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Abstract—Spatial alarm services are essential components of
many location-based applications. One of the key technical chal-
lenges for supporting spatial alarms as a service is performance
and scalability. This paper shows that the Euclidean distance-
based spatial alarm processing techniques are inadequate for
mobile users traveling on road networks due to the high overhead
in terms of server load for alarm checks and the high energy
consumption in terms of client wakeups. We design and develop
ROADALARM, a road network aware spatial alarm processing ser-
vice, with three unique features. First, we introduce the concept of
road network-based spatial alarms using road network distance
measures and a set of metrics specialized for spatial alarm
processing. Second, we develop the basic model for spatial alarm
processing by exploiting two types of filters: subscription filter
and Euclidean lower bound filter. Third and but not the least,
we develop a suite of optimization techniques to further reduce
the frequency of wakeups at mobile clients and the number of
alarm checks at the alarm processing server, while ensuring
high accuracy of spatial alarm processing. Our experimental
results show that ROADALARM outperforms existing Euclidean
space-based approaches with high success rate (accuracy) and
significantly increased hibernation time.

I. INTRODUCTION

Ubiquitous connectivity and cloud computing are enabling
technologies that hold the promise of offering many new Web
services and content-rich applications. Spatial alarm services
represent a new class of emerging location-aware, just-in-time
Web services, which can disseminate information of interest
to the right users at the right time and the right place.

Spatial alarms extend the concept of time-based alarms
to spatial dimension and remind us when we enter some
predefined location of interest in the future. For example “alert
me when I am within 2 miles of the dry clean store at the
junction of Druid Hill and Baircliff” is a personalized spatial
alarm. Spatial alarms are basic building blocks for many
location-based services, such as location-based advertisements,
location-based social networks, location-based tourism and
entertainment, or highway traffic alert systems. For example,
when installing applications of popular restaurants on smart-
phones, many mobile users are interested in those applications
that provide discount coupons of nearby restaurants based on
their current locations.

A spatial alarm is defined by four components: a focal point
representing the alarm target, a spatial distance representing
the alarm region, an alarm publisher and a set of alarm
subscribers. Spatial alarms are categorized into three groups:
private, shared and public. A private alarm has only one
subscriber who is also its publisher. A shared alarm has a
publisher and several subscribers approved by the publisher.

In terms of a public alarm, its publisher does not set any
restriction on subscribers and thus anyone can be a subscriber
of the alarm. Public alarms are typically classified by alarm
interests, such as traffic alerts, coupons from grocery stores.

With a rapidly increasing number of smart-phones, one of
the most important technical challenges for delivering spatial
alarms as a service is scalability and performance in terms of
both server computation time and client energy consumption.
First, we argue that negligent management of spatial alarms
can lead to unnecessary consumption of energy at mobile
devices, especially those with limited battery power because
continuous tracking and notification is known to be costly for
battery life at mobile devices. According to [1], minimizing
use of location services is listed as the first tip to extend smart-
phones’ battery life. Furthermore, the performance of spatial
alarm processing can be affected by a number of factors, such
as frequency of wakeups − how often mobile devices should
wake up because of possible alarm hits and frequency of alarm
checks − how many spatial alarms should be evaluated at
each wakeup. Since frequent and often unnecessary wakeups
and alarm checks at each wakeup not only reduce battery life
of mobile devices considerably but also increase the loads
of a spatial alarm processing server, we need techniques
for efficient processing of spatial alarms, which can reduce
both the number of unnecessary wakeups and the number of
excessive alarm checks at each wakeup. At the same time, we
need to guarantee that the alarm processing service can scale
to a large number of spatial alarms and a growing number of
mobile users, while meeting the high accuracy requirement by
minimizing the alarm miss rate.

Existing approaches on spatial alarm processing are cat-
egorized into two groups by their methods of controlling
the frequency of wakeups. The first category is called time-
based approaches, which periodically perform alarm checks
at the server and inform mobile subscribers about the alarm
check results. The second category is referred to as distance-
based approaches, which compute the distance from a mobile
subscriber to each of its subscribed alarms based on regular
or irregular time interval and inform the mobile subscribers
when they approach an alarm target of their subscribed spatial
alarms. Too frequent alarm checks can cause excessive loads
on alarm servers and unnecessary wakeups on mobile clients.
However, less frequent alarm checks may cause high alarm
miss rate. The state of art techniques to spatial alarm pro-
cessing is safe period [3] and safe region [2], [5] techniques,
which use Euclidean distance between a mobile subscriber
and its closest alarm to determine the safe region or safe



period to move without checking alarms. Surprisingly, no
existing research has tried to capitalize on spatial and mobility
constraints of mobile devices traveling on road networks for
optimizing and scaling spatial alarm services. We argue that
by developing road network aware spatial alarm processing
techniques, one can offer spatial alarm services with both high
performance and high accuracy.

In this paper, we present ROADALARM − a road network
aware spatial alarm processing service architecture and a suite
of road network aware techniques for scaling spatial alarm
processing in terms of a growing number of mobile users and
alarm subscriptions. By taking into account spatial constraints
on road networks and mobility patterns of mobile users, the
ROADALARM approach can filter out those spatial alarms
that are irrelevant or far away from the current location of
their mobile subscribers. We have developed three types of
alarm filters with two objectives: (i) to reduce the frequency
of wakeups and increase the hibernation time of mobile clients
(saving battery and enhancing service usability), and at the
same time, (ii) to minimize the computation cost of calculating
the hibernation time for a mobile client at each wakeup and
evaluating all of its subscribed alarms. Concretely, instead of a
rectangle region, we define a road network-based spatial alarm
as a star-like subgraph with an alarm target as the center of
the star and a road network distance as a safe hibernation
measure. We define the scope of an alarm region by the set of
border points of the star. By exploiting subscription filtering
and Euclidean lower bound filtering, we formulate the basic
model of ROADALARM for processing road network aware
spatial alarms. Furthermore, we develop a suite of motion-
aware filters, which can utilize the mobility information to
further reduce the frequency of wakeups at mobile clients and
alarm checks at the server, while ensuring high accuracy of
alarm evaluation. To the best of our knowledge, ROADALARM
is the first systematic approach to exploring road network
aware and motion aware filters to reduce the search space
and computation cost of spatial alarm processing. We conduct
extensive experimental evaluation and our results show that
the ROADALARM approach significantly outperforms existing
Euclidean distance-based techniques and can scale to a grow-
ing number of spatial alarms as well as mobile subscribers.

II. ROADALARM SERVICE: AN OVERVIEW

A spatial alarm service typically consists of a spatial alarm
processing engine and a location server where the locations of
mobile users and static objects (such as gas stations, restau-
rants, and so on) are managed. The spatial alarm processing
engine communicates with the location server to obtain the
current road network locations of mobile subscribers as well
as alarm targets for all alarms maintained in its database.
The location server uses localization techniques (such as
GPS, WiFi or any hybrid localization technology) to keep
track of the current positions of mobile users. The spatial
alarm processing engines can be geographically distributed
and register spatial alarms of interest, and synchronize with
the location server to continuously monitor the spatial alarms

of mobile subscribers as they move on the road. Fig. 1(a)
presents a sketch of the ROADALARM service architecture.

We assume that mobile clients can be any devices (e.g.
smart-phones, navigation systems) with any localization tech-
nology such as GPS and WiFi localization. ROADALARM
adopts the client-server architecture for spatial alarm pro-
cessing. Concretely, mobile users may install (publish) their
spatial alarms at the location server as private, shared or
pubic alarms. In addition to their own private alarms, mobile
users can subscribe any public alarms of their interest and a
subset of shared alarms authorized by the respective alarm
publishers. Mobile users need to install the thin client of
ROADALARM as a mobile application on their devices. Each
mobile subscriber will obtain an initial hibernation time at
the commit of her alarm subscription. Upon the expiration of
its old hibernation time, the mobile client will automatically
contact the alarm server to obtain its new hibernation time.
During the hibernation time, the ROADALARM application is
hibernated at the mobile client, and the alarm server consumers
zero alarm processing cost for this mobile client.

A. Road network reference model

The road network is represented by a directed graph G =
(V, E), composed of the junction nodes V = {n0, n1, . . . , nN}
and directed edges E = {ninj |ni, nj ∈ V}. We refer to an
edge ninj as a road segment connecting the two end nodes
ni and nj with direction from ni to nj . When a road segment
is bidirectional, we use edge ninj and edge njni to denote
the two directions of the same road segment with ni and nj as
the starting nodes respectively. For each road segment, road-
related information can be maintained, such as segment length
(e.g. 1.2 miles), speed limit (e.g. 55 mph), current traffic data
(e.g. average speed is 35 mph), direction (e.g. one-way road),
etc. The length and speed limit of a road segment ninj are
denoted by seglength(ninj) in miles and speedlimit(ninj)
in miles per hour respectively. Other road-related information
such as direction and current traffic data, if available, can be
easily incorporated to provide more accurate travel time.

Let n1 and n2 denote two road junction nodes and n1n2 /∈
E . We define a path from a node junction n1 to a node junction
n2 as a sequence of road segment edges, one connected to
another, denoted as n1ni1 , ni1ni2 , . . . , nik−1

nik , nikn2 (k >
0). The length of a path h between n1 and n2 is computed as
follows:

pathlength(h) = seglength(n1ni1) + seglength(nikn2) +
k−1∑
α=1

seglength(niαniα+1
)

Given two road junctions n1 and n2, since there are more than
one way from n1 to n2, we use PathSet(n1, n2) to denote
the set of all paths between n1 and n2. We define a segment
length-based shortest path between n1 and n2, denoted by
sl shortestpath(n1, n2), as follows:

{hsl|pathlength(hsl) = min
h∈PathSet(n1,n2)

pathlength(h)}
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Fig. 1. Spatial Alarm Services on Road Networks

The travel time of a road segment ninj is seglength(ninj)
speedlimit(ninj)

and
thus the travel time of a path h is calculated as follows:

pathtime(h) =
seglength(n1ni1)

speedlimit(n1ni1)
+

seglength(nikn2)

speedlimit(nikn2)
+

k−1∑
α=1

seglength(niαniα+1
)

speedlimit(niαniα+1
)

The travel time-based shortest path between n1 and n2,
denoted by tt shortestpath(n1, n2), is defined as follows:

{htt|pathtime(htt) = min
h∈PathSet(n1,n2)

pathtime(h)}

A road network location, denoted by L = (ninj , p), is a
tuple of two elements: a road segment ninj and the progress p
along the segment from ni to nj . The road network distance
between two road network locations L1 = (ni1ni2 , p1) and
L2 = (nj1nj2 , p2) is the length of the shortest path between
L1 and L2 in terms of either segment length or travel time.
The segment length-based road network distance and travel
time-based road network distance are formally defined
respectively as follows:

sldistance(L1, L2) = seglength(ni1ni2)− p1 + p2+

pathlength(sl shortestpath(ni2 , nj1))

ttdistance(L1, L2) =
seglength(ni1ni2)− p1
speedlimit(ni1ni2)

+

p2
speedlimit(nj1nj2)

+ pathtime(tt shortestpath(ni2 , nj1))

Even though the segment length-based distance is the most
commonly used distance measure on road networks, it may
not provide sufficient and accurate distance information in
terms of actual travel time from the current location (L1)
to the destination (L2). For instance, highway road segments
are much longer but also with much higher speed limits and
thus may have relatively lower travel time compared to some
local road segments, as shown in Fig. 1(b). To ensure high
accuracy and high performance of spatial alarm processing, in
ROADALARM we use the travel time-based distance as default
road network distance measure.

B. Road Network-based Spatial Alarms

In the ROADALARM service, we define a spatial alarm
as a star-shaped subgraph centered at the focal point of the

alarm target, denoted as SA(f, r, S) where f is the focal
point of alarm target (a road network location), r is the alarm
monitoring region, represented by a spatial range (segment
length or travel time) from f , and S is a set of subscribers.
For each road network spatial alarm SA, we compute the set
of border points which bound the star-shaped spatial alarm
SA, denoted by BorderPoints(SA) = {b1, b2, . . . , bm},
such that bi (1 ≤ i ≤ m) is a network location and
sldistance(f, bi) = r. Consider Fig. 1(c) that shows three
star-shaped alarms with focal points f1, f2 and f3. b12 is one
of the four border points of the alarm with focal point f1.

We define a hibernation time for each mobile user, which is
a time interval during which the mobile client does not need
to wake up and the alarm server does not need to perform
alarm checks for this mobile subscriber. A hibernation time is
specified by a time interval consisting of its start time and end
time. If the current time is between them, the mobile client’s
current status is hibernation; otherwise, it is alive. The timing
of alarm triggering is very important for alarm evaluation
accuracy. For example, based on the current hibernation time
for the mobile user m5 in Fig. 1(c), m5 may receive the spatial
alarm alert when it approaches the focal point f3 or just before
leaving the spatial alarm target region through the border point
b31. Thus, in ROADALARM we use a stronger definition of
alarm miss: if a mobile user’s current status is hibernation
when it enters alarm region of a spatial alarm by crossing a
border point of the alarm, we treat it as an alarm miss. The
alarm success rate is the percentage of spatial alarm alerts
which are not missed. For example, if there are 9 alarm hits
and 1 alarm miss (actual hit but not triggered), the success
rate is 90%.

III. ROADALARM BASIC ALGORITHM

The most intuitive approach to implementing spatial alarms
is the Euclidean distance-based approach. Concretely, for
every mobile user m, upon the expiration of its hibernation
time, m wakes up and contacts the spatial alarm server to
obtain its new hibernation time. At the server, we first retrieve
the index of all spatial alarms and obtain the set of border
points for each active alarm. Then we compute the Euclidean
distance between the current location of m (Lm) and each of
the border points for all alarms and select the border point that
is nearest to Lm to compute the shortest distance from m to the
alarm target region. According to this shortest distance and a
velocity metric of m, such as the global maximum speed or the



expected speed of m [3], we calculate the new hibernation time
for m. Though this approach is easy to implement, its main
weakness is the unnecessarily short hibernation time due to the
use of Euclidean distance rather than road network distance.
Consequently, mobile clients need to wake up frequently,
consuming higher battery energy than necessary.

Another intuitive approach to evaluating road network-
based spatial alarms is to use Dijkstra’s network expansion
algorithm [4]. When a mobile client m wakes up, the network
expansion-based approach first retrieves a set of spatial alarms
(Am) subscribed by m. For each spatial alarm ai ∈ Am, we
first obtain the set of border points of ai. For each border
point of ai, we calculate the shortest path using Dijkstra’s
network expansion algorithm. By examining the border points
of all alarms in Am, we select the shortest path with the
minimum travel time to compute the new hibernation time for
m. The drawback of the network expansion approach is the
high cost for the large number of shortest path computations
since it needs to compute the shortest path from the current
location of m to each of the border points of every spatial
alarm subscribed by a mobile user m at each wakeup.

In this paper we first present the ROADALARM basic
algorithm based on two alarm filters. We use the subscription
filter to scope the computation of the hibernation time for
each mobile user m to only those alarms that are subscribed
by m. In addition, we use Euclidean lower bound (ELB) as
the second type of filter, which further reduces the excessive
shortest path computations by filtering out some irrelevant
border points for each alarm selected by the subscription
filter. The concept of Euclidean lower bound refers to the fact
that the segment length-based shortest path distance between
two network locations L1 and L2 is at least equal to or
longer than the Euclidean distance between L1 and L2. By
combining subscription filter and ELB filter, the ROADALARM
basic approach outperforms both the Euclidean distance-based
approach and network expansion-based approach by minimiz-
ing the shortest path computations required for computing
hibernation time for each mobile subscriber while maintaining
the accuracy of alarm evaluation.

Concretely, instead of computing shortest paths from the
current location Lm of the mobile user m to every border point
of all alarms subscribed by m, the ROADALARM basic ap-
proach computes the new hibernation time of m in five steps:
(1)For every alarm subscribed by m, denoted by ai ∈ Am,
we find the border point that has the shortest distance from
Lm. Instead of computing shortest paths from Lm to every
border point of alarm ai, we compute the Euclidean distance
between Lm and every border point of ai and sort the set of
border points based on their Euclidean distances to Lm in an
ascending order using the Incremental Euclidean Restriction
(IER) algorithm [6], [11]. (2) Let bnn denote the border point
that has the smallest Euclidean distance to Lm. We compute
the segment length-based shortest path between Lm and bnn.
(3) We use a binary search algorithm to examine the sorted
list of border points and remove those border points whose
Euclidean distance to Lm is bigger than sldistance(bnn,Lm).

(4) For each remaining border point bj , we compute the
shortest path between bj and Lm. If sldistance(bj ,Lm) <
sldistance(bnn,Lm) holds, we assign bj to be bnn. Thus, for a
given mobile user and an alarm ai ∈ Am, the nearest border
point bnn of ai will be used as the reference border point
of ai to compute the hibernation time for m. (5) Finally, the
ROADALARM basic approach examines every alarm ai ∈ Am
and its nearest border point bnn and chooses the border point
whose segment length-based distance from Lm is the smallest.
Let bmin denote this nearest border point and pmin denote the
shortest path from Lm to bmin. Thus we compute the new
hibernation time for m using the travel time of pmin.

Now we illustrate the working of the ROADALARM basic
approach using the example in Fig. 1(c). We have three spatial
alarms a1, a2, a3 with focal points f1, f2 and f3 respectively
and two mobile users m11 and m12. m11 subscribes to a1
and a3 and m12 subscribes to a1 and a2. Let Lm11

and
Lm12

denote the current location of m11 and m12 respectively.
When m11 and m12 wake up upon the expiration of their
hibernation time, without subscription filter and ELB filter, we
will need to compute the shortest path from Lm11 and Lm12

to all 13 border points and then choose the nearest border
point to m11 and m12 respectively. With the subscription filter,
we can filter out alarm a2 for m11 and alarm a3 for m12

when computing the new hibernation time. By ELB filter,
to find the new hibernation time for m12, we only need to
perform one shortest path computation between Lm12 and
b13. This is because by Euclidean distance, b13 is the nearest
border point of a1 to Lm12

and b26 is the nearest border
point of a2 to Lm12

. Given that eucdistance(Lm12
,b13) <

eucdistance(Lm12
,b26), b13 is the nearest border point for m12.

Now we compute the segment length-based network distance
between Lm12 and b13, denoted by sldistance(Lm12 ,b13). By
comparing it with the Euclidean distance from Lm12

to all
other border points of a1 and a2, we find that the following
condition eucdistance(Lm12

,bk) > sldistance(Lm12
,b13) holds

(k = 11, 12, 14, 21, 22, 23, 24, 25, 26, 27). Thus we effectively
removed 10 unnecessary shortest path computations.

IV. MOTION-AWARE OPTIMIZATIONS

Comparing to the network expansion-based approaches,
the ROADALARM basic approach improves the efficiency of
spatial alarm processing by using the ELB filter. This leads to
removing a fair number of shortest path computations that are
unnecessary for computing the new hibernation time for each
mobile user. However, the ELB filter is not always effective.
In some cases, the number of border points after applying
ELB filter remains high. Recall the case of m11 and alarm a1
in Fig. 1(c), the Euclidean distance from m11 to b12 is the
shortest, thus the road network-based distance from m11 to
b12 is first calculated. Because this distance is longer than the
Euclidean distances from m11 to all other border points (b11,
b13, b14), the ELB filter filters out none of the border points
for alarm a1.

In this section we introduce motion-aware filters to fur-
ther reduce the search space and the computation time of



ROADALARM basic approach, especially for mobile users
subscribed many alarms and their alarms are scattered in a
large geographical area. The main idea of the motion-aware
filters comes from the observation that mobile users traveling
on road networks typically exhibit some degree of steady
motion. First, a mobile user traveling on a road network
can move only by following the predefined road segments
connected to the current road segment it resides. For example,
if a mobile user is marching on a road segment, its current
moving direction cannot be changed until it reaches a road
junction. Furthermore, even if it reaches a road junction, it
has high probability to follow the major road segment in the
same or similar direction at the junction node. We refer to
such motion behavior as steady motion. In the subsequent
sections, we present three types of steady motion-based filters
and discuss how each may reduce the search space and the
computation time of the ROADALARM basic approach.

A. Steady Motion-based Filtering

The steady motion assumption in mobile computing systems
refers to the fact that mobile users on the road will move along
its current direction for a certain period of time. Formally, we
can model the steady motion as follows: Let p(φ) denote the
probability density function (PDF) for a degree φ based on the
current direction of a mobile user m in the Euclidean space.
p(φ) is defined based on the setting of φ and how steady the
mobile user moves along the current direction on the road.
The more steady the mobile user moves along the current
direction and the smaller the φ value is, the higher probability
p(φ) will be and the more effective the steady motion-based
optimization will be in terms of filtering out irrelevant border
points and alarms while maintaining high accuracy of alarm
evaluation. We define p(φ) as follows:

p(φ) =



1 +
s

t

⌈π/2− |φ|
s/t · π

⌉
2π

, if− π/2 ≤ φ ≤ π/2

1− s

t

⌈ |φ| − π/2
s/t · π

⌉
2π

, otherwise

where s/t represents the steadiness such that s/t < 1. For
example, if s/t is equal to 1/2, P [−π/2 ≤ φ ≤ π/2] = 0.75
which means that the probability of moving within 180 degrees
based on the current direction is 75%. On the other hand, if
s/t is equal to zero, it means there is no steadiness and thus
the probability is 1/2π for all values of φ.

Our optimizations use steady motion degree Θ to capture
the constrained motion characteristics of mobile users traveling
on a road network. For each mobile user, its steady motion
degree Θ is utilized to limit the search space where it has
high probability to be visited by the mobile user, based on
the above PDF. If a sharp turn occurs at a junction node,
a new Θ value will be computed for the mobile user based
on the characteristics of underlying road networks and past
movement history of the mobile user. We can also view this

Θ

Current

Previous

(a) Current direction-based

Θ

Current

Destination

(b) Destination-based

Current

Destination

(c) Shortest path-based

Current

Destination

Recalculate

(d) Shortest path recalculation

Fig. 2. Motion-aware Optimizations

Θ as a confidence indicator. When a mobile user moves on
the road network by following its current direction, a large Θ
value indicates possible sharp turns and sudden travel direction
changes whereas a small Θ value indicates high probability
of steady motion along the current direction. When a mobile
user is traveling on the road network with a clear destination
in mind, this Θ angle can be determined based on the current
location of the mobile user and the destination location.

B. Direction-based Motion-aware Filter

The first motion-aware filter is based on the current direction
of mobile users and their steady motion degree Θ. The Θ
region is determined based on the current travel direction of
the mobile user. Let (p1, p2) and (c1, c2) denote the previous
location and the current location of a mobile user m respec-
tively. The current travel direction vector of m is defined as
v =<c1 − p1, c2 − p2>. Based on this vector, when a mobile
user m wakes up, this filter limits the search space using the
steady motion degree Θ and selects only those border points
that reside in the Θ region anchored at the previous location
of m as shown in Fig. 2(a). Concretely, let (xb1, xb2) denote
a border point of some alarms subscribed by m. To check if
the border point is within the Θ reduced search space, this
filter first defines another vector w =<xb1 − p1, xb2 − p2>
and then calculates the degree of the border point from the
current direction vector v using the following equation:

sm degree(v, w) = arccos(
v · w
|v||w|

)

If sm degree(v, w) > Θ, this border point is removed since it
is outside the constrained search space. For the selected border
points, we calculate the new hibernation time by executing the
ROADALARM basic algorithm, which uses the border point
that is closest to the current location of mobile user m.



C. Destination-based Motion-aware Filter

The destination-based motion-aware filter utilizes both the
current location and the destination information of mobile
users. Destination information can be directly given by the
mobile clients, such as those using car navigational systems
or can be extracted from mobile clients’ calendar applications.
The destination-based filter chooses only border points which
reside in the Θ region defined based on the current location
of mobile users and their destination. We define a destination
vector to represent the direction toward the destination, in
which the current location and the destination location are
used as the initial and terminal point of the vector respectively.
When m wakes up, the destination-based filter restricts the
search space using the destination vector and Θ. Only the
border points of m that are located within this Θ restricted
search space are selected as shown in Fig. 2(b). For the
selected border points, we calculate the new hibernation time
for m by executing the ROADALARM basic algorithm.

D. Shortest Path-based Motion-aware Filter

Even though both the current direction-based filter and the
destination-based filter can reduce the computation cost of
finding the nearest border point for each mobile user upon
its wakeup by reducing the number of candidate border points
and thus the search space, it still needs to examine too many
border points in order to find the nearest one, especially when
Θ is large and many alarms are subscribed by mobile users.
Consider Fig. 2(b): the border points on the bottom far left or
far right corner are unlikely to be hit by the mobile user since
it is far away from the user’s destination. Motivated by this
observation, we propose the shortest path-based motion-aware
filter based on a natural assumption that mobile users will
follow the shortest path to the destination. Initially, this filter
calculates the shortest path (pmin) from the current location
to the destination for each mobile user and then selects some
border points within a boundary distance d from the shortest
path, as shown in Fig. 2(c). The distance d indicates the level
of steadiness: if a mobile user follows the calculated shortest
path, a small value of d is sufficient. The shortest path-based
filter then stores the selected candidate border points with the
calculated shortest path for each mobile user. When a mobile
user m wakes up, this filter retrieves the stored candidate
border points of m and then finds the nearest border point,
among the retrieved border points, using the ROADALARM
basic algorithm. Finally, this approach calculates the hiberna-
tion time using the nearest border point in the same way as is
done in our basic algorithm.

The shortest path-based filter has a built-in resilience to
handle mobile clients which go out of the reduced search space
based on the shortest path as show in Fig. 2(d). When a mobile
user m wakes up, this filter calculates the distance from the
stored shortest path of m. If the distance is larger than d,
it recalculates the search space based on the client’s current
shortest path to the destination.
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V. EXPERIMENTAL EVALUATION

For our experiments, we use gt-mobisim simulator [8] to
generate mobility traces on real road networks downloaded
from U.S. Geological Survey (USGS [9]). The mobility traces
are generated on a map of northwest Atlanta, which covers
about 11 km (6.8 miles) by 14 km (8.7 miles), using the
random trip model [12]. The road network consists of four
different road types: residential roads and freeway interchange
with 30 mph speed limit (48 km/h), highway with 55 mph limit
(89 km/h) and freeway with 70 mph limit (113 km/h). Ranges
of spatial alarms are chosen from a Gaussian distribution with
a mean of 50 m, and standard deviation of 10 m. This setting
generates spatial alarms with a wide spectrum of sizes of
target regions. We use 50 m as the boundary distance d of the
shortest path-based filter. We will refer to the ROADALARM
basic approach as “baseline” for short.

A. Comparison with existing methods

We first compare segment length-based approaches and
travel time-based approaches as shown in Fig. 3. These ex-
periments use 15,000 mobile users (and about 72,000 spatial
alarms) and 180◦ as the Θ value of the current direction-based
and destination-based motion-aware filters. Each user has
different number of spatial alarms, given by Zipf distribution
with five alarms as the most common value (i.e. rank 1).
We exclude the results of network expansion-based methods
since they cannot scale to 15,000 mobile users. The alarm
success rate for travel time-based approaches is higher than
the corresponding segment length-based approaches as shown
in Fig. 3(a). This is primarily because segment length-based
approaches can miss some alarms if mobile users follow paths
having shorter travel time. On the other hand, the average
hibernation time of each travel time-based approach is shorter
since the travel time on the segment length-based shortest path
is always equal to or longer than that on the travel time-based
shortest path for same source and destination location. Without
loss of generality, in the rest of the experiments, we include
the results of only travel time-based approaches for simplicity.

The first set of experiments compares our approaches with
existing Euclidean space-based methods in Fig. 4. We use a
mobile user population with size ranging from 5,000 to 15,000
and each user has different number of alarms, given by Zipf
distribution with five alarms as the most common value. The
total number of alarms ranges from about 24,000 to 72,000.
The success rate is shown in Fig. 4(a). The shortest path-
based filter has almost the same success rate as the Euclidean
distance-based approach using the global maximum speed and
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Fig. 4. Comparison with existing Euclidean space-based approaches

the baseline. The Euclidean distance-based approach using the
expected speed has the lowest success rate for two reasons.
First, it fails to consider spatial network constraints that mobile
users need to obey. Second, the expected speed is estimated
based on the maximum speed limit and the past speed and it
may not accurately reflect the current speed in reality.

Fig. 4(b) shows the average hibernation time of mobile
users. The longer the hibernation time is, the more energy
the mobile clients can conserve. The hibernation time of
the shortest path-based filter is three times longer than that
of the Euclidean distance-based approach using the global
maximum speed and 40% longer than that of the baseline. This
result also shows that mobile users of the shortest path-based
filter can conserve much more energy while ensuring high
success rate. The Euclidean distance-based approach using
the global maximum speed has the shortest hibernation time
since it pessimistically utilizes the Euclidean distance and the
global maximum speed to calculate the hibernation time. The
baseline has shorter hibernation time than the shortest path-
based filter since it always selects a border point having the
shortest travel time without considering motion characteristics
of mobile users. Furthermore, the destination-based filter has
a little longer hibernation time than the shortest path-based
filter at the cost of high success rate.

Fig. 4(c) experimentally proves that the number of wakeups
is inversely related to the hibernation time. The smaller
number of wakeups also indicates the lower server loads since
the server computes the hibernation time whenever a mobile
user wakes up. Fig. 4(d) shows the total computation time to
calculate the hibernation time. The shortest path-based filter
has 45% faster computation time than the baseline. The current
direction-based and destination-based filters have better com-
putation time than the baseline, but worse than the shortest
path-based filter. Fig. 4 shows that the Euclidean distance-
based approaches have low hibernation time and lower success
rate and high number of wakeups at client, even though its
computation time is negligible.
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Fig. 5. Effect of the steady motion degree Θ

B. Effect of the steady motion degree

We investigate the effect of different settings of the steady
motion degree Θ on success rate and hibernation time with
15,000 mobile users and about 72,000 spatial alarms as shown
in Fig. 5. The success rate for the current direction-based
and destination-based filters increases as Θ values increase,
because more border points are selected as shown in Fig. 5(a).
Fig. 5(b) shows that the average hibernation time decreases
with growing Θ values. This is because border points having
shorter travel time are newly selected to calculate the hiber-
nation time as the search space defined by Θ increases.

C. Effect of growing number of users and alarms

Fig. 6(a) and Fig. 6(b) evaluate the scalability of our
approaches by increasing the number of mobile users. Total
300,000 spatial alarms are deployed for this set of experiments
and the number of mobile users increases from 15,000 to
45,000. Each user has zero to 30 spatial alarms, given by
Zipf distribution with 15 alarms as the most common value,
and all spatial alarms are private. We think this setting de-
ploying 45,000 mobile users is realistic on this road network
of northwest Atlanta, in which the total length of all road
segments is 1384 km (865 miles), since there is a mobile user
every 31 m (102 feet) on average. We include the measurement
results of only the baseline and the shortest path-based filter
as they have high success rate compared to other methods.
Fig. 6(a) confirms that our approaches ensure the high success
rate with growing number of mobile users. In terms of the
total computation time, there is no increase from 30,000 to
45,000 users since with fixed alarms, many users have no
spatial alarms as shown in Fig. 6(b).

Fig. 6(c) and Fig. 6(d) show the scalability of our ap-
proaches by increasing the number of spatial alarms with
15,000 mobile users. We increase the most common value
of Zipf distribution from 10 to 20 and thus the total number
of alarms grows from about 147,000 to 297,000. Fig. 6(c)
verifies that our approaches ensure the high success rate with
an increasing number of spatial alarms. Fig. 6(d) shows that
the computation time of the shortest path-based filter increases
only slightly with the growing number of spatial alarms. This
is primarily because the shortest path-based filter selects only
border points having high probability to be hit and thus the
increased number of spatial alarms has no huge impact on the
selected border points by the shortest path-based filter.

In summary, our experimental results show that the shortest
path-based filter outperforms the rest in most cases since
this approach ensures high success rate while reducing the
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Fig. 6. Effect of growing number of users and alarms

computation cost of servers and conserving energy of mobile
clients. For those applications in which high success rate is
required, both the baseline and the the shortest path-based
filter are good options. Especially, for some applications in
which the battery power of mobile clients is not a serious
problem, the baseline may be a better choice since it has a
slightly higher success rate than the shortest path-based filter.

VI. RELATED WORK

Existing research on spatial alarms and location reminders
mainly focuses on the Euclidean space. [3] proposes an
approach to process spatial alarms in the Euclidean space by
combining spatial indexes such as R-tree and Voronoi Diagram
with the safe period. [2], [5] develop a safe region-based
approach for spatial alarm processing in the Euclidean space.

We would like to note that spatial alarms are fundamentally
different from continuous spatial queries in terms of their
objectives and target applications. Continuous spatial queries,
such as finding the restaurants 2 miles around me, are defined
based on the current location of mobile users for finding
points of interest within a predefined range from the current
location of a mobile user. [7], [14] use Euclidean distance
while [10], [13] use road network distance in continuous
spatial query modeling and processing. Continuous spatial
queries are inadequate and incur poor performance for location
trigger-based applications, such as hazard alert systems and
location-based advertisement. In contrast, spatial alarms are
independent of the current location of mobile users and are
defined based on some future location of interest, such as “alert
me when I am 2 miles to the public library in Buckhead”.
Clearly, (1) the focal of a spatial alarm is not the current
location of the mobile client but the current location of the
alarm target (e.g., the public library in Buckhead), and (2)
the spatial alarm evaluation should not be triggered until the
mobile client who subscribed to the alarm is in the vicinity
of the alarm target. Thus, spatial alarms are essential building
blocks for location trigger-based applications, such as location-
based advertisement applications.

VII. CONCLUSION

We have presented ROADALARM − an efficient and scal-
able service architecture and a suite of algorithms for pro-
cessing road network-based spatial alarms. By utilizing spatial
constraints on road networks and mobility patterns of mobile
users on spatially constrained road networks, we have shown
through extensive experiments that the ROADALARM service
architecture can significantly reduce the computation time for
calculating hibernation time upon wakeups of mobile users,
compared to the state of the art conventional approaches.

This paper has made three technical contributions. First, we
present the ROADALARM service architecture that defines road
network-based spatial alarms as star-shaped subgraphs and
uses the border points and road network distance to represent
the boundary of road network-based spatial alarms. By making
the spatial alarm service architecture road network aware, we
are able to capitalize on the spatial constraints of mobile users’
movements to improve the performance and scalability of the
ROADALARM service engine and the energy efficiency of
ROADALARM client on mobile devices. Second, we present
the ROADALARM basic algorithm that combines subscription
filter with Euclidean Lower Bound (ELB) filter to reduce
the number of unnecessary shortest path computations. Third
but not the least, we introduce three motion-aware filters to
further reduce the computation cost by minimizing the number
of unnecessary shortest path computations as well as client
wakeups by making use of the steady motion-based motion
patterns of mobile users traveling on a road network.
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