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Abstract—This paper presents a practical supervised band selection
procedure for airborne imaging spectrometers and Maximum
Likelihood classification (MLC) as data application. The output band
set is optimal in band location, width and number regarding the
MLC accuracy of the classification task. The supervised algorithm is
based on feature selection and requires a user-defined class set. For
two given semi-natural vegetation data and class sets, the selected
band sets performed superior to established vegetation band sets
used in current satellite and airborne sensors, most noticeably for
the first few bands. The algorithm was implemented in
IDLTM/ENVITM. It may also be used for feature selection, the
generation of class-discriminate colour composites, the
prioritization of already existing band sets, and the determination of
the intrinsic discriminant dimensionality of the data set.
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I.  INTRODUCTION

Hyperspectral imagery allows the detection and exploitation of
narrow spectral absorption or emission features of target classes of
interest, leading to an improved identification and discrimination of
ground targets, and characterization of their related physical or
chemical properties. However, hyperspectral data have a large
volume that is difficult to record, store, and transmit efficiently. For
some hyperspectral sensors, e.g. the Itres Instruments Compact
Airborne Spectrographic Imager (CASI-2), the data recording rate
limits the amount of data to be recorded per scan. A compromise in
swath width is often made for hyperspectral capability. In addition,
high spectral resolution results in a reduced signal-to-noise ratio
(SNR), unless coarser spatial resolution is used, which may not be in
the interest of the user. At processing level, with increased number of
bands to analyze, the complexity of the data and that of the classifier
increase and a larger set of training samples is required in order to
adequately define class statistics. As most of hyperspectral data are
redundant for Earth surface targets, dimensionality reduction methods
may be applied.

Band selection reduces the data volume at sensor level. A band is
a wavelength interval in the electromagnetic (EM) spectrum that may
correspond to the bandpass of a channel or channel assemblages. A
channel is a physical CCD detector element that records signals of

specific wavelengths of the EM spectrum. In general, band selection
needs to consider characteristics of

 i) the scene (target reflectance properties),

 ii) the sun (solar spectrum curve),

 iii) the atmosphere (atmospheric windows),

 iv) the sensor (spatial and spectral resolution, bandpass, point-
spread function, wavelength range, SNR), and

 v) the final data application.

The first four data attributes may be taken into account by using
hyperspectral data of a representative part of the scene acquired with
the sensor of interest under similar solar and atmospheric conditions.
For example, the CASI-2’s enhanced spectral mode allows the
acquisition of hyperspectral data (288 bands) at the cost of a reduced
swath width (101 pixels). The band selection algorithm may then be
applied to these data, before the full-swath data set (512 pixels) may
be flown with the optimal band set of maximum 19 bands in CASI-
2’s spatial mode. Otherwise, hyperspectral scene data need to be
simulated considering all four attributes.

With respect to the data application, the authors focused on
Maximum Likelihood classification (MLC) for this study. Some
supervised band selection methods found in the literature are based
on feature selection, extracting the optimal subset of bands out of the
original set according to a class-separability criterion using a sub-
optimal search technique. In the context of pattern recognition,
features are input dimensions into a processing algorithm and may
represent image bands or transforms of bands. Search techniques aim
to alleviate the computational burden of exhaustive searches which
could very quickly cease to be computationally feasible. An example
is the bottom-up search algorithm that constructs the final feature
subset incrementally by including features from preceding subsets.
Ref. [1] used a bottom-up search procedure with the probabilistic
Divergence measure as single-band criterion. A band expansion stage
was included immediately after each new band had been selected.
Ref. [2] also used a bottom-up method, but chose and then
broadened the best available band on the basis of the band set
performance of the Mahalanobis distance.



In addition, feature extraction methods such as Principal
Components Analysis (PCA) and Discriminant Analysis (DA) have
been applied for band selection for MLC applications. They
transform the original measurement space into a lower-dimensional
one. Ref. [3] created the ‘discriminant power’ measure on the basis
of eigenvectors and -values to rank bands. Ref. [4] proposed a top-
down band selection method combining PCA and DA before grading
the bands using eigenvalues and –vectors.

This paper proposes an improved supervised band selection
(SBS) procedure based on feature selection that aims to find a band
set that is optimized in band location, number and width with respect
to MLC accuracy of the given classification task.

II. SUPERVISED BAND SELECTION ALGORITHM

The algorithm was developed using hyperspectral HyMAP and
CASI data sets acquired over the New Forest area in Hampshire
(UK) in June 2000, and over the River Severn Estuary in October
1997, respectively. For both data sets information classes were
defined. A flowchart of the SBS algorithm is presented in Fig. 1.

A. Criterion Function
The optimal criterion for band selection for MLC as application

would be the MLC accuracy, which is, however, computationally
inefficient. Possible surrogates include class-separability measures,
which quantify the distances between class distributions in feature
space. Probabilistic separability measures are preferred to heuristic
ones as they exploit differences in the class covariance matrix as well
as in the class means. Saturated measures, such as Transformed
Divergence (TD) and Jeffries-Matusita are more justified than
unsaturated ones (Divergence and Bhattacharyya, respectively) as the
entire distance range will be evaluated in this algorithm. The authors
chose the TD measure as criterion, as it gave the highest correlation
with the MLC accuracy for the given data sets. The ‘maximum
average’ multi-class form of the criterion was favoured to the
‘maximum minimum’ type, as the latter may introduce a bias by
focussing only on the class pair hardest to separate. The band
achieving the highest TD band set performance when added to the set
was selected for the final set.

B. Search Method
It can be shown that an exhaustive search for a typical band

selection task will result in an infeasible computational task using the
surrogate TD measure. The ‘bottom-up’ forward selection was
preferred to the ‘top-down’ equivalent, as the number of features to
be selected for the final set is much smaller than the number of original
bands in the hyperspectral data set. Monte Carlo search methods
were avoided as they produce inconsistent results.

Figure 1. Flowchart of the supervised band selection algorithm.

C. Bandwidth Increase
Two neighbouring bands may be merged, i.e. their signals

summed, to improve band set performance. Contrary to [1] and [2],
bandwidth increase in this algorithm takes place before a new band is
added to the set, as bandwidth increase alters the performance of the
band set. In addition, adjacent narrow bands of the final band set

were not merged by default, as they may, for example, exploit the top
and bottom of a narrow spectral feature.

This subroutine starts by comparing the mergers of a band with
both of its neighbours in terms of overall set performance, and the
merger leading to the better criterion performance is carried out. The
process is repeated until both left and right mergers decrease the
overall set accuracy. A band may not be increased further in width if
the smallest of all band means in the set falls below a user-defined
percentage (lower limit 20%) of its mean, to assure that all bands
achieve a sufficient SNR. Expanded bands that do not reach an
adequate signal level are not considered for the final band set.

D. Band Number Determination
This subroutine aims to find the number of bands that are

necessary to achieve sufficient classification accuracy, say 95%
accuracy of the full band set. The authors defined the proportion of
maximum achievable Transformed Divergence  (PMATD) as
approximation of the proportion of maximum achievable MLC
accuracy. It is calculated by dividing the TD value of a band subset by
the TD value achieved with the entire band set. The PMATD is based
on the linear relationship between the TD and the MLC accuracy and
assumes that the maximum TD value is reached when using the entire
band set. The optimal number of bands equals to the dimension of the
smallest band set, which achieves a PMATD of at least 95%.
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III. ALGORITHM EVALUATION

A. Reliability
The reliability of the band selection algorithm was judged by

inquiring the appropriateness of its assumptions. Class samples are
assumed to be normally distributed which is usually appropriate for a
sufficient number of class training samples. In addition, the suitability
of the linear relationship between the MLC accuracy and the
Transformed Divergence was shown for the given data sets, but
needs to be verified for other class and data sets. The sub-optimality
of the search procedure used in the SBS cannot be quantified, but is
thought to be small for the first few bands of the final band set as the
latter are only weakly correlated. The band number determination
routine assumes that the maximum achievable MLC accuracy is
produced by the entire band set, which is accurate if a sufficient
number of training samples are provided to avoid Hughes
phenomenon.

B. Effectiveness
The effectiveness of the algorithm was judged by comparing, in

terms of the MLC accuracy, the SBS optimal band set with the one
generated with an unsupervised correlation-based band selection
(UBS) algorithm presented in [5],[6], and vegetation band sets of
current satellite and airborne band sets (see Fig. 2). Both optimal
band sets achieved similar or higher MLC accuracy than the simulated
band sets with only the first 2 or 3 bands for both data sets. In
addition, the accuracy of optimal band sets was compared to the one
of randomly and equally spaced band sets. The optimal sets
performed superior only for the first three dimensions, indicating that
band selection is most effective for the firstly selected bands for the
given class and data sets.

IV. CONCLUSION

This paper has presented the first results from an improved
supervised band selection approach to optimizing data collection for
Maximum Likelihood classification using programmable airborne
hyperspectral sensors. The evaluation showed that for the given data
sets an optimal performance can be expected particularly for the
firstly selected bands. The algorithm was implemented in
IDLTM/ENVITM. It may also be used for feature selection, the
generation of class-discriminate colour composites, the prioritization
of already existing band sets, and the determination of the intrinsic
discriminant dimensionality of the data set.

96.5

97

97.5

98

98.5

99

2 4 6 8 10 12

Optimal Set (SBS)
Optimal Set (UBS)
CHRIS
EA VEG
ETM+
MERIS
MISR
MODIS
NERC VEG

Band Set Dimension

Figure 2. MLC accuracies of the optimal SBS and UBS band sets compared
with those of satellite and airborne band sets for the New Forest data set.
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