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Abstract timization lies mainly in the selection of indexes and mate-

rialized views[4]_12]. These physical structures play a par
With the wide development of databases in general andticularly significant role in decision-support databasgshs
data warehouses in particular, it is important to reduce the as data warehouses due to their huge volume and complex
tasks that a database administrator must perform manually. queries.
The aim of auto-administrative systems is to administrate  The problem of selecting an optimal index set for a
and adapt themselves automatically without loss (or evendatabase has been studied since the seventies. The most re-
with a gain) in performance. The idea of using data mining cent studies regarding index selection use the DBMS’ query
techniques to extract useful knowledge for administration optimizer to estimate the cost of various configurations of
from the data themselves has existed for some years. Howeandidate indexe$s[3] [7] [8,111]. However, the idea of using
ever, little research has been achieved. This idea neverthe data mining techniques to extract useful knowledge for ad-
less remains a very promising approach, notably in the field ministration from the data themselves has been around for
of data warehousing, where queries are very heterogeneousome years [6]. Little work has been done, though. In this
and cannot be interpreted easily. The aim of this study is to paper, we designed and coded a tool that exploits data min-
search for a way of extracting useful knowledge from stored ing to recommend a relevant index configuration.
data themselves to automatically apply performance opti- Assuming that index utility is strongly correlated to the
mization techniques, and more particularly indexing tech- usage frequency of the corresponding attributes within a
nigues. We have designed a tool that extracts frequent item-given workload, the search for frequent itemséts [1] ap-
sets from a given workload to compute an index configu- peared well adapted to highlight this correlation and facil
ration that helps optimizing data access time. The experi- tate index selection. Our tool parses the transaction leg fil
ments we performed showed that the index configurations(the set of queries executed by the DBMS) to build a context
generated by our tool allowed performance gains of 15% to for mining frequent itemsets. This context connects qserie
25% on a test database and a test data warehouse. from the input workload to the attributes that may be in-
dexed. The output frequent itemsets are sets of attributes
forming a configuration of candidate indexes. Finally, vari
1 Introduction ous strategies can be applied to select the indexes to effec-
tively build from within this configuration.

Large-scale usage of databases requires a Database Ad- N the remainder of this paper, we present our proposal
ministrator (DBA) whose principal role is data manage- N Sectio 2 and some preliminary experimental results in

ment, both at the logical level (schema definition) and the Sectiori8, and then finally conclude the paper and present
physical level (files and disk storage), as well performance fUture research perspectives in Secfion 4.
optimization. With the wide development of Database Man- ] o )
agement Systems (DBMSs), minimizing the administration 2 Frequent itemsets mining for index selec-
function has become critical to achieve acceptable regpons tion
times even at load peaks [22]. One important DBA task is
the selection of suitable physical structures to improee th 2.1  Principle
system performances by minimizing data access time [10].

Indexes are physical structures that allow a direct access Our approach exploits the transaction log to extract an
to the data. From the DBA's point of view, performance op- index configuration. The queries from the transaction log
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Q1: SELECT * FROM T1l, T2 WHERE A BETWEEN 1 AND 10 AND C=D

Q2: SELECT * FROM T1l, T2 WHERE B LIKE ’%this%’ AND C=5 AND E<100

Q3: SELECT % FROM T1, T2 WHERE A=30 AND B>3 GROUP BY C HAVING SUM(E)>2
Q4: SELECT » FROM Tl WHERE B>2 AND E IN (3, 2, 5)

Q5: SELECT % FROM T1, T2 WHERE A=30 AND B>3 GROUP BY C HAVING SUM(E)>2
Q6: SELECT * FROM T1l, T2 WHERE B>3 GROUP BY C HAVING SUM(E)>2

Figure 1. Sample workload

constitute a workload that is treated by an SQL query an-2.4 Building the extraction context for the fre-

alyzer. The SQL query analyzer extracts all the attributes quent closed itemsets
that may be indexed (indexable attributes). Then, we build
a “query-attribute” matrix, the rows of which are the work- We build a matrix (Figurél2) the rows of which repre-

load queries, and the columns are the indexable attributessent the workload queries, and the columns represent the

The role of this matrix is to link each indexable attribute to set of all the indexable attributes identified in the pregiou

the workload queries it appears in. step. This “query-attribute” matrix links each query to the
This matrix represents the extraction context for frequent indexable attributes within it. Attribute presence in aiyue

itemsets. To compute these frequent itemsets, we selecteis symbolized by 1, and absence by 0.

the Close algorithri[17, 18], because its output is the set of

the frequent closed intemsets (closed regarding the Galois Attributes
connection[[1B]), which is a generator for all the frequent Queries| A |B|C|D|E
itemsets and their support. In most cases, the number of fre- Q1 10110
guent closed itemsets is much lower than the total number Q2 ol1]1]0]1
of frequent itemsets obtained by classical algorithms such Q3 111110111
as Apriori [2]. In our context, using Close enables us to Q4 ol1lo0lo0]1
obtain a smaller (though still significant) configuration of Q5 1111110101
candidate indexes faster. Q6 Ol 1111011
Finally, we select from the configuration of candidate in-
dexes (that corresponds to the input workload) the most rel- Figure 2. Sample extraction context

evant indexes and create them.

2.2 Workload extraction ) o
2.5 Frequent closed itemsets mining

We assume that a workload similar to the one presented
in Figure[1 is available. Such a workload can be easily ob-
tained either from the DBMS’ transaction logs, or by run-
ning an external application such as Lumigent’'s Log Ex-
plorer [14].

The Close algorithm scans in breadth first a lattice of
closed itemsets in order to extract the frequent closed-item
sets and their support. Its input is an extraction contesth su
as the one presented in Figlte 2.

Intuitivelty, a closed itemset is a maximal set of items (at-
tributes) that are common to a set of transactions (queries)
Forinstance, in Figuifd 2's extraction context, the BCE item
set is closed because it is the largest set of common at-

To reduce response time when running a database querytributes for the set of querieQ2, Q3, Q5, Q6. On the
it is best to build indexes on the very attributes that are other hand, the BC itemset is not closed since all the queries
used to process the query. These attributes belong to theontaining attributes B and C (Q2, Q3, Q5, and Q6) also
WHERE, ORDER BY, GROUP BY, and HAVING clauses contain attribute E. Eventually, a closed itemset is sagd fr

2.3 Indexable attributes extraction

of SQL queries(]7]. guent when its support is greater or equal to a threshold
We designed a syntactic analyzer that is able to op- parameter namettinsup(minimal support).
erate on any SQL query type (selections and updates — The application of Close on the context presented in Fig-

subqueries are allowed), and extracts all the indexable at-ure[2 outputs the following set of frequent closed item-
tributes. This process is applied to all the queries from the sets (and their support) for a minimal support equal to 2/6:
workload. {(AC, 3/6), (BE, 5/6), (C, 5/6), (ABCE, 2/6), (BCE, 4/B)



We consider this set as our configuration of candidate in- on frequentitemsets mining is also greedy in terms of com-

dexes. puting time, but it is currently difficult for us to determine
which approach generates the heaviest overhead for the sys-
2.6 Indexes construction tem.

However, we are more interested in the quality of

The higher the size of the input workload is, the higher the generated indexes. For instance, fingex Selection
the number of candidate indexes obtained with our approach’00! (IST) developed by Microsoft within the SQL Server
becomes. Thus, it is not feasible to build all the proposed PBMS [7] exploits a given workload and provides a config-
indexes. Index creation time, and later update time, would Uration of mono-attribute candidate indexes. A greedy-algo
both be too costly. Hence, it is necessary to devise filtering "ithm selects the best indexes from this configuration,gisin
methods or processes to reduce the number of indexes t&Stimated costs computed by the query optimizer. The pro-
generate. cess then reiterates to generate two-attribute indexag usi

The first naive method is to build all the candidate in- the mono-attribute indexes, and similarly, to generateimul
dexes. This method is only applicable when the number of attribute indexes of higher order. By mining frequent ctbse
indexes is relatively small. In that particular case, dogat ~ It€MSets, our tool directly extracts a set of mono-attebut
and update times remain acceptable. andmulti-attribute indexes. Hence, we do not build an ini-

In the context of decision-support databases, and morefial mono-attribute index configuratianpriori, and we do
particularly, of data warehouses, building indexes is a fun N0t n€ed to use any heuristic to build multi-attribute candi
damental issue because of the huge volume of data store§ate indexes by successive iterations like IST. We believe
in fact tables and some dimension tables. Thus, it is morethat this approach avoids the generation and cost evafuatio
critical to build indexes on large tables. Index contribati ~ Of irrelevantindexes.
on small tables can indeed prove negligible, and even some-
times, costly. 3 Experiments

Statistical input, such as the cardinality of the attrisute
to be indexed, may also be exploited to build indexes. An | order to validate our approach, we have applied it on
attribute’s cardinality is the distinct number of values fo 5 test database and a test data warehouse. Our objective
this attribute within a given relation. Depending on the here is more to find out whether our proposal makes sense
card!nal!ty,_lndexmg may be_ more or less efficient. If the ;, practice than to perform true performance tests.
cardln_allty is very Iarge, an index degenerates tpvya}rd ase- \We have chosen the TPC-R decision-support bench-
quential scan (of the index structure itself); and if itiswe  mark [20] for our experiments on a relational database be-
small, an index might not bring a very significant improve- cayse it is a standard that should allow us to easily compare
ment [21]. Hence, the best choice might be to build indexes oy approach to the other existing methods in the future.
on attributes with an “average” cardinality. We have generated the TPC-R 1 GB database and used the

In this first study, we took a particular interest in table penchmark’s 22 read-only queries (labeled Q1 to Q22). In
sizes. We indeed established two strategies to build irelexe thjs first experiment, we suppose refresh operations occur
from the union of the frequent closed itemsets provided by nf.jine. However, in order to take index management over-

Close. The first strategy systematically builds all the pro- pead into account, future performance tests will also ielu
posed indexes (naive method). In this case, each frequentpc.r’s RF1 and RF2 refresh functions.

closed itemset corresponds to an index to be created. The op the other hand, to the best of our knowledge, there

second strategy takes the size of the tables an index referg; ng standard benchmark for data warehouses yet (TPC-
to into account. In this case, the DBA must define whether pg js still in developmen({[19]). Hence, we worked on a

a table is large or not, and only indexes on attributes from gmall datamart that had been previously developed in our

these large tables are built. laboratory. This accidentology datamart is composed of an
_ _ o Accidentfact table and four dimension tableRtace, Con-
2.7 Comparison with the existing methods dition, Date and PersonResponsibleoccupies 15 MB on

disk. Starting from our previous analyses on this datamart,
Unlike the index selection methods that have been re-we also designed a realistic decision-support workload tha
cently developed, the tool that we propose does not com-is specifically adapted to it. This workload includes both
municate with the DBMS’ query optimizer. The communi- selection and update operations. We cannot present it in de-
cation between the index selection tool and the optimizer istail here due to lack of space; interested readers are egferr
usually costly and must be minimized. An index configu- to [5].
ration computing time is indeed proportional to the size of  Both the TPC-R database and the accidentology data-
the workload, which is typically large. Our method based mart have been implanted within the SQL Server 2000



// Cold run (no timing)

FOR each query in the workload DO
Execute current query

END FOR

// Warm run

FOR i = 1 TO number_of_replications DO

Execute current query

END FOR
END FOR

FOR each query in the workload DO

Compute response time for current query

Compute global mean response time and confidence interval

Figure 3. Test protocol

DBMS.

The test protocol we adopted is presented in Figure 3.
This algorithm has been executed for various values of the
Closeminsup(minimal support) parameter. In practice, this
parameter helps us limiting the number of indexes to gener-
ate by selecting only those that are the most frequently used
by the workload. At each step corresponding to a value of
minsup we compute the mean response time for the input
workload.

3.1 Experiments on TPC-R

The results we obtained are presented in Fiflire 4hnd 5.
The results from Figuriel 4 correspond to the creation of all
the candidate indexes obtained with Close, while the result
of Figure[® correspond to a filter on this configuration (in-
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Figure 4. TPC-R results — All indexes

tables

Figure[4 andb show that, in comparison with a sequen-
tial scan with no indexes, we achieve a gain in performance
for the two strategies regardless of the valuenaisup The
maximum response time gain, which is computed as the dif-
ference between the mean response time without indexes
and the lowest mean response time with indexes, is close to
22% in the first case and 25% in the second case. The aver-
age response time gains computed over all values of minsup
are 14.4% and 13.7% in the first and second case, respec-
tively. In the first case, the response time improves until
minsupreaches 15%, and then degrades at a steady rate,
while in the second case, it remains at its lower value in
a broader range (from 20%insupto 50%minsup before
degrading abruptly. The large number of indexes to be gen-
erated in the first case can explain this behavior. Consider-
ing only indexes associated with large tables helps reducin
the number of generated indexes and avoids index creation



for small tables (since they induce a low benefit). achieved on the TPC-R database, may come from the struc-
Finally, for high values ofminsup the mean response ture of the created indexes. Bitmap and star-join indexes ar

time becomes close to that obtained without generating anybest adapted to data warehouses [15, 16], while the default

index in both cases. This was predictable since for a veryindexes in SQL Server are variants of B-trees.

highminsup no or very few indexes are actually generated.

_In the second case, f[his state is reached sooner since_ fewef Conclusions and perspectives

indexes are built, which explains the lower average gain.

We presented in this paper a novel approach for auto-
matic index selection in DBMSs. The originality of our
study rests on the extraction of frequent itemsets to deter-

For this series of experiments, we applied the same pro-mine an index configuration. Indeed, we assume that the
tocol (Figure[B). However, we did not employ the large importance of an indexable attribute is strongly correlate
table index creation strategy since all the tables in our tes with its frequency of appearance in the workload’s queries.
datamart have similar sizes. In addition, the use of a frequent itemsets mining algorithm

The results we obtained are presented in Figlire 6. Thesuch as Close enables us to generate mono-attribute and
maximum gain in performance is close to 15% while the av- multi-attribute indexes on the fly, without having to imple-
erage gain is 6.4%. Figuré 6 shows that building indexes isment an iterative process that successively creates micrea
actually more costly than not building them fminsupval- ingly large multi-attribute indexes based on an initial st
ues ranging between 10% and 25%. This may be explainednono-attribute indexes.
by the high number of generated indexes, and thus a high  Qur first experimental results show that our technique in-
index generation time. Furthermore, since the 15 MB data- deed allows response time improvements of 20% to 25% for
mart is stored completely in the main memory, the indexes a decision-support workload applied to a relational databa
are useful only when it is first loaded. In this context, many (TPC-R benchmark). We also proposed two strategies to
sparsely used indexes must also be loaded, which penalizegarry out an index selection among the candidate indexes:
global performance. the first strategy systematically creates all the candidate
dexes, while the second only creates the indexes that are
related to so-called large tables. The second strategysllo
better performance improvements because it proposes a bet-
ter compromise between the space occupied by the indexes
(the number of created indexes is limited to those that are
15 +—= defined on attributes from large tables) and the use of cre-

\ ating an index (it is not beneficial to create an index on a
small table).
1,3 - We also performed tests on an accidentology datamart,
on which we applied an ad hoc decision-support workload.
\ . Py The gain in response time, about 14%, is less significant
11 T T T T | than in the case of TPC-R. This can be explained by the fact

0% 20% 40% 60% 80% 100% that the default indexes created by SQL Server are B-tree
variants and not bitmap or star-join indexes, which would
be better adapted for a data warehouse.

Our study shows that using data mining techniques for
DBMS auto-administration is promising. However, it is

Figure 6. Accidentology datamart results only a first approach and it opens up many prospects for
research. Our first research perspective is to improve index

The best gain in response time appearsmamsupval- selection by designing more elaborated strategies than the
ues ranging between 30% and 85%, when the number ofexhaustive use of a configuration or the exploitation of rel-
indexes is such that the index generation overhead is loweratively basic information relating to table sizes. A more ac
than the performance increase achieved when loading thecurate cost model regarding table features (other thaj, size
datamart. Beyond that point, response time degrades anar a strategy for weighting the workload’s queries (by type
becomes close to that obtained without indexes becausef query: selection or update), could help us. The use of
there are a few or no indexes to generate. other unsupervised data mining methods such as clustering

Another possible explanation to the lower performances could also provide smaller sets of frequent itemsets.
obtained for our datamart, in comparison to the results It also appears essential to test our method further to bet-

3.2 Data warehouse experiments
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ter evaluate the overhead it generates, both in terms of in-
dexes generation time and maintenance time. In particular,
it is necessary to apply it on large data warehouses, while
exploiting adapted indexes. It would also be very interest-
ing to compare it in a more systematic way to the IST tool
that has been developed by Microsoft, either through com-
plexity computations of the index configuration generation
heuristics (overhead), or by experiments aiming at evaluat
ing the quality of these configurations (response time im- [10]
provement and overhead due to index maintenance).
Extending or coupling our approach with other perfor-
mance optimization techniques (materialized views, uffe [11]
management, physical clustering, etc.) also constitutes a
promising research perspective. Indeed, in the context of
data warehouses, it is mainly in conjunction with other
physical structures (primarily materialized views) tha i
dexing allows the most significant performance gdins |3, 4,

12].

Finally, it would also be interesting to study how algo-
rithms for mining functional dependencies [13] or inclu-
sion dependencies![9] in databases might be exploited in
our context. Many join operations (natural joins) are in-
deed carried out following inclusion dependencies (cohcep [14]
of foreign key). Discovering hidden dependencies within

the data could thus help us generating relevant indexes or

materialized views without needing an input workload.
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