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Abstract—Due to the success of Bidirectional Encoder Rep-
resentations from Transformers (BERT) in natural language
process (NLP), the multi-head attention transformer has been
more and more prevalent in computer-vision researches (CV).
However, it still remains a challenge for researchers to put
forward complex tasks such as vision detection and semantic seg-
mentation. Although multiple Transformer-Based architectures
like DETR and ViT-FRCNN have been proposed to complete
object detection task, they inevitably decreases discrimination
accuracy and brings down computational efficiency caused by
the enormous learning parameters and heavy computational
complexity incurred by the traditional self-attention operation.
In order to alleviate these issues, we present a novel object
detection architecture, named Convolutional vision Transformer-
Based Attentive Single Shot MultiBox Detector (CvT-ASSD), that
built on the top of Convolutional vision Transormer (CvT) with
the efficient Attentive Single Shot MultiBox Detector (ASSD).
We provide comprehensive empirical evidence showing that
our model CvT-ASSD can leads to good system efficiency and
performance while being pretrained on large-scale detection
datasets such as PASCAL VOC and MS COCO. Code has been
released on public github repository at https://github.com/albert-
jin/CvT-ASSD.

Index Terms—Computer Vision, Object Detection, Vision
Transfromer, Convolutional Neural Network

I. INTRODUCTION

Real-time Object Detection task is challenging yet essential
in computer vision researches.The target of object detection
is to determine a set of bounding boxes and correspond-
ing category labels for each object of interest presented in
pictures.Thanks to many advantages of convolution such as
local receptive, spatial subsampling and shared weights which
could preserve rich semantic information during the deep-
learning network forward flow operations, convolution-based
architectures remain dominant [14] for decades.

In recent years after BERT [6] provided by Google,
Transformer-based architecture has become the leading tech-
nology in many NLP tasks due to its powerful language under-
standing performance borrowed by multiheads self-attention
module. Inspired by success in NLP, much of the recent
progress made in object detection research can be credited to
applying transformer model to translate vision representations
learned on massive object detection datasets. ViT [9], the first
attempt of Self-Attention-based visual representation learning,

which explicitly model all pairwise interactions between el-
ements in a sequential embedding vector, demonstrates that
transformer-based architectures can improve both image clas-
sification performance and efficiency if pretrained on large-
scale image datasets such as JFT-300M [1] and IG-940M. [2].

A wide range of object-detection approaches like vision-
transformer based Faster-RCNN model (ViT-FRCNN) [13]
and end-to-end object detector with Adaptive Clustering Trans-
former (ACT) [18], which built on vision transformer that gen-
erating computer analytic semantic signals through streamline
the training pipeline by viewing object detection as a direct
anchors with labels prediction problem. This end-to-end phi-
losophy has led to significant advantages in complex structured
vision tasks such as image retrieval,image segmentation and
environment dense prediction.

Despite the success of vision transformers at large scale,
they both are vulnerable to low efficiency brought by huge
training parameters inside transformer modules and poor
model recognition performance when trained on smaller
amount of data. Meanwhile, vision transformer suffers
severely from the heavy computational complexity due to
high-resolution image inputs in a few of downstream vision
tasks. Given an H × W resolution picture, the learning pa-
rameter complexity for each multi-head attention module is
O(H2W 2d). In recent, many researchers focused on such
challenges and provided many resolutions like the spatially
separable self-attention (SSSA) [25].

As far as we know, images have a strong 2D local structure:
spatially neighboring pixels are usually highly correlated.
Human object recognition ability relies heavily on the spatial
characteristics of an object, and so do computer recognition.
However, ViT [9] lacks certain desirable properties inherently
built into CNN architecture. The CNN-based architectures
[7], [16], [22] uniquely suited to solve vision tasks because
of their strong capability capturing local structure by using
shared weights, spatial subsampling and local receptive fields.
The pioneering work of ViT on image classification are
encouraging, but its architecture is unsuitable for use as a
general-purpose backbone network on dense vision tasks due
to its quadratic increase in complexity with high resolution
image as input. Furthermore, despite the superiority of vision
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Fig. 1. The overall pipeline of our proposed CvT-ASSD architecture. We feed an image vector to the Convolutional vision Transformer (CvT) backbone network
which composed of hierarchical multi-stage Convolutional Transformer Block (CTB). It generates feature map represented for shallow semantics in each of
three stages, and then makes the resulting vector flow through intermediate Residual Block (RB) between the transformer encoder and the detection module.
Finally, we extract the abstract semantics through the feature maps generated by the detection module which composed of several pyramid convolutional
blocks. All of the resulting feature map vectors, which maintain rich visual semantics, flow into Attentive Unit (AU) to guide the detection with refined
information and followed the standard prediction step as naive SSD [7]. Details of CTB and AU modules are shown in Figure 2 and Figure 4, respectively.

transformers when they were pretrained in large scale dataset,
those comprehensive performances including accuracy and
efficiency are still worse than other similar Convolution-based
network architectures like VGG-Net [19], Faster-RCNN [16]
and ResNet [15].

To overcome these issues, in this paper, we propose a
novel Transformer-based approach for object detection that
introduces convolutions to vision transformer backbone net-
work and add self-attention mechanism into downstream de-
tector SSD, called Convolutional vision Transformer-based
Attentive Single Shot MultiBox Detector (CvT-ASSD). The
overall model architecture of our proposed CvT-ASSD is
shown in Figure 1. Convolutions were introduced into the
original Vision Transformer architecture (ViT) [9] to merge
the benefits of transformers with the benefits of CNNs for
image object detection task. It replaces the traditional self-
attention module on the original ViT [9] framework with a new
self-attention module that calculating area attention weights
by convolutional query·key·value operations. In addition, we
also adapt the self-attention mechanism to our downstream
detector module, named Attention Unit, which helps to high-
light useful regions on the feature maps while suppressing the
irrelevant information, thereby providing reliable guidance for
object detection. We compare our method with state-of-the-

art object detection methods including VGG-SSD, DETR and
ViT-FRCNN evaluating on the most popular object detection
datasets, PASCAL-VOC [5] and COCO [3]. Experiments show
that our model achieves comparable mean-average-Precision
(maP) performances with fewer parameters and FLOPs. Model
implementation details will introduce in Chapter III, Our
Model.

Our main contributions are summarised as follows:
1. We propose a novel unified object detection architecture,

CvT-ASSD, which modifies transformer backbone module by
adding the convolutional token embedding and convolutional
projection into transformer encoder block, along with the
multi-stage design of the network by convolutions, making our
model achieve superior performance while maintaining certain
computational efficiency.

2. We apply an Residual Block (RB) between the trans-
former encoder and the downstream modules which can help
avoid the degradation problem. Ablation experiments show
that this module can lead to a significant average precision
boost for the whole architecture performance.

3. We introduce the self-attention mechanism to downstream
detection module termed ASSD following the human vision
mechanism and facilitates the object feature learning. It ef-
fectively utilizes a fast and light-weight attention unit to help



discover feature dependencies and focus the model on useful
and relevant regions.

4. Specifically, we evaluate our CvT-ASSD and its variants
on the most popular detection challenge, COCO and VOC.
Extensive experiments show that our proposed architecture
performs favorably against other state-of-the-art vision trans-
former with similar or even reduced computational complexity.

Furthermore, we hope that CvT-ASSD can drive the
commonly applied paradigm of large scale pretraining and
rapid fune-tuning to specific tasks deeper and encourage
Transformer-based unified modeling in the computer vision
community.

II. RELATED WORK

A. Traditional object detector based on convolution backbone
network

Faster-RCNN [16], one comparable model in the series
of region-base CNN, which introduce novel Region Proposal
Network (PRNs) that share convolutional layers with modern
object detection networks SPP-net [24] and Fast-RCNN [22],
improves region proposal quality and thus overall object
detection accuracy. Due to the computational cost-free region
proposal step inside Faster-RCNN architecture, the method
enables a unified, deep-learning-based object detection system
to run at near real-time frame rates. Although Faster-RCNN
achieves performance in a competitive rate than other tradi-
tional methods, there is still room for improvement in accuracy
caused by the unnatural design of increasing translation vari-
ance. Meanwhile, the deep convolutional backbone network
like Res-Net inside the architecture brings a large scale of
calculating parameters which would hinder the speed in both
training and inference.

To address the dilemma above in Faster-RCNN [22], a
region-based, fully convolutional network (R-FCN) [17] pre-
sented by Microsoft Research team, which applies a costly per-
region subnetwork hundreds of times in contrast to previous
region-based detector such as Fast/Faster R-CNN [16], [22],
achieved at test-time speed of 170ms per image, 2.5-20×
faster than Faster R-CNN counterpart. The R-FCN architecture
is designed to classify the regions of Interests (RoIs) into
object categories and background. RoIs is proposed by Region
proposal network (RPN) through the predefined score maps.
The experiments on the R-FCN paper empirically justifies the
importance of respecting spatial information by inserting RoIs
pooling between layers for the Faster R-CNN system.

Single Shot MultiBox Detector (SSD) [7], put forward by
Google Inc, is significantly more accurate and faster than the
previous state-of-the-art object detectors like YOLOs, in fact
as accurate as slower techniques that perform explicit region
proposals and pooling (including Faster RCNN). The SSD
approach is based on a feed-forward convolutionval network
that produces a fixed-size collection of anchor boxes and
scores for the presence of object instances in those anchor
boxes, followed by a non-maximum suppression (NMS) to
filter out the final predict results. These creative model features

lead to easy end-to-end training and high testing accuracy
meantime, further improving the speed vs accuracy trade-off.

B. Naive Vision Transformer Based object detector

DEtection TRansoformer (DETR) [12], a new method still
built in the top of ViT [9], which views object detection as
a direct set prediction problem, demonstrates accuracy and
run-time performance on par with the well-established and
highly optimized Faster R-CNN baseline on the challenging
COCO-2014 [3] and PASCAL VOC2007&2012 [5] object
detection datasets [5]. Unlike many other modern detectors,
this model is conceptually simple and does not require a
specialized library. A notable property in this approach is that
it does not need to use non-maximum suppression (NMS) as
a post-processing step, as its decoder architecture learns to
self-suppress duplicate bounding box predictions. By the way,
there are some shortcomings in this approach: 1) slow speed
of training convergence than typical detectors and 2) limited
feature spatial resolution when transformer processes image
data. These two drawbacks mainly stem from prohibitive
complexities in processing high-resolution feature maps.

The efficient object detection architecture codenamed ViT-
FRCNN [13] that using original vision-transformer (ViT) [9]
backbone to retain sufficient spatial information, which trained
end-to-end with a set loss function which performs bipartite
matching between predicted and ground-truth objects, finally
achieved high accuracy, large pretraining capacity and fast
superior fine-tuning performance.

Meanwhile, more and more powerful variants of vision
Transformer-based architectures [4], [11], [20], [21], [25],
[26] are presented for image-level classification and a few
downstream vision tasks, bringing continuous improvement in
state-of-the-art object detection performance.

III. OUR METHOD: CVT-ASSD

In this section, we first revisit the overall pipeline of our
proposed Transformer-based one-stage detector: CvT-ASSD
in Section III-A. Implementation details and hyperparameter
settings are presented in this section. Then, in Section III-B
we introduce the details of the novel Convolutional vision
Transformer which include Convolutional Token Embedding
module and Convolutional Self-Attention module. Finally, In
Section III-C, we provide a comprehensive analysis about the
superiority that applies Residual Block (RB) and attention unit
(AU) before and after the detection module, respectively. The
full model structure is built on DeepLearning framework Py-
Torch v1.9.0 and is open source at: https://github.com/albert-
jin/CvT-ASSD.

A. Main Structure of CvT-ASSD

The overall pipeline of CvT-Based Attentive Single Shot
MultiBox Detector (CvT-ASSD) is illustrated in Figure 1.
Our introduced CvT-ASSD is a competitive object detection
solution which utilizes convolution in transformer MHSA part
and attention operation in downstream detection step. The

https://github.com/albert-jin/CvT-ASSD
https://github.com/albert-jin/CvT-ASSD


model architecture can be split into several relatively inde-
pendent modules in turn: Convolutional Vision Transformer-
>Residual Block->Convolutional Downstream Detector-
>Attention Unit->SSD Standard Optimizer. Next para-
graphs we will discuss these modules in detail.

In the Convolutional Vision Transformer feature extractor,
we introduce two convolution-based operations into each
blocks. We term the two calculation modules as Convolutional
Token Embedding (CTE) and Convolutional Self-Attention
(CSA), respectively.

CTE is implemented as a 2D convolution operation with
overlapping patches of which convolution kernel size is 7×7
and stride is 3×3. This allows each stage of the vision
transformer backbone to progressively reduce the number of
token such as image resolution and feature channels.

To obtain the ability to capture local spatial relationships
throughout the ViT work [9] like CNNs, we changed previous
vision Transformer modules by replacing the position-wise
linear projection with our convolutional projection CSA. CSA
is implemented using a depth-wise separable convolution
layer to replace the original position-wise linear projection
for Multi-Head Self-Attention (MHSA) in the ViT [9] work.
Furthermore, these two built-in properties give us the ability
to capture local spatial relationships and global semantic
context throughout the network which allows us to discard
the position embedding from the transformer, so we drop the
positional embedding for tokens without hurting performance.
The resulting new Transformer Block with the convolutional
Projection layer is a generalization of the original ViT [9]
design.

In the extra layers of downstream detector between the
transformer encoder and the detection module, we add an
intermediate Residual Block (RB) which put forward in work
[15] by KaimingHe et al. Residual block can help avoid
the degradation problem: Typically, with the network depth
increasing, accuracy gets saturated (which might be unsur-
prising) and then degrades rapidly. And in this work, we
investigate the impact of the added residual block and find
that introducing the module leading to a significant average
precision boost.

SSD [7] performs the detection on multi-scale feature maps
to handle various object size effectively, so in our down-
stream detection module, the pyramid convolutional blocks
for detecting objects follow similar with the design of original
SSD. The differences of feature map size and channel number
between our detection module and original SSD are listed in
Table I. Then, We apply convolution layers of 3×3×channels
kernel in each feature layers to produce either a score for a
object category or a shape offset relative to the default box
coordinates.

Inspired by the superiority of self-attention mechanism in
Transformer, we construct a small network, namely Attention
Unit (AU), and embed it into the last layer of the downstream
detection module to improve the detection accuracy. The AU
module helps capture the long-range dependencies among all
feature pixels within the feature map itself for more effective

TABLE I
DIFFERENCES OF DETECTED FEATURE SCALE BETWEEN ORIGINAL SSD

AND OUR CVT-ASSD. N/A MEANS THAT ORIGINAL SSD GETS
DETECTION RESULTS THROUGH ONLY SIX CONVOLUTIONAL LAYERS.

DATA FORMAT (A2 ∗B) DENOTES THE SCALE OF
WIDTH*HEIGHT*CHANNEL OF EACH FEATURE MAP.

Conv Layer Origin SSD CvT-ASSD
Conv 1 382*512 942*192
Conv 2 192*1024 482*768
Conv 3 102*256 242*1024
Conv 4 52*256 122*256
Conv 5 32*256 62*256
Conv 6 12*256 32*256
Conv 7 N/A 12*256

object detection.
In the end, we concatenate all of the resulting feature token

into a one-dimension vector for location and object label pre-
diction. The overall objective loss function is a weighted sum
of the object label confidence loss (e.g. Softmax CrossEntropy
Loss) and the localization loss (e.g. Smooth L1 Loss) followed
by original SSD [7]. The loss function and back propagation
are applied end-to-end. We use hard negative mining to solve
the positive-negative box class imbalance problem and training
process also involves multi-scales detection results, and data
augmentation strategies as in original SSD.

B. Convolutional vision transformer

Our CvT receives a 2D image vector as input. It consists
of three module stages, termed Convolutional Transformer
Block (CTB). We instantiate model with different parameters
and FLOPs by varying the hidden feature dimension and
the number of Convolutional Self-Attention Block. In each
transformer block, we progressively decrease the feature map
size, while simultaneously increasing the feature map dimen-
sion. Furthermore, different from other prior Transformer-
based architectures [12], [13], [25], we discard the ad-hod
position embedding to the tokens. Figure 2 shows the internal
structure details of transformer block.

1) Conv-Token Embedding in Transformer: The Convo-
lutional Token Embedding (CTE) layer allows us to regu-
late the feature map dimension and size at each stage by
varying parameters of the convolution operation. This helps
the model capture the increasing complex visual patterns
over increasing larger spatial footprints, similar to CNN
based feature extractor. Formally, given a 2D feature map
xi−1 ∈ RHi−1×Wi−1×Ci−1 generated from previous step as
the input to CTE layer, we learn a mapping function f(·) that
maps xi−1 into a new tokens f(xi−1) with a channel size
Ci,where f(·) is 2D convolution operation of kernel size k
(equal 7×7), stride s (equal 3×3) and padding p (equals 1×1)
(to handle the boundary conditions). The new feature map
f (xi−1) ∈ RHi×Wi×Ci has sizes Hi,Wi :

Hi =

⌊
Hi−1 + 2p− k

s
+ 1

⌋
,Wi =

⌊
Wi−1 + 2p− k

s
+ 1

⌋
.

(1)
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Fig. 2. Key idea of introducing convolutions into transformer. In this illustration, details of Convolutional Token Embedding is depicted in part a (left), details
of Convolutional Self-Attention Block is depicted in part b (right), respectively.

f(xi−1) is then flatten into size HiWiCi and normalized by
layer normalization for input into the subsequent Convolu-
tional Self-Attention Block (CSAB). The structure of CTE is
depicted in Figure 2 (a).

2) Conv-Self-Attention in Transformer: The embedded
module Convolutional Self-Attention Block (CSAB) aims to
model local spatial contexts, from low-level edges to higher
order semantic primitives, over a multi-stage hierarchy ap-
proach, similar to CNNs. Standard qkv self-attention is a
popular building block for neural architectures. For each
element in an input sequence z ∈ RND, we compute a
weighted sum over all values v in the sequence. The attention
weights Aij are based on the pairwise similarity between two
elements of the sequence and their respective query qi and
key kj representations, Self-Attention operation fSA(·) uses
the following formula :

[q,k,v] = zUqkv Uqkv ∈ RD×3Dh (2)

fSA(·) = v · softmax
(
qk>/

√
Dh

)
fSA(·) ∈ RN×N (3)

Multi Head Self-Attention (MHSA) is an extension of SA
in which we run k self-attention operations called ”multihead”
in parallel, and project their concatenated output. To keep
compute parameters constant when changing k, Dh is typically
set to D/k.

fMSA(z) = Umsa [fSA1(z); fSA2(z); · · · ; fSA3(z)] (4)

Different from the standard MHSA, this work replaces
the original Position-wise Linear Projection Mechanism with

our depth-wise separable convolutional Self-Attention Block
(CSAB) module, into the Transformer architecture. The con-
volutional projection of CSAB is depicted in Figure 2 (b).

C. Downstream Detection Modules

The downstream detector includes several modules respec-
tively are Residual Block, Convolutional Downstream Detec-
tor, Attention Unit, Standard MultiBoxLoss Optimizer. Except
for the introduced module Residual Block and Attention Unit,
others are similar to original SSD [7].

1) Residual Block Layer: Inspired by the philosophy of
ResNet [15]: If identity mappings are optimal, the solvers
may simply drive the weights of the multiple nonlinear layers
toward zero to approach identity mappings, we adopt residual
learning to our model between the transformer encoder and the
detection module. The extra shortcut connections introduces
neither extra parameter nor computation complexity. The extra
layer is attractive and efficient in our comparisons between
plain and residual networks.

Let us consider H(x) as an underlying mapping to be learn
by a few neural network layers, with x denoting the inputs
to the first of these layers. Rather than approximating H(x),
we explicitly let these layers approximate a residual function
F(x) := H(x) − x. So the original function will becomes
F(x) − x. Formally, in this work we define the residual
mapping as:

y = F (x, {Wi}) + x (5)

Here y and x are output vectors and input vectors, respectively.
The functional mapping F (x, {Wi}) is the residual mapping
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Fig. 3. In this figure, we illustrate the proposed Residual Block structure
for solving the degradation problem. Inside the flow of residual mapping, we
apply two 3×3 convolutions and two normalization layers which alternated
with each other.

to be learned. Our experiments show that the residual mapping
is easier to optimize than the ”plain net” counterpart, that
simple stacked mapping.

2) Attention Unit: Here, we place the attention unit (AU)
after the fusion operation. The implementation Details is
shown in Figure 4.
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In whole Net

Fig. 4. Illustration of the downstream module Attention Unit (a) and its
Inter-Structure (b) following by each of the convolutional location and label
predictors.The implementation of AU follows similar with original Self-
Attention mechanism.

Suppose that xs ∈ RNs×Cs

is the output feature vectors
at a specified scale s ∈ {1, · · · , S}, in which N and C
represent the scale of spatial locations and channels count
in each feature, respectively. Firstly, we linearly calculate the
input feature xs with the training parameter Ws

qkv into three
different feature spaces key (xs), query (xs), value (xs) by
the matrix multiplication. We get the attention score by the
matrix multiplication of query (xs) and key (xs).

as = query (xs)
>

key (xs) (6)

Then the attention score matrix will be normalized by a
softmax operation:

āsij =
exp

(
asij
)∑Ns

j exp
(
asij
) , i, j = 1, 2, · · · , Ns (7)

Finally, we calculate the attentive features (the Regions of
Interest) by the matrix multiplication between value (xs) and
the attention weights as. The weighted sums of individual
features at each location is computed by using the following
formula:

xs′ = xs +
(
value (xs)

>
as
)>

(8)

The relevant parts of the feature map will be highlighted
and the detection results will be refined through the Attention
Unit (AU). Our comprehensive experiment indicates that the
Attention Unit and the fusion mechanisms are complementary
to each other.

IV. EXPERIMENTAL RESULT

A. Dataset Introduction

MS COCO [3] and PASCAL VOC is the most popular open-
source object detection datasets in this research field. Each
image is annotated with bounding boxes and panoptic seg-
mentation. We prefer to make some necessary combinations of
these datasets to improve the model’s prediction performance.

1) Microsoft COCO: COCO is a supervised dataset con-
sisting of 1.7 million instances, with about 118k train&value
instances and up to 860k bounding boxes. Furthermore, there
are about 7 object instances per image averagely and up to 63
instances in a single training sample. COCO has 53 stuff cate-
gories in addition to 80 object categories. Most of the state-of-
the-art works and baselines are established on the challenging
COCO object detection dataset. COCO can be downloaded
through this download link: https://cocodataset.org/#home.

2) PASCAL VOC: The PASCAL Visual Object Classes
(VOC) challenge is relatively small benchmark dataset in
visual object detection. VOC series have 20 object categories
which combine of four main categories: vehicles, household,
animals, person. There are total 27450 and 23080 trainval
instances in VOC 2007 and VOC 2012, respectively. It is
organised annually presented from 2005 while the popular
parts of which are VOC 2007 and 2012. For the sake of
simplicity, we will use appropriate abbreviations on VOC:
1) ”07”: VOC2007 trainval, 2)”07+12”: the union set of
VOC2007 and VOC2012 trainval, 3)”07+12+COCO”: the
union set of VOC2007, VOC2012 for training, then fine-tuning
on COCO2014. All images and annotations are available at:
http://host.robots.ox.ac.uk/pascal/VOC/.

B. Implementation Details

During our experiments, We choose to use many of the same
hyper-parameter settings for CvT-ASSD as in original SSD.
We convert the scale of the picture to a fixed size: 384∗384 in
order to ensure consistency of model input. Before training,
we initialize the pretrained transformer backbone parameters
by training on ImageNet-22k classification task and apply the
Xavier-Uniform [27] initialization method to other layers. In
training step, we revise model by using Stochastic Gradient
Descent (SGD) optimizer with initial rate 10−4 and a cosine
learning rate decay scheduler. We also apply gradient clipping,
with a maximal gradient norm of 0.05. Finally, at inference

https://cocodataset.org/#home
http://host.robots.ox.ac.uk/pascal/VOC/


TABLE II
THIS ILLUSTRATION SHOWS THE BACKBONE OF CVT-ASSD:

CONVOLUTIONAL TRANSFORMER INTERNAL ARCHITECTURE. INSIDE
OUR BACKBONE, A DIFFERENT NUMBER OF MODULES ARE STACKED AT

EACH DIFFERENT STAGE.

Stage. 1 Embed Blocks

Details 7 × 7, 64, stride 4

 3× 3, 64
H1 = 1, D1 = 64

R1 = 4

× 1

Stage. 2 Embed Blocks

Details 3 × 3, 192, stride 2

 3× 3, 192
H2 = 3, D2 = 192

R2 = 4

× 4

Stage. 3 Embed Blocks

Details 3 × 3, 384, stride 2

 3× 3, 192
H3 = 6, D3 = 384

R3 = 4

× 16

time we apply a final round of non-maximum suppression
(NMS) with threshold 0.5 to filter our final detections. Our
model‘s pytorch implementation is released at github link
https://github.com/albert-jin/CvT-ASSD for anyone doing ex-
perimental realization. Other relative implementation details
are listed as follows:

1) Data augmentation: To make the model more robust to
various input object sizes, shapes and contrasts, we use a more
extensive sampling strategy, similar to SSD [7]. Each training
image is randomly sampled by one of the following options:
− Use the original image as input.
− Randomly crop with probability 0.5 to a rectanglar patch.
− Sample a patch so that the minimum jaccard overlap: 0.1,

0.3, 0.5, 0.7, or 0.9 between objects.
− Sample patches from per-image randomly.
− Apply Contrast Enhancements to the entire original

images.
Through above operations, we obtain diverse images for

training. Our train-time scale data augmentation significantly
improves the performance on small objects, indicating that
the data augmentation trick is important for the final model
accuracy.

2) Transformer Internal Blocks: Deep neural networks nat-
urally integrate low/mid/high level features in an end-to-end
multilayer model and the number of stacked layers (depth) can
enrich the features levels. We apply three stages to make up
the CvT and design Backbone-Net CvT with different scales
of parameters by varying the number of Transformer blocks
of each stage and the hidden feature dimension used. Details
of Internal Transformer structure is shown in Table II.

3) Bounding Boxes Settings: We associate a set of
default anchor boxes with each feature maps at the top of
the network. These anchors actually are fixed multi-scale
bounding boxes attached to each detection layers. We
construct these default bounding boxes by defined box
scales and aspect ratios. For each of 7 detection layers
in our model, we successively apply aspect ratios with:
2, 2, [2, 3], [2, 3], [2, 3], 2, 2 and box min/max sizes with:
[21, 42], [42, 63], [63, 114], [114, 163], [163, 214], [214, 265],
[265, 315], similar to SSD [7].

C. Experimental Results

For experimental comparison with baselines and SOTAs,
we compare our model with several representative CNN-
based approaches: VGG-SSD [7], Faster-RCNN [16], R-FCN
[17] and Transformer-based models that have recently gained
significant influence: ViT-FRCNN [13], DETR [12].
− VGG-SSD (original) This framework is the first pure

CNN-based single-shot (one-staged) object detector to perform
comparably to state-of-the-art works on image object detec-
tion. The traditional approach provides the optimal trade-off
among speed, accuracy and simplicity.
− Faster-RCNN This work introduces a Region Proposal

Network (RPN) on the top of Fast-RCNN [22] that shares full-
image convolutional features with the detection network, thus
wins the 1st-place in ILSVRC and COCO 2015 competitions.
− R-FCN (Region-based Fully Convolutional Network)

A ResNet-based framework proposed by Microsoft, which
adoptes the popular strategy that consists of two stages: region
proposal and region classification. It inferences much quickly
than the Faster-RCNN counterpart while achieves accuracy
competitive than Faster-RCNN.
− ViT-FRCNN A competitive solution which utilizes a

transformer backbone on complex vision tasks such as object
detection and segmentation. This work demonstrates the ca-
pability of Transformer-based models which pretrained with
massive datasets can be fine-tuned to new relative tasks
quickly.
− DETR The DEtection TRansformer framework, proposed

in 2020, consists of a transformer encoder-decoder architec-
ture, and a set-based global loss that forces unique predictions
via bipartite matching. It significantly outperforms competitive
baseline like Faster-RCNN on the challenging COCO dataset.

For ablation study, Our CvT-ASSD can be divided into
several variants with appropriate sub-module modifications.
The corresponding model differences are listed as follows:
− CvT-ASSD Our complete model which applied all fea-

tures provided by this paper, including modules: CvT back-
bone, Residual Block, Attention Unit.
− ViT-ASSD We replace the transformer backbone with

ViT backbone on our model for ablation study.
− CvT-SSD We remove the module Attention Unit from

our complete model for ablation study.
− CvT-ASSD(noResidual) We remove the module Residual

Block from our complete model for ablation study.
1) Object Detection on COCO: In this section, We conduct

our experiments on Microsoft COCO 2017 which contains
about 12w images. We split it into three parts: 10w train set,
1w validation set and 1w test-dev set. We employ SGD opti-
mizer for 40 epochs using a cosine decay learning rate sched-
uler when training from scratch. Our model is trained on 2
GPUs with 8 images per GPU for 400000 iterations. We make
comparisons between our model and previous baseline models
to prove the effectiveness of our model. Table IV reports the
comparison of our best results with those of previous state-of-
the-art frameworks on MS COCO. As depicted in this table,

https://github.com/albert-jin/CvT-ASSD


TABLE III
DETAILED DETECTION RESULTS ON THE PASCAL VOC2007 TEST SET (4954 IMAGES). BLODFACE INDICATE SCORES BETTER THAN OTHER LISTED

METHODS.ROWS 1-4 SHOWS BASELINES AND SOTAS PREDICTION PERFORMANCES. ROWS 5-8 PRESENT OUR MODEL VARIANTS PREDICTION
PERFORMANCES.

method mAP aeroplane bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv
Faster R-CNN 76.4 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72.0
R-FCN 79.5 82.5 83.7 80.3 69.0 69.0 69.0 88.4 88.4 65.4 87.3 72.1 87.9 88.3 81.3 79.8 54.1 79.6 78.8 87.1 79.5
VGG-SSD 76.8 83.4 84.7 78.4 73.8 53.3 86.2 87.5 86.0 57.8 83.1 70.2 84.9 85.2 83.9 79.7 50.3 77.9 73.9 82.5 75.3
DETR 75.2 80.3 82.1 77.7 67.3 57.2 79.3 85.1 83.7 64.5 84.3 73.4 82.8 85.4 78.7 79.2 53.3 76.7 72.1 84.7 74.5
ViT-ASSD 76.9 81.4 83.0 78.1 70.5 53.4 82.7 84.3 87.1 63.3 87.2 68.2 86.4 86.1 83.5 77.4 53.0 75.7 76.1 83.2 75.6
CvT-SSD 77.4 82.1 82.4 79.0 69.2 55.8 83.3 85.4 83.9 65.8 84.1 72.5 86.5 86.7 82.8 79.3 51.9 76.1 78.3 84.4 74.1
CvT-ASSD(noRsd) 77.6 82.8 84.0 79.3 71.3 55.7 83.6 85.8 84.1 66.2 84.6 72.9 87.2 87.3 82.3 80.1 52.1 74.8 78.7 83.6 74.7
CvT-ASSD 78.5 83.7 84.2 79.8 71.7 56.3 84.0 86.4 85.3 67.4 86.7 73.3 87.4 87.9 84.6 80.3 52.3 75.2 79.4 85.5 77.6

TABLE IV
COMPARISONS BETWEEN OUR MODEL VARIANTS AND OTHER FAMOUS

MODELS ON MS COCO DATASET. THE COCO-STYLE AP IS EVALUATED
@IoU ∈ [0.5, 0.95]. BLODFACE INDICATE SCORES BETTER THAN OTHER

LISTED METHODS.

method mAP APsmall APmedium APlarge #params
Faster-RCNN 27.2 6.6 28.6 45.0 60M

R-FCN 27.6 8.9 30.5 42.0 55.9M
VGG-SSD(original) 27.9 8.3 30.3 45.1 52.0M

ViT-FRCNN 37.8 17.8 41.4 57.3 46.2M
DETR 42.0 20.5 45.8 61.1 37.4M

ViT-ASSD 35.2 17.5 42.8 47.9 44.0M
CvT-SSD 38.2 19.4 45.2 52.8 29.6M

CvT-ASSD(noResidual) 38.9 20.1 45.5 55.3 30.1M
CvT-ASSD 41.3 21.2 46.3 56.3 32.7M

our model outperforms most other baselines such as ResNet-
based Faster-RCNN by improving AP(+12.9), APs(+14.6),
APm(+17.7), APl(+11.3) on MS COCO dataset and requires
fewer parameters 32.7M than the Faster-RCNN counterpart
60.0M. Meanwhile, CvT-ASSD achieve comparable results
to ViT-FRCNN and DETR, while having fewer parameters.
Perhaps more interestingly, our model obtains performance of
41.3mAP in MS COCO test dataset, which performs not so
well compared with SOTA method, the DETR of 42.0mAP.
This phenomenon can be attributed to the shallower layer of
our transformer backbone than DETR backbone ViT. In the
future, we will try to deepen our CvT backbone depth in order
to achieve more accurate image understanding.

As shown in Table IV, our complete model CvT-ASSD loses
0.7mAP to the state-of-the-art method DETR but achieves
greater performance when detecting smaller object. While
CvT-ASSD may not achieve state-of-the-art results on COCO,
we believe this signifies the possibility and superiority of intro-
ducing convolutions into transformer and applying transformer
to SSD approach as its backbone.

Furthermore, experimental result gaps between CvT-ASSD
and its variants indicate that our new introduced components
(CvT, RB and AU) all significantly contribute to the final
object detection performance.

2) Object Detection on VOC: In this section, we carry out
our experiment for training models on PASCAL VOC2007
trainval and VOC2012 trainval dataset (VOC07+12), and val-

idate these models on VOC2007 test dataset (4954 images).
Especially, we compare against Faster-RCN, R-FCN, original
SSD, DETR by the VOC-style average precision (%) metric.
From Table III, It is obvious that CvT-ASSD performs well
when compared with several baselines and it is very robust to
different object aspect ratios because we use default boxes of
various aspect ratios per feature map location. In particular,
we are excited about CvT-ASSD‘s capability to transform
representations training on huge scale classification datasets
ImageNet-22k to improved performance on object detection
tasks.

We can clearly see that our model has better performance
on smaller objects than bigger objects. This is not surprising
because we apply shallow-level features with more bounding
boxes for prediction instead of high-level features. What
surprises us is that we can find our model achieves state-of-the-
art particular performances in several categorises: achieving
83.7mAP relative to aeroplane, achieving 67.4mAP relative
to chair and so on.

In ablation part, as seen in Table III Row5-8, the complete
model CvT-ASSD significantly outperforms other ablation
models. For example, It achieves high performance up to
78.5mAP, increasing 1.1mAP compared to the CvT-ASSD
which removes the Attention Units (AUs) and increasing
2.6mAP compared to the ViT-ASSD which replaces traditional
naive transformer ViT [9] with our CvT. The performance
improvement confirms that our vision-transformer variant CvT,
Residual Block (RB) and Attentive Unit (AU) can both im-
prove the average precision performance for object detection
task, similar to validation on MS COCO. Furthermore, It
proves that residual operation and self-attention mechanism
can help increase network convergence ability and final model
performance.

Meanwhile, we display our CvT-ASSD prediction results
visualization in Figure 5. The colored quadrilaterals are the
object positioning results and the corresponding text labels in
the upper corner of bounding boxes are the object category
prediction confidences.

V. CONCLUSION

In this work, we present CvT-ASSD, a competitive, simple
but efficient object detection approach which apply Convolu-
tional vision Transformer as detector backbone, residual mod-



Fig. 5. Visualizing CvT-ASSD prediction results for objects belong to different categories (images from PASCAL COCO test set). Objects in each image are
shown with their predicted boxes and corresponding category label clearly.

ule and self-attention mechanism to original SSD detection
structure. Comprehensive experiments show that our approach
achieves comparable performances to a few baselines like
Faster-RCNN on the PASCAL VOC and MS COCO datasets.
With a fewer parameters and competitive accuracy compared
with baselines even SOTAs, we believe our proposed model
can provide a useful real-time object detection component
for large artificial intelligence system applications. We hope
that our approach will inspire the exploration of convolutional
transformer-based models for more complex visual tasks in
the future.
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