. uglobal). This can occur
either at the end of round 1 or in the middle of another
round. Otherwise the receiving agent ai considers that S is
a feasible structure (line 23) that can be possibly further
improved (wrt uglobal) and for that it uses procedure decide.
The message propose(al, ai, 〈”gt”, S,XS , R, nd〉) means that
S is not a feasible solution and the sender al passes the
token (gt) to ai who will use decide to examine whether
it can contribute to finding a feasible solution. The message
inform(al, ai, 〈”end”, ∅, ∅, 1〉) informs the agents that no fea-
sible structure was found in round 1 and the process ends
with failure, while message inform(al, ai, 〈”end”, S,XS , R〉)
informs of an end with a feasible and improved solution.

E. Complexity

We discuss the complexity of Algorithm 1 and Algorithm
3. These algorithms may rely on others, in which case we may
discuss the complexity of those algorithms too. Algorithm 1
appears as a simple procedure, linear in |T | and |A|. However,
one can observe that it calls other procedures, i.e., s-f-st and
check feasibility, that are solving CSPs [8] whose complexity
is NP-hard (one can show reduction from the 3-SAT problem).
Hence, Algorithm 1 is NP-hard as well. This may seem
prohibitive but CSP solvers like the one we use (Chuffed
[6]) allow to efficiently deal with high complexity problems.
Algorithm 3 also seems linear in |T | and |A|. However, it calls
Algorithm 1. Hence, it is NP-hard too, but solvable in practice.

IV. EXPERIMENTAL EVALUATION

We illustrate the added value of our approach and evaluate
its performance by benchmarking on a sample application. We
also compare performances to a centralized method.

A. The scenario generator

We evaluate our approach with a set of scenarios generated
automatically. These are used to benchmark FICSAM, IFIC-
SAM and a centralized solution. The scenarios are generated
according to the following settings: a fleet of Unmanned Aerial
Vehicles (UAVs) are assigned a mission in a seaport. The
(UAV) agents must inspect hulls of boats in the port. The
UAVs are lying on Unmanned Surface Vehicles (USVs), where
they can charge. There are typically tens of UAV agents.
However, to stretch-test our approach and compare it to a
centralized approach, we experiment with up to 100 agents
and 20 tasks. The USVs are scattered across the port, so that

Algorithm 3: coalition-formation(T , A, ΓT , Λcbt,
msg(perf (al, ai, < content >)))

1 if agent ai makes the first proposal then
2 Smax ← ∅; S ← ∅; R[i]← R[i] + 1
3 XS ← ∅; Ti ← ∅; nd← 0
4 for tj ∈ T s.t. Xai ./ Γtj do
5 Ti ← Ti ∪ {tj}
6 Get tj ∈ Ti
7 S ← S ⊕ (ai, tj)
8 XS ← XS ∪Xai
9 is f(S)← check-feasibility(T,ΓT ,Λcbt, A, S)

10 if is f(S) then
11 Smax ← S
12 for al ∈ A do
13 send(propose(ai, al, 〈”ats”, S,XS , R, nd〉))

14 else
15 send(propose(ai, next(ai), 〈”gt”, S,XS , R, nd〉))

16 while true do
17 Get msg(perf (al, ai, < content >))
18 switch msg(perf (al, ai, < content >)) do
19 case propose(al, ai, 〈”ats”, S,XS , R, nd〉) do
20 if requirement anytime solution then
21 decision← ”success”
22 End of coalition formation process with a

feasible solution
23 else
24 is f(S)← true
25 call decide(ai, Xai , T,ΓT ,Λcbt, S,

XS , R, nd,A, is f(S))

26 case propose(al, ai, 〈”gt”, S,XS , R, nd〉) do
27 is f(S)← false
28 call decide(ai, Xai , T,ΓT ,Λcbt, S,XS ,

R,nd,A, is f(S))
29 case inform(al, ai, 〈”end”, ∅, ∅, 1〉) do
30 decision← ”failure”
31 End of the coalition process in first round with

no feasible solution found
32 case inform(al, ai, 〈”end”, S,XS , R〉) do
33 decision← ”success”
34 End of coalition formation process with a

feasible and improved (wrt global utility)
solution

the UAVs can easily charge to handle new tasks. Our scenario
generator implements this by random positioning of USVs
(with a uniform distribution) on the port grid.

Inspection tasks may require various sensors. Here, we rely
on two sensor types: HD cameras and LASERs (see e.g., [1]).
The quantity of each resource required by a task depends on
boat hull. In our scenario generator, the number of resources
of each type is uniformly sampled between 0 and nagents

2·ntasks
.

This maintains scenario diversity and simplifies comparison
across scenarios and settings, as averages are the same and can
be compared without normalization. In addition to resource
constraints, the generator introduces task interdependence via
constraints on sets of tasks. Finally, each task has a deadline.

The scenario generator also generates UAV agents. For the
sake of simplicity, all UAVs have the same maximum speed.

Therefore, the travel time to a task is proportional to the dis-
tance between the task and the UAV. Given a grid size G, the
generator randomly and uniformly draws UAV distances from
[G/2 . . . G]. The agents are provided with sensors s.t. 25%
of them have both sensors, 37.5% have only a LASER and
37.5% have only an HD camera. The token passing strategy
implemented is based on inter-agents distances. An agent that
holds the token sends it to the nearest agent that hasn’t yet
received the token in the current round. Finally, the global
utility function is a normalized additive function computed
for tasks and task combinations by accumulating their values,
meeting their requirements, matched against coalitions’ and
agents’ characteristics.

The generator produces both feasible and infeasible sce-
narios. The latter are of interest for method comparison, as it
requires that the algorithms prove unsatisfiability, which might
take a long time.

B. Setup

To understand the impact of the number of agents |A|
and tasks |T |, simulations are performed considering sample
mission scenarios with |A| ∈ [5..100] and |T | ∈ [2..20].
Tasks are handled by multiple agents, hence |A| > |T |. The
reported results include algorithms’ execution time, utilities
of the structures they return and the number of exchanged
messages. For each {|A|, |T |} pair, we executed 200 runs.
The execution platform was a 3.70 GHz Intel(R) Core(TM)
i9-10900X CPU running Python and the MiniZinc tool chain.

C. Centralized Solution

Our decentralized approach allows agents to make local
decisions and avoid a single point of failure. However, com-
parison to a centralized solution facilitates evaluation of our
solution’s distance from optimum, and execution time.

For the centralized method, we modeled our allocation
problem as a Constraint Optimization Problem (COP) and
solved it with the Lazy Clause Generation based constraint
solver Chuffed [6] through the constraint modeling language
MiniZinc [14].

Since the proof of unsatisfiability or the proof of optimality
might be very long, we instrumented our code with a timeout.
Whenever the search is interrupted, we consider the problem as
unsatisfiable for the first case and as the best solution found
so far for the second case. In addition, in order to prevent
from pathological cases, we filter the instances with a series
of necessary and sufficient conditions. No need to bother the
solver in such cases, which might take a long time to prove
unsatisfiability.

D. Results Evaluation

We present in Table IV the results of FICSAM, IFICSAM
and the aforementioned centralized approach for each metric.
Each single result in the table is an average over experiments
with 200 scenarios that were randomly generated by the
scenario generator. The three methods were all tested on the
same scenarios. The remainder of this section presents the

Agents
number

Tasks
number

Utilities Execution time in sec (error type) Messages number

FICSAM IFICSAM Centralized FICSAM IFICSAM Centralized FICSAM IFICSAM

5 2 0.58 0.73 0.83 0.9 (± 0.0) 1.4 (± 0.0) 0.2 (± 0.0) 18.4 25.9
10 2 0.59 0.79 0.85 1.6 (± 0.0) 3.0 (± 0.1) 0.2 (± 0.0) 36.8 71.7
10 5 0.55 0.70 0.78 1.7 (± 0.0) 2.9 (± 0.1) 48.0 (± 5.3) 38.0 61.8
20 2 0.53 0.73 0.85 3.6 (± 0.01) 6.8 (± 0.1) 0.2 (± 0.0) 71.5 177.2
20 5 0.53 0.75 0.86 3.4 (± 0.1) 6.1 (± 0.1) 0.2 (± 0.0) 71.8 170.7
20 10 0.53 0.70 0.79 42.0 (± 6.9) 43.9 (± 7.0) 1184.4 (± 9.0) 75.6 158.2
50 2 0.51 0.67 0.85 7.0 (± 0.2) 11.6 (± 0.3) 4.6 (± 6.0) 178.3 557.6
50 5 0.49 0.67 0.86 69.1 (± 11.1) 76.4 (± 11.3) 0.3 (± 0.0) 176.0 576.3
50 10 0.54 0.71 0.86 387.6 (± 25.4) 398.4 (± 25.4) 25.1 (± 7.2) 181.7 526.8
50 20 0.44 0.61 0.80 212.6 (± 25.1) 222.2 (± 25.1) 1195.7 (± 4.5) 180.3 511.7

100 2 0.48 0.62 0.85 70.2 (± 14.2) 83.4 (± 14.3) 1.8 (± 0.4) 351.3 1349.9
100 5 0.48 0.61 0.86 189.7 (± 24.1) 209.3 (± 24.0) 1.2 (± 7.3) 349.7 1204.1
100 10 0.48 0.63 0.86 446.5 (± 24.7) 468.9 (± 24.4) 32.0 (± 7.3) 350.6 1419.5
100 20 0.53 0.65 0.83 1043.9 (± 45.8) 1073.8 (± 45.8) 1158.6 (± 12.6) 362.2 1147.1

TABLE IV: Experimental results

results in terms of utility for the system, runtime and number
of messages exchanged for the decentralized version (this
metric has no meaning for the centralized approach). For space
reasons, only the results for feasible scenarios are presented.

Not surprisingly, the utilities of the solutions generated by
the decentralized approaches are below those of the centralized
approach (that are optimal, except for cases when the time
limit is reached). However, impressively, they are rather close
to that optimum. FICSAM solution utilities, being the first
feasible coalition structures agents find, are below those of
IFICSAM solutions where agents continue searching for other
feasible coalition structures with better utilities. The utilities
of FICSAM are consistently above 50% of the utilities of the
centralized approach. The utilities of IFICSAM are always
above 70% of the utilities of the centralized approach, and are
at 75% from optimum on average. We can observe that, for
a large number of agents (50 or 100), performance slightly
degrades. We believe that this may result from difficulty in
finding an initial solution (as discussed below).

Notice that our algorithms terminate quickly. Surprisingly,
for the largest instance of 100 agents and 20 tasks, despite the
message exchange overhead and the computations performed
by disparate agents, both FICSAM and IFICSAM are faster
than the centralized algorithm. Further, the latter, given a
1200 seconds timeout, sometimes terminates without reaching
an optimal solution. The runtime varies across scenarios. It
depends not only on the number of agents and the number
of tasks, but also on scenario complexity. For instance, in
scenarios with larger numbers of tasks, a smaller average
number of agents is needed for each task. Therefore, in
some cases, the problem becomes simpler as its combinatorial
complexity is lower, which favors decentralized algorithms.
For instance, for 50 agents, scenarios with 20 tasks take less
time than with 10 tasks.

However, additional tasks, keeping the number of agents
intact, increase the difficulty for agents to find a first solution
and send an anytime message to other agents. This can explain
the bigger the drop in the number of exchanged messages
where we have more tasks for the same number of agents.

When the number of tasks is very small, the problem is
inverted; the number of agents required for each task is larger.
This agent multiplicity produces many symmetries among the
variables representing the agents in the centralized COP solu-
tion, imposing additional computation. This can explain why
the centralized algorithm, for 50 and 100 agents, requires more
time to solve scenarios with 2 tasks compared to scenarios with
5 tasks. A deeper study of the impact of scenario variations
on the complexity of constrained allocation problems is called
for. We leave this for future work.

As mentioned above, a part of generated scenarios are
infeasible whenever task requirements cannot be covered by
the generated set of agents. In such cases, the number of
exchanged messages in our mechanism is always twice the
number of agents. This results from the number of token pass-
ing messages, to which we add the number of end messages
with the mention failure. Moreover, FICSAM and IFICSAM
take significantly less time than the centralized algorithm to
terminate. For 20 agents and 10 tasks, for example, they
terminate after 70 seconds on average, while the centralized
algorithm takes 400 seconds. For 50 agents and 10 tasks, they
terminate after 360 seconds while the centralized, interrupted
by the timeout, takes 1200 seconds. This observation sheds
light on the cost of computing an unsatisfiability certificate by
COP methods. This cost appears significantly larger than the
computational cost exhibited by the decentralized approaches
presented in this paper.

V. RELATED WORK

Task allocation to groups of agents has been addressed
by several approaches, including coalition formation methods
[19]. Among the classes of task allocation problems defined
by [9], the case we address in this paper falls in the category
of single-task robots and multi-robot tasks (ST-MR).

Some coalition formation studies address the problem of
interdependent coalitions via Partition Function Games (PFGs)
[13], in contrast with Characteristic Function Games (CFGs).
In PFGs, a coalition’s value depend not only on the iden-
tity of its members but also on the way non-members are

partitioned. Therefore, computing coalition structures in PFGs
is very challenging: given an arbitrary partition function, an
exhaustive search is required to provide an optimal coalition
structure [15] unless additional assumptions – externalities –
are provided. Indeed, [17] define a specific kind of externalities
that represent inter-coalition effects (e.g., assumptions on util-
ity functions, and coalition mergers). That solution approach
is inapplicable in our case, where each task is associated with
one coalition, as the set of tasks dictates a fixed number of
coalitions, and mergers are therefore irrelevant. Other similar
coalition structure generation solutions [16] focus on complex-
ity reduction, however distribution and partial information are
usually not their main focus.

Several approaches were proposed to solve the Partition
Function Form Game problem [10]. However, these methods
are centralized, and the notion of agents is either absent or sub-
ject to a centralized allocation. The agents are not autonomous
and do not make their own decisions: their orders are provided
by the centralized planning agent. Such a centralized approach
is inapplicable in our case.

Multiple methods have been used to solve CFGs. One
approach is to rely on Constraints Optimization Problems
(COP) and Constraint Satisfaction Problems [8] and their
solutions, to find suitable ways to form coalitions, while
enforcing constraints on the coalition structure. For instance,
in [18], task allocation with spatial and temporal constraints
is presented. That method allocates agents to tasks so that
coalitions are feasible w.r.t. the locations, tasks workloads,
deadlines, and the number of completed tasks is maximized.
However, the method is centralized and does not generalize to
other constraints. CSPs have also been used in other contexts
relevant to task allocation.

Studies that address the interdependent task allocation prob-
lem mainly focus on the specific case of temporal interdepen-
dencies, where constraints of precedence and sequentiality are
considered (see e.g. [2], [3], [5], [7]). Our study addresses
diverse interdependencies, not necessarily temporal.

VI. CONCLUSION

We propose a novel decentralized approach for dealing with
the problem of coalition formation for task allocation. Given
the exponential complexity of finding optimal solutions, we
opted for an anytime approach implemented in two stages that
gradually improves solution quality or prove unsatisfiability.
While many practical solutions address only specific types of
task interdependence (or none at all), our solution is not lim-
ited to specific interdependencies. Furthermore, our solution
explicitly handles diverse agent characteristics and task re-
quirements. It facilitates both qualitative and quantitative agent
characteristics and task requirements information, allowing
matching thereof. By using CSP-based techniques, we provide
an efficient way to deal with large scale instances of our
running problem. To illustrate the added value of our approach
we ran an extensive number of experiments, with a variety
of numbers of agents and tasks, that have proven that our
approach is very efficient both for finding a first solution at the

end of the first stage (i.e., the end of the first round) and then
to significantly improve it during the second stage (through
several rounds). The algorithm can be interrupted at anytime,
yet it will always return a solution if the problem is feasible.
In future work we plan to apply our approach in different
real world application problems. Several domains may benefit
from our approach: for instance, the coordination of mobile
or fixed radars, or the coordination of rovers or Autonomous
Underwater Vehicles (AUVs) for de-mining. We specifically
aim to apply this approach in application domains of the
Thales Group corporation and develop it towards deployment
in large programs (e.g. Maritime Mine Counter Measures).

REFERENCES

[1] S. Agnisarman, S. Lopes, K. Madathil, K. Piratla, and A. Gramopad-
hye. A survey of automation-enabled human-in-the-loop systems for
infrastructure visual inspection. Automation in Construction, 97:52–76,
2019.

[2] Z. Beck, W. Teacy, N. Jennings, and A. Rogers. Online planning for
collaborative search and rescue by heterogeneous robot teams. In Proc.
of AAMAS, 2016.

[3] J. K. Behrens, R. Lange, and M. Mansouri. A constraint programming
approach to simultaneous task allocation and motion scheduling for
industrial dual-arm manipulation tasks. In Proc. of ICRA, pages 8705–
8711. IEEE, 2019.

[4] D. Bouyssou, T. Marchant, M. Pirlot, P. Perny, A. Tsoukias, and
P. Vincke. Evaluation and decision models: a critical perspective,
volume 32. Springer Science & Business Media, 2000.

[5] A. Brutschy, G. Pini, C. Pinciroli, M. Birattari, and M. Dorigo. Self-
organized task allocation to sequentially interdependent tasks in swarm
robotics. Autonomous agents and multi-agent systems, 28(1):101–125,
2014.

[6] G. Chu, P. J. Stuckey, A. Schutt, T. Ehlers, G. Gange,
and K. Francis. Chuffed, a lazy clause generation solver.
https://github.com/chuffed/chuffed, 2018.

[7] T. S. Dahl, M. Matarić, and G. S. Sukhatme. Multi-robot task allocation
through vacancy chain scheduling. Robotics and Autonomous Systems,
57(6-7):674–687, 2009.

[8] R. Dechter. Constraint processing. Elsevier Morgan Kaufmann, 2003.
[9] B. P. Gerkey and M. J. Matarić. A formal analysis and taxonomy of

task allocation in multi-robot systems. IJRR, 23(9):939–954, 2004.
[10] L. Kóczy. Partition Function Form Games: Coalitional Games with

Externalities. Springer, 2018.
[11] L. S. Marcolino, A. X. Jiang, and M. Tambe. Multi-agent team

formation: Diversity beats strength? In Proc. of 23rd IJCAI, page
279–285. AAAI Press, 2013.

[12] T. Michalak, J. Sroka, T. Rahwan, M. Wooldridge, P. McBurney, and
N. R. Jennings. A distributed algorithm for anytime coalition structure
generation. In Proc. of AAMAS, page 1007–1014, 2010.

[13] R. B. Myerson. Values of games in partition function form. International
Journal of Game Theory, 6:23–31, 1977.

[14] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and
G. Tack. MiniZinc: Towards a Standard CP Modelling Language. In
C. Bessière, editor, CP’07, pages 529–543, 2007.

[15] F. Präntare and F. Heintz. An anytime algorithm for optimal simultane-
ous coalition structure generation and assignment. Autonomous Agents
and Multi-Agent Systems, 34(1):1–31, 2020.

[16] T. Rahwan, T. Michalak, M. Wooldridge, and N. Jennings. Coalition
structure generation: A survey. Artificial Intelligence, 229:139–174,
2015.

[17] T. Rahwan, T. Michalak, M. Wooldridge, and N. R. Jennings. Anytime
coalition structure generation in multi-agent systems with positive or
negative externalities. Artificial Intelligence, 186:95–122, 2012.

[18] S. D. Ramchurn, M. Polukarov, A. Farinelli, N. Jennings, and C. Trong.
Coalition formation with spatial and temporal constraints. In AAMAS,
pages 1181–1188, 2010.

[19] O. Shehory and S. Kraus. Methods for task allocation via agent coalition
formation. Artificial intelligence, 101(1-2):165–200, 1998.

[20] L. Vig and J. A. Adams. Multi-robot coalition formation. IEEE
Transactions on Robotics, 22(4):637–649, 2006.

	Introduction
	Problem Formulation
	Our Approach
	General Description
	Agent Decision Process
	Improved FICSAM (IFICSAM)
	Coalition Formation Global Procedure
	Complexity

	Experimental Evaluation
	The scenario generator
	Setup
	Centralized Solution
	Results Evaluation

	Related Work
	Conclusion
	References

