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Abstract—Online Social Networks (OSNs) have become an
integral part of daily life in recent years. OSNs contain impor-
tant participants, the trust relations between participants, and
the contexts in which participants interact with each other. All
of these have a great influence on the prediction of the trust
between a source participant and a target participant, which
is important for a participant’s decision-making process in
many applications, such as seeking service providers. However,
predicting the trust from a source participant to a target one
based on the whole social network is not really feasible. Thus,
prior to trust prediction, the extraction of a small-scale sub-
network containing most of the important nodes and contextual
information with a high density rate could make trust predic-
tion more efficient and effective. However, extracting such a
sub-network has been proved to be an NP-Complete problem.
To address this challenging problem, we propose BiNet: a
social context-aware trust sub-network extraction model to
search for near-optimal solutions effectively and efficiently. In
this model, we first capture important factors that affect the
trust between participants in OSNs. Next, we define a utility
function to measure the trust factors of each node in a social
network. At last, we design a novel binary ant colony algorithm
with newly designed initialization and mutation processes for
sub-network extraction incorporating the utility function. The
experiments, conducted on two popular datasets of Epinion
and Slashdot, demonstrate that our approach can extract
sub-networks covering important participants and contextual
information while keeping a high density rate. Our approach
is superior to the state-of-the-art approaches in terms of the
quality of extracted sub-networks within the same execution
time.
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I. INTRODUCTION

In recent years, a large and growing number of users
have joined e-commerce, online recruitment and social net-
work web sites, such as Facebook, LinkedIn and Renren1.
Moreover, online social networks (OSNs) have proliferated
to be the preferred platforms for a variety of rich activities,
such as seeking employees and jobs, and making trustworthy
recommendations for products and services. For example,
according to a survey on 2600 hiring managers in 2009
by CareerBuilder2, 45% of those managers used social

1http://www.renren.com/
2http://www.careerbuilder.com/
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Figure 1. A social network

networking sites to investigate potential employees. In 2012,
the ratio increased to 92%. In the context of such activities,
trust is the commitment to a future action based on a belief
that it will lead to a good outcome, despite the lack of ability
to monitor or control the environment [5]. Trust is critical for
the decision making of users, for example, in a scenario of
selecting a service provider based on the recommendations
by others. Therefore, effective and efficient approaches and
mechanisms are needed to predict the trust between two
participants who may not know each other in large-scale
OSNs.

OSNs are usually represented as graphs as shown in
Fig. 1. A node in the graph represents a participant in an
OSN while the edge pointing from one node to an adjacent
node corresponds to their real-world or online interactions
(e.g., A→ B in Fig. 1). Different types of edges represent
different contexts, which refer to any information available
for characterizing the participants and the situations of
interactions between them [23], e.g., a solid line refers to
the relationship in playing tennis, a dashed line refers to
squash and a dotted line refers to mechanics in Fig. 1. The
trust can be explicitly given by one participant to another
based on their history of interactions.

In Fig. 1, suppose A is looking for a service provider
such as a tennis coach and H is recommended to A as a
tennis coach. But, A does not know H before. Here we
assume, playing tennis is the target context, i.e., the context
in which the trust between a source node and a target node
needs to be predicted. In A’s mind, B, E and G are good
tennis players. B, G and H trust each other and G also
trusts A regarding tennis playing. C trusts B, G and H
regarding squash playing and vice versa. F , D, I and H
are good machinists. In order to predict if H will be a good
tennis coach in A’ mind, it is unnecessary to use the whole
social network in Fig. 1, because F , D and I are only good
at mechanics while tennis player E has no knowledge of



others. Let us assume this social network is only constructed
in three contexts: tennis, squash and mechanics. In order
to boost the efficiency and effectiveness of trust prediction
regarding the target context tennis, the social sub-network
in Fig. 2 is extracted from Fig. 1 by removing the social
relations in mechanics and keeping only the important social
relations for the prediction of trust between A and H on
tennis and squash playing, because mechanics is irrelevant
to the target context tennis while squash is relevant to tennis.
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  A B C D E F G H I 

A 0 1 0 0 1 1 1 0 0 

B 0 0 1 0 0 0 1 1 0 

C 0 1 0 0 0 0 1 1 0 

D 0 0 0 0 0 0 0 1 1 

E 0 0 0 0 0 0 0 0 0 

F 0 0 0 0 0 0 0 0 0 

G 1 1 1 0 0 0 0 1 0 

H 0 1 1 1 0 0 1 0 0 

I 0 0 0 1 0 0 0 0 0 

  A B C G H 

A 0 1 0 1 0 

B 0 0 0.7 1 1 

C 0 0.7 0 0.7 0.7 

G 1 1 0.7 0 1 

H 0 1 0.7 1 0 

Figure 2. Sub-Network
In the literature, there are some existing works focusing

on trust prediction, i.e., the process of estimating a new
pairwise trust relationship between two nonadjacent partic-
ipants. Most of these works predict trust based on social
graphs (e.g., Fig. 2) using inference approaches [5], [17],
while a few of them predict trust from a trust matrix,
i.e., a representation of social networks in matrices rather
than graphs, using matrix factorization approaches [7], [29].
However, all these works assume that the trust network has
already been extracted or even the whole dataset is directly
used.

An extracted sub-network (e.g., Fig. 2) needs to satisfy
the following requirements: (1) it should contain the source
node, the target node and most of the nodes which are
important for trust prediction between the source node and
the target node; (2) the scale of the sub-network/matrix is
kept relatively small; and (3) a source participant may intro-
duce constraints of trust relations or contextual information
into the sub-network extraction process for various purposes,
such as employee recruitment and movie recommendation,
which makes the problem more challenging.

Such an extracted trust sub-network can help improve the
effectiveness and efficiency of trust prediction [10], [15].
However, extracting such a trust sub-network/matrix is a
multi-objective optimization problem, which is known to be
NP-complete [1], [15].

In this paper, we propose a social context-aware trust sub-
network extraction model, called BiNet, which can be used
to extract a contextual sub-network for the specific purpose
of predicting the trust from a source node to a target node
in the target social context of an item to be recommended.
The contributions in our proposed model can be summarized
as follows: (a) we first present the factors that impact trust
between participants in a complex contextual social network,
which includes the role impact factor, credibility, preference
similarity, social intimacy and existing trust; (b) we propose
a trust utility function which takes these impact factors
into account to illustrate the attributes of each node in the
social network; and (c) inspired by the ant colony foraging
process [2], [4], we design a novel binary ant colony al-
gorithm (NBACA) for the sub-network extraction problems,
by adding an initialization process and a mutation process

and improving the path selection and pheromone update
processes of the conventional binary ant colony algorithm
(BACA). The experiments conducted on two popular social
network datasets, Epinion3 and Slashdot4, demonstrate the
superior performance of our proposed approach over the
state-of-the-art approaches.

II. RELATED WORK

In this section, we briefly review the related works in
two categories of social trust prediction and sub-network
extraction.

A. Trust Prediction in Social Networks

The existing works on trust prediction are dominated by
inference approaches, as people would naturally seek help
or suggestions from trusted friends or friends’ friends which
forms a trust path based on the trust relationship between
them. Golback et al. [5] propose a trust inference mechanism
in social networks based on an averaging strategy along trust
paths. Li et al. [13], [16] propose a trust inference approach
adopting the multiplication strategies to propagate trust
along a trust path. Wang et al. [23] propose a probabilistic
approach for contextual trust inference.

Recently, trust prediction approaches based on matrix
factorization have been proposed and led to better perfor-
mance [20]. In addition, the participants’ similar habits,
contexts and profiles can impact the performance of trust
prediction. Yao et al. [26] propose a model to predict
trust between two participants from important properties
including transitivity, multi-aspect and trust bias. Zheng
et al. [29] add a propagation and similarity regularization
term to matrix factorization incorporating both personal
properties and interpersonal properties and achieve better
trust prediction performance. Some studies [18], [16] have
suggested to predict trust by taking into account some kind
of social contextual information.

All of these trust prediction models assume that the trust
network or matrix including the source and the target par-
ticipants has already been extracted. However, sub-network
extraction is a necessary step prior to trust prediction as
it provides the foundation for trust prediction and has an
impact on the performance of trust prediction.

B. Network Extraction

In the literature, there are only very a few approxima-
tion algorithms proposed for the NP-Complete sub-network
extraction problem for trust prediction in online social net-
works. As the resource discovery problem in P2P networks
has some similar properties as the trust network extraction
problem, some search strategies from P2P networks can be
applied to trust network extraction. These approaches can
be divided into two groups: traversal methods and heuristic
methods. For the application on small scale datasets, the

3http://www.epinions.com/
4http://slashdot.org/



traversal methods are able to search for the best sub-
network by adopting methods, such as breadth-first search
and depth-first search. However, on large datasets, it is
computationally unfeasible to find the optimum solution,
and therefore, heuristic methods can be used to find a near-
optimal solution.

Hintsanen et al. [6] propose a model to find the most
reliable sub-network. They treat social networks as Bernoulli
random graphs and extract a sub-graph by adding paths to
the extracted sub-graph one by one till the most reliable
status is reached. Liu et al. [14] propose a model to find
K optimal social trust paths for the selection of trustworthy
service providers in complex social networks. The K paths
selected from a source participant to a target one actually
form a sub-network. Liu et al. [15] propose a social context-
aware trust network extraction model, which applies an
optimized Monte Carlo method to extract an optimal trust
network from the source to the target participants, under
user-given constraints of trust network utility yielding the
highest utility. These existing works rely on trust paths
and do not perform well for matrix factorization based
trust prediction approaches as the density of extracted sub-
network is not considered and even the state-of-art sub-
network extraction models still need improvement in the
aspects of both efficiency and effectiveness.

Jang et al. [8] propose a binary ant colony algorithm
(BACA) in which the initial pheromone on paths is equally
distributed and the path selection only depends on the
existing pheromone. This BACA can also be utilized to find
the most reliable sub-network. However, when compared
with the above approaches, the performance of BACA is not
improved much, as the scale of the selected sub-network is
affected by the initialization.

III. INTRODUCTION OF BASIC ACA

As ant colony algorithm (ACA) is a type of efficient
approaches with robustness and global searching ability for
solving multi-objective optimization problems [25], [4], our
proposed sub-network selection approach is based on ant
colony algorithms. This section briefly introduces the basic
idea of ACA.

ACA was first inspired by the observation of ant colonies
in the early 1990’s [2], [4]. Ants are social insects and
live in colonies. Their behaviors are revealed by the whole
colony instead of individuals. When the ants go out to search
for food, initially, every ant randomly explores the area
around its nest and leaves chemical pheromone on the path
it travels. Once an ant finds a food source, it takes part of
the food back to the nest leaving pheromone along all the
way. When other ants come near the paths with pheromone,
they tend to choose the path, with a high probability, with
the strongest pheromone which guides other ants to follow
the same path. Meanwhile, the pheromone on the path is
strengthened by each ant traveling along the path. Thus
in the end most ants will follow the same path to the
food source from the nest. However, when choosing a path,

individual ants can make incidental mistakes. Therefore, they
have a certain probability not to choose the path with the
highest pheromone, forming new paths and enabling most
ants to find the shortest path [2].

IV. SUB-NETWORK EXTRACTION USING NBACA

The ant colony algorithm simulates the process of forag-
ing in an ant society. When applying ant colony algorithms
to the sub-network extraction problem, a few aspects need
to be addressed in the design. In this subsection, we propose
our NBACA based model to find a sub-network in a social
network including the source and target nodes. While the
number of nodes in the extracted sub-network should be as
small as possible, it has to contain as many important nodes
as possible. Thus, the final solution is a trade-off between a
high node importance and the size of the sub-network.

A. Pre-processing

As the extracted sub-network is specific for the subse-
quent trust prediction from a source node to a target node,
the information affecting trust prediction must be considered
in the sub-network extraction process. In order to utilize
social information about participants and their interactions
for the sub-network extraction process, in each context, the
social information needs to be organized into several aspects,
which are called trust impact factors. The details of each
trust impact factor are described below.

1) Trust impact factors:
Role impact factor: In a certain context, the role im-

pact factor (denoted as RIF ) illustrates the impact of a
participant’s social position and expertise on his/her trust-
worthiness based on the fact that a person who has expertise
in a domain is more credible than others with less knowl-
edge [15].

Reliability: In a certain context, reliability (RLB) mea-
sures the rate of a participant’s suggestions accepted by
others [9]. A participant with high reliability is likely to be
sought suggestions from, which can affect the trust towards
the participant. The reliability is calculated as one minus the
deviation between the predicted rating and the actual ratings
of a participant in [9].

Preference similarity: It is illustrated in Social Psy-
chology [27] that a participant can trust and have more
social interactions with another participant, with whom
he/she shares more preferences (e.g., both of them like
playing squash). Preference similarity (PS) between two
participants’ preferences can impact the trust between them
to some extent [23]. Here, PSi,j = PSj,i for participants i
and j.

Social intimacy: Social intimacy (SI) refers to the
frequency of connections between participants in a social
network. The degree of social intimacy can impact trust as
people tend to trust those participants with more intimate
social relationships between them [3].

Existing trust: Trust is a belief that an entity, such as
a person or an organization, will behave in an expected



manner, despite the lack of ability to monitor or control the
environment in which it operates [21]. It can be impacted
by all the above properties and the trust value can be greatly
different between the same two participants in different
interaction contexts [24], [28]. Let Ti,j denote the existing
trust participant i gives to participant j. A higher Ti,j
indicates more trust to j in i’s mind. Here, trust between
two participants in a given context is not symmetrical, which
means Ti,j may not be equivalent to Tj,i.

2) Utility: For the extraction of a sub-network which
is specific for the prediction of the trust from a source
participant to a target one, for each node in the sub-network,
we propose a node utility (denoted by ui) which is the
weighted sum of all the above trust impact factors in a sub-
network. It can be formulated by:

ui = F ·W ′ (1)

where, W is a coefficient vector given by users; and
F = [RIFi, RLBi, SIs,i, PSs,i, Ts,i, SIi,t, PSi,t, Ti,t], is a
vector containing all the factors that affect trust between
the source participant and target participant. These factors
can be divided into three groups: (a) RIFi and RLBi are
independent factors from the source and target participants;
(b) SIs,i, PSs,i and Ts,i are the factors revealing the
relationship with the source participant; and (c) SIi,t, PSi,t

and Ti,t reveal the relationship with the target participant.
ui ∈ [0, 1] as the range of each factor is [0, 1].

B. Formulation of the Problem

The problem can be described as finding a certain number
of nodes (say m, 0 < m ≤ n) out of the n nodes to compose
a sub-network which increases the objective function value
as much as possible, the weighted sum of average node
utility of the extracted sub-network and the density of the
extracted sub-network. The objective function is formulated
as:

G(X) = ζ

∑n
i=1 uixi∑n
i=1 xi

+ ζ̃D(X), (2)

where X = 〈xi|i = 1, ..., n〉 is a vector representing all
the nodes of the selected sub-network; xi = 1 means the
ith node is selected while xi = 0 means the ith node is not
selected.

∑n
i=1 xi is the number of the selected nodes. D(X)

is the density of the current sub-network. ui(i = 1, 2, ..., n)
is the utility of node i calculated by Equation (1). ζ and ς
are the weights.

Therefore, the sub-network extraction problem can be
formulated as:

max G(X) s.t.


xi ∈ {0, 1}, 1 ≤ i ≤ n
xs + xt = 2

uixi ≥ Kt

(3)

where, xs and xt are the selection of the source node and
the target node; xs +xt = 2 means both of the source node
and the target node must be selected; Kt is a threshold value
of the judgment of the important nodes.

C. The Design of NBACA
For the trust sub-network extraction problem, the con-

ventional BACA [8], [11] has two main disadvantages: (a)
the number of the selected nodes in the extracted sub-
network fluctuates around the mathematical expectation of
the number of the selected nodes in initialization; and (b)
the path selection process is only determined by pheromone
information without any heuristic function from prior knowl-
edge. These two disadvantages slow down the convergence
speed of BACA. To overcome these disadvantages, a novel
binary ant colony algorithm (NBACA) is designed.

Fig. 3 shows the designed weighted graph containing n+1
knots (stops) arranged in the order from 1 to n + 1. Ant
movement starts from knot 1. At each knot i(i = 1, 2, ..., n),
there are 2 directed paths a[i, j](j ∈ {0, 1}) connecting to
knot i + 1. On each path a[i, j](i = 1, 2, ..., n; j = 0, 1),
there is a value ui, representing the utility of node i, and
U = {ui|i = 1, ..., n}. Therefore, an ant k going via path
a[i, 1] means the ith node is selected ( noted by xki = 1) by
the ant k for the sub-network, while the ant k going via path
a[i, 0] means the ith node is not selected (xki = 0). The sub-
network selected by ant k is called solution k, represented
by Xk = 〈xki |i = 1, ..., n〉.
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a[1,n] 
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Figure 3. Construction of the weighted graph

Different from the conventional ACA and BACA, in our
designed NBACA, the pheromone on path a[i, j] is repre-
sented by a percentage value, denoted by τij(t). Therefore,
only one of the two paths from knot i to i + 1 is needed
to be stored in each iteration, as there are only two paths
connecting knot i and knot i+1 as well as τi0(t) = 1−τi1(t).
The detailed processes in NBACA are summarized in the
following subsections.

1) Initialization: In ants’ natural world, when an ant
selects a path for foraging, its selection is affected by the
pheromone on each available path. And the path with more
pheromone has a higher probability to be selected. Our
proposed initialization process is to produce the pheromone
of each path at the beginning time t = 0. The initial
pheromone on path a[i, 1] can be formulated as:

τi1(0) = ϕχi + ψηi (4)

where, χi ∼ N (µ, σ2) represents a random distribution
of the pheromone on each path. As there are two paths
connecting two adjacent knots, the mathematical expecta-
tion µ of the distribution is fixed to 0.5 where variance
σ is adjustable. ηi is an expectation heuristic function
representing nodes’ importance in a social network. Here,
ηi = ui/max{uj |j = 1, ..., n} is the rate of node i’s utility
to the maximum node utility in the whole social network.
Coefficients ϕ and ψ represent the weights of χi and ηi



respectively. In addition, the initial pheromone on path a[i, 0]
is τi0(0) = 1− τi1(0) in our NBACA.

2) Path Selection: On path a[i, j] at time t(t =
0, 1, 2, ...), the probability of the path to be selected is
determined by both the pheromone τij(t) and the heuristic
function value ηi. At time t = 0, y ants are created and put
on knot 1. Then each ant selects a path and moves to the next
knot according to both the pheromone on each path and the
heuristic function. This process continues till the ant reaches
the terminal knot n + 1. The solutions are represented by
{Xk|k = 1, ..., y}.

At time t, the transition probability of ant k(k =
1, 2, ..., y) moving from knot i (i = 1, 2, ..., n) to knot i+1
via path a[i, 1] is:

pki1(t) = ατi1(t) + βηi (5)

where, ηi is a heuristic function value which is the same as
that in the initialization process. The larger ηi is, the more
likely ant k selects node i (goes via the path a[i, 1]). α and
β are the weights of the pheromone and the heuristic func-
tion when ants select the paths. In addition, the transition
probability of moving via a[i, 0] is:

pki0(t) = 1− pki1(t). (6)

3) Mutation: The mathematical expectation of the num-
ber of paths a[i, 1] (selected nodes from a social network)
is affected by the initialization[11]. In order to increase
the variance of the number of selected nodes in each
iteration, we propose a mutation process: an ant has a certain
probability to make mistakes in remembering the paths it
has passed through. This process is able to produce new
solutions especially with a different number of selected
nodes, which broadens the scope of the search for a solution.

In the mutation process, ants can more easily forget the
selection of paths corresponding to the unimportant nodes in
a social network. For each ant k, this process is formulated
as:

Xk
− = 〈xki ∗ 1{pki1 > λi}|i = 1, ..., n〉 (7)

Xk
+ = 〈1{(xki + 1{pki1 > λi}) > 0}|i = 1, ..., n〉 (8)

where λi ∼ U(0, 1) is a normal number obtained from a
continuous uniform distribution. 1{.} is a boolean function.
It is equal to 1 if the condition in {} is satisfied. Otherwise
it equals 0. Eqs. (7) and (8) are able to generate solutions
with less and more numbers of selected nodes from a social
network respectively. Finally, an ant k obtains 3 different
solutions after finishing its trip {Xk, Xk

−, X
k
+}.

4) Upgrade of Pheromone: When all the y ants reach
the terminal knot, 3y feasible solutions {Xk, Xk

−, X
k
+|k =

1, ..., y} can be obtained. If the best solution in the current
iteration (denoted by X ′best) is better than that of all the past
iterations (the best-so-far solution, denoted by Xbest), then,
Xbest = X ′best and the pheromone on each path i is upgrad-
ed accordingly. The pheromone upgrade procedure consists
of two parts: (a) the pheromone evaporation procedure which
is applied to path i if node i is not selected for the so-far-

best solution ( xi = 0 and xi ∈ Xbest) and is formulated
as:

τi1(t+ 1) = (1− ρ)τi1(t) (9)

and (b) the pheromone intensification procedure which is
only available for path i if node i is selected for the best-
so-far solution (xi = 1 and xi ∈ Xbest) and formulated
as:

τi1(t+ 1) = τi1(t) + %|1− τi1(t)| (10)

where ρ(0 < ρ < 1) is a parameter called the pheromone
evaporation rate and (1− ρ) is the pheromone residue rate;
%(0 < % < 1) is the pheromone increment rate on path
a[i, j] in the current iteration.

Because pki0(t) = 1 − pki1(t) and the pheromone in our
NBACA is presented as a percentage, the evaporation and
intensification processes need to be conducted only on the
paths of a[i, 1](i = 1, 2, ..., n).

Algorithmic process: The main process of finding the
sub-network in a social network using NBACA is described
in Algorithm 1. In each iteration, the best solution, among
the solution sets X(NC) = {Xk, Xk

−, X
k
+|k = 1, ..., y}

obtained from the y ants in the current iteration, is used
to update the pheromone, if it is better than the so-far-best
solution. Then, the next iteration starts using the updated
pheromone information. Finally, the iteration process ends
returning the best solution, when NC, the number of iter-
ations already run, reaches the maximum value NCmax or
NF , the number of iterations where the best-so-far solution
stayed the same, reaches the preset maximum value NFmax.

Summary: Different from the conventional BACA, the
design of our NBACA is greatly improved in each step. Its
characteristics are as follows: (a) An initialization process
is introduced. The pheromone on each path is initialized by
both a random value from a Gaussian distribution and the
node utility proposed in Section IV-A, which improves the
initial probability of each path to be selected in ants’ initial
movement. (b) In our designed NBACA, the pheromone
information is represented by the percentage value, which
reduces the storage of pheromone information and simplifies
path selection and pheromone update processes resulting in
a reduction of execution time. (c) A mutation strategy is
first introduced into conventional BACA, which increases
the solution range in each iteration and speeds up the
convergence of the NBACA. And (d) our designed NBACA
is not limited to the application of sub-network extraction
problems and it can be applied to any case where the
conventional ACA is applicable.

V. EXPERIMENTS

We have conducted experiments on two popular social
network datasets Epinion and Slashdot [12], and compared
the performance of our BiNet with two state-of-the-art ap-
proaches SCAN [15] and FDRS [6] and a baseline approach
BACO [8].



Algorithm 1: Binary Ant Colony Algorithm
Data: ϕ, ψ, α, β, ρ, %, y, n, NCmax, NFmax

Result: The best solution when the iteration ends
1 begin
2 Initialize NC & NF & Xbest;
3 while NC < NCmax&NF < NFmax do
4 Produce y ants and put them on knot 1;
5 Initialize τi1(0)(i = 1, 2, ..., n);
6 NC=NC+1;
7 for each ant k(k = 1, 2, ..., y) do
8 for each movement i(i = 1, ..., n) do
9 Select next path a[i, j] via Eq.(4);

10 xki = j;

11 Return Xk = 〈xki |i = 1, ..., n〉;
12 Get Xk

− & Xk
+ via Eq.(7&8);

13 X(NC) = {Xk, Xk
−, X

k
+|k = 1, ..., y};

14 X ′best = arcmaxG(X(NC));
15 if G(X ′best) > G(Xbest) then
16 Xbest = X ′best;
17 Upgrade pheromone via Eq. (9&10);
18 else
19 NF=NF+1;

20 Return Xbest;

A. Dataset Description

Although, there are a number of studies on mining a
single impact factor in social networks [19], [22], there is
no dataset in place that contains all the contextual values
we need. Thus, the experiments are conducted on semi-
synthetic datasets which consist of the datasets from real
social networks of Epinion (131,828 nodes and 841,372
edges) and Slashdot (82,144 nodes and 549,202 edges), and
synthetic trust impact factor values. In order to demonstrate
that the performance of our model is not data sensitive,
10 groups of the trust impact factor values are randomly
generated for both Epinion and Slashdot datasets in the
experiments respectively.

B. Comparisons

In order to evaluate the performance of our proposed
model BiNet, we compare it with two state-of-the-art models
SCAN and FDRS and a baseline model BACO:

SCAN is a social context-aware trust network discovery
approach which considers social contextual impact factors
and finds the context-aware trust network under certain
constraints of each trust impact factor, by adopting a Monte
Carlo search method with optimization strategies [15].

FDRS is a fast discovery approach of reliable sub-
networks which treats a social network as a Bernoulli
random graph and builds up the sub-graph by incrementally
adding paths from a source node to a target node to an

initially empty sub-graph until the addition of any paths will
not increase the objective function value of the whole sub-
network [6].

BACO is a binary ant colony optimization algorithm
which is based on the concept and principles of ant colony
optimization to solve the binary and combinatorial optimiza-
tion problems. It can be applied, as a baseline approach, to
extract the trust sub-network when the selection of a node
in a social network is treated as the selection from binary
paths in ants’ movements [8].

In addition, all three models are coded and executed in
Matlab R2012B on a desktop empowered with an Intel i7-
2600 CPU and an 8G memory running Windows 7 64-bit
Professional.

C. Experiment Setting

In order to compare the differences in efficiency and
effectiveness between our proposed model BiNet and each
of SCAN, FDRS and BACO, experiments are conducted on
both Epinion and Slashdot datasets enhanced with synthetic
trust impact factor values respectively to find the near
optimal sub-network for each of 10 pairs of nodes which are
randomly selected, with different social connection degrees,
as the source-target node pairs.

In the experiments on the Epinion dataset, the sub-
network extraction for each source-target node pair is per-
formed on the trust relationships of the Epinion dataset with
each of the 10 groups of trust impact factor values. Likewise,
in the experiments on the Slashdot dataset, the sub-network
extraction for each source-target node pair is performed with
each of the 10 groups of trust impact factor values.

Then, each of BiNet, SCAN, FDRS and BACO is run
for 10 times as cross validation. In total, each model is run
for 2000 times (2 datasets × 10 groups of impact factor
values × 10-time cross validation × 10 source-target pairs).
The average results on both datasets are plotted in Figs. 4-5
respectively.

Parameters, such as the trust factor constraints, only
affect the utility values obtained in the experiments but do
not affect the performance comparison between different
models, as all models are compared on the same datasets.
This type of parameters are given by users in application.
Here, equal weights are adopted in the experiments. Other
parameters, such as the ones in the ant colony algorithm,
are determined by the experiments of the models, where
ζ = ς = 0.5, ϕ = 0.2, ψ = 0.8, α = β = 0.5, ρ = 0.1,
% = 0.1, Kt = 0.5, NCmax = 400 and y = 40.

D. Results and Analysis

Results: BiNet, SCAN and BACO are all iterative algo-
rithms whose results get better as the time goes. In Figs. 4-
5, we present the mean results over each group of datasets
delivered within the first 40 seconds time limitation which
are sufficient to demonstrate the performance of each model,
as in real applications, we cannot really execute the models
for such a long time. The best, mean and worst results on



Table I
THE RESULTS AT 40th SECOND

Dataset Cases BiNet SCAN FDRS BACO BiNeT v.s. SCAN BiNet v.s. FDRS BiNet v.s. BACO
Min 0.575 0.540 0.485 0.294 6.1% higher 15.7% higher 48.9% higher

Epinion Mean 0.631 0.587 0.541 0.301 6.9% higher 14.3% higher 52.3% higher
Max 0.69 0.612 0.581 0.312 11.3% higher 15.8% higher 54.8% higher
Min 0.529 0.503 0.513 0.279 4.9% higher 3.0% higher 47.4% higher

Slashdot Mean 0.611 0.559 0.561 0.285 8.5% higher 8.2% higher 53.4% higher
Max 0.657 0.599 0.598 0.292 8.8% higher 9.0% higher 55.6% higher
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Figure 4. Results on Epinion Dataset
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Figure 5. Results on Slashdot Dataset

each group of datasets at the 40th second are presented
in Table I. As the FDRS model is not an iterative model,
it yields one fixed result on each dataset using over 100
seconds.

Fig. 4 shows the average objective function values (Eq.(2))
of the sub-networks extracted by all the four models on the
Epinion dataset within the first 40 seconds. As time goes on,
the best-so-far solutions of BiNet, SCAN and BACO become
better, while the result of FDRS keeps unchanged as it is not
an iterative algorithm. Our proposed BiNet outperforms all
other three models after 3.2 seconds. At the 40th second,
the average objective function value of the sub-network
delivered by BiNet is 6.9% higher than the one delivered
by SCAN, 14.3% higher than the one delivered by FDRS,
and 52.3% higher than the one delivered by BACO.

Fig. 5 shows the average objective function values of the
sub-networks extracted by the four models on the Slashdot
dataset within the first 40 seconds. On this dataset, our
BiNet outperforms both SCAN and BACO from the very
beginning and outperforms FDRS after 3.5 seconds. At the
40th second, the average result of BiNet is 8.5% higher than
that of SCAN, 8.2% higher than that of FDRS, and 53.4%

higher than that of BACO.
Analysis: The differences between our BiNet model and

SCAN, FDRS and BACO on both datasets, especially, the
significant improvement between BiNet and BACO, main-
ly come from the following aspects: (a) the initialization
process of our proposed algorithm set up our model using
both random values from normal distribution and a heuristic
function from nodes utilities, which makes our model able
to find solutions with a relatively high utility from the first
iteration without losing diversity; (b) the mutation process
generates an extra solution with a smaller number of selected
nodes and another extra solution with a larger number of
selected nodes in each iteration, and thus can broaden the
scope of search in each iteration; (c) the percentage rep-
resentation of pheromone information only needs to record
the pheromone on half the number of paths, and thus can
save memory and reduce execution time; (d) our designed
model selects nodes from both pheromone information and
a heuristic function, which speeds the convergence and
betters the performance within a fixed time; (e) pheromone
update process is kept simple, which makes our model more
efficient; and (f) the big improvement between BiNet and
BACO demonstrates that our proposed model significantly
overcomes the conventional disadvantages of BACAs.

In addition, our proposed model outperforms the other
models in all the three cases presented in Table I shows that
our model is not data sensitive and applies to a wide scope
of applications.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a social context-aware
trust sub-network extraction model to search near-optimal
solutions effectively and efficiently. In this model, first, we
have discussed the impact factors that affect the trust of a
participant in another participant’s opinion in online social
networks. Then, we have proposed a trust utility function
that takes these impact factors to illustrate the attribute of
each node. After that, we have proposed a novel binary ant
colony algorithm incorporating the utility function. In this
newly designed algorithm, an initialization process and a
mutation process are added, while the conventional path se-
lection and pheromone update process are improved for sub-
network extraction. The experiments, conducted on Epinion
and Slashdot datasets enhanced with synthetic trust impact
factor values, demonstrate that our proposed model outper-



forms the existing comparable heuristic methods in terms of
the quality of extracted trust sub-networks. In particular, our
newly designed NBACA overcomes the disadvantages of the
conventional BACA for sub-network extraction. Moreover,
our proposed NBACA has the same scope of applications
as the conventional BACA, but achieves significantly better
performance.

In the future, we plan to further improve the performance
of the sub-network extraction model as well as the binary
ant colony algorithm for better efficiency and effectiveness.
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