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ABSTRACT 

 

This study evaluates the potential of wavelet-based texture 

modeling for the classification of stand age in a managed 

maritime pine forest using very high resolution satellite data. 

A cross-validation approach based on stand age reference 

data shows that multivariate modeling of the spatial 

dependence of wavelet coefficients outperforms the use of 

features derived from co-occurrence matrices. 

Simultaneously adding features representing the color 

dependence and leveling the dominant orientation in 

anisotropic forest stands enhances the classification 

performances. These results obtained from panchromatic 

and multispectral PLEIADES data confirm the ability of 

such wavelet-based multivariate models to efficiently 

capture the textural properties of very high resolution forest 

data and opens up perspectives for their use in the mapping 

of mono-specific forest structure variables. 

 

Index Terms—forest structure, texture analysis, 

classification, very high resolution, wavelet. 

 

1. INTRODUCTION 

 

Submetric images produced by Very High Resolution 

(VHR) sensors enable to capture the geometric aspect of 

small objects which are only observable through their 

spectral properties at lower resolution. This is for example 

the case for vegetation rows in vineyards, orchards and 

young trees in managed stands. Rather than depending on 

pixel-based information, the classification or the 

segmentation of such land cover types could therefore be 

improved by considering inter-pixel dependencies to capture 

the spatial organization of the vegetation cover. Approaches 

using textural analysis have proven to be a valuable solution 

in this VHR classification context with various commonly 

used tools such as Grey Level Co-occurrence Matrices 

(GLCMs), variograms or wavelet representations. All these 

tools enable to statistically analyze the local spatial 

dependency between a pixel and its neighboring pixels and 

lead to a small-sized representation of the textural content 

since only a few descriptors are extracted from the data. 

These descriptors can then be further used as input in a 

classifier or a segmentation algorithm. 

In applications relative to forest classification, the 

existence of a correlation between forest structure variables 

and the tree spatial distribution is often considered. The 

forest spatial structure at the stand level indeed varies in 

time as a result of reforestation, tree growth and periodic 

thinning. In various studies [1-3], GLCM-based descriptors 

are exploited in this context to describe the tree canopy 

spatial organization and are further used for the estimation 

of forest structure variables at the stand scale. Typically, 

variables retrieved in these studies are: age, tree height, 

stand density, crown diameter, basal area, etc. 

In this paper, we propose to evaluate how texture 

features extracted from wavelet-based multivariate models 

can help in the classification of stand age in a managed 

maritime pine forest. Lately, wavelet decompositions have 

indeed emerged as an effective tool to describe textures. In 

[4], Do & Vetterli suggested the use of probabilistic models 

to describe the distribution of wavelet coefficients. Further 

studies proposed to work with multivariate models to 

express the joint distribution of wavelet coefficients located 

in a neighborhood and thereby better approximate the local 

dependencies. Such multivariate models are for instance: 

multivariate Gaussian distribution, Spherically Invariant 

Random Vectors (SIRVs) [5], or copula based models [6]. 

Classification performances obtained with these models are 

compared with results derived from GLCM-based texture 

descriptors on VHR PLEIADES images of maritime pine 

forest. 

 

2. STUDY SITE AND DATA 

 

The study site is located in the Landes de Gascogne forest in 

the South West of France. This ecosystem is mainly 

dominated by even-aged maritime pine stands (Pinus 

pinaster). The stand age ranges from 0 (clear cuts) to 

approximately 50 years. Structure variations may appear 

between stands of the same age due to the site fertility, 

silvicultural management practices or natural disturbances. 
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In order to classify the forest age classes through textural 

analysis, we used a PLEIADES image acquired on this area 

of interest on 8 August 2012.  

Stand age reference data were collected in 2013 from 

local forest land managers in the municipality of Audenge 

(44°70’N, 0°95’W). These data consist in a shapefile 

containing contours of 179 forest stands with their 

corresponding age ranging from 0 to 50 years by age group 

of 5 years. Clear-cuts are also included in the data. Age 

groups were rearranged in three classes: class 1 includes 

young stands of 1 to 9 years, class 2 corresponds to stands of 

10 to 19 years, and class 3 covers a range from 20 to over 50 

years. A fourth class contains the clear-cuts (Fig. 1). 

 

3. FEATURE EXTRACTION 

 

The purpose of the feature extraction step is to represent the 

spatial dependence and the color (i.e. spectral) dependence 

in each stand of the reference data by a finite set of 

descriptors. In this paper, two approaches are compared for 

the spatial dependence modeling using panchromatic data: 

the Grey Level Co-Occurrence Matrix (GLCM) and 

wavelet-based multivariate modeling. Only the latter is 

applied for the color dependence using multispectral data. 

 

3.1 Grey-Level Co-Occurrence Matrix 

 

The use of the GLCM involves the setting of two spatial 

parameters, i.e. the distance and the orientation between the 

pairs of sites. Previous results obtained on a maritime pine 

forest texture database in a content-based retrieval 

framework showed that pairs of sites at a distance of 2 

pixels (i.e. 1 m in panchromatic) in four directions (0°, 45°, 

90°, and 135°) give the highest retrieval rate [7]. 

Furthermore, a set of textural features derived from the 

GLCMs is selected out of the 14 second order statistics 

proposed by Haralick [8]. To achieve this, a principal 

component analysis was employed to identify the most 

discriminant features. As a result, a subset of four 

descriptors (homogeneity, entropy, correlation, and the 

Haralick’s mean) was selected. For each forest stand of the 

database, a feature vector containing these four descriptors 

obtained for each direction (16 descriptors in total) is 

computed from the PLEIADES panchromatic band. 

 

3.2 Wavelet-Based Multivariate Models 

 

Prior to the modeling and the feature extraction, an 

orthogonal wavelet transform (Daubechies filter db4) is 

applied on an extract of the PLEIADES panchromatic band 

and multispectral data corresponding to the area of interest. 

Two scales and three orientations of decomposition are 

applied leading to the production of six wavelet subbands. 

Two types of dependencies are considered in the 

modeling process: 

 First, the spatial dependence analysis is carried on the 

subbands derived from the panchromatic data. The 

wavelet coefficients located in a 3x3 neighborhoods 

around the current spatial position are clustered in a 

random vector.  

 Secondly, the color dependence analysis is applied on 

the wavelet subbands derived from the PLEIADES 

multispectral data. Here, the observed random vector 

contains the wavelet coefficients of each spectral band 

of the data.  

The distribution of these observations can be further 

modeled using multivariate probability density functions 

(pdf) whose parameters are estimated according to the 

maximum likelihood principle. 

Several multivariate models are compared in this study: 

the multivariate Gaussian with a Sample Covariance Matrix 

(SCM) estimator and generalizations of the Gaussian 

distribution such as the SIRV model with a deterministic 

multiplier (SIRVgauss), the SIRV model with a G
0
 

distribution (SIRVg0) [9] and the Gaussian copula [6]. 

Note that the considered SIRV models (SIRVgauss and 

SIRVg0) were already applied in texture retrieval 

experiments on forest texture databases and showed 

interesting retrieval rates [7]. In the next section, we 

investigate the potential of such models in a cross-validation 

classification framework. 

4. APPLICATION 

 

For each stand of the reference data, feature sets describing 

the spatial dependence (SP) were extracted using the GLCM 

and the four wavelet-based multivariate models: SCM, 

SIRVgauss, SIRVg0 and copulas. In parallel, feature sets 

describing the color dependence (COL) were computed 

 

Fig. 1.  Extracts of forest stands representing the forest 

age classes. A – Forest age class 1 (1-9 years), B – Forest 

age class 2 (10-19 years), C – Forest age class 3 (>19 

years), D – Clear cuts. 

 



using the same four models. In a third modality, spatial 

dependence features and color dependence features are 

concatenated in a unique vector (SP+COL).  

Anisotropy is an important texture property, especially 

when investigating row-planted vegetation. For both 

investigated approaches (GLCM and multivariate models), 

computed texture features are not rotation invariant as they 

are by definition specific to a particular orientation. To 

evaluate the impact of this lack of rotation invariance on 

classification accuracy, a second reference image database 

was produced by rotating each stand displaying an 

anisotropic texture so that its orientation is forced to 0°. 

New sets of features describing the spatial dependence of 

this new database were then extracted for the GLCM and 

multivariate models (SProt). These new sets of features were 

also combined with color dependence features in a fifth and 

last modality (SProt+COL). 

To compare the classification accuracies of the 

proposed models and assess the pertinence of spatial and 

color dependence modeling, we chose a cross-validation 

approach. For each iteration of this procedure, the reference 

database is randomly split in training data (50%) and 

validation data (50%). A distance matrix is then built 

between feature sets of the training data and those of the 

validation data. For multivariate models, a Rao geodesic 

distance is chosen as it exists in a closed form for all the 

proposed multivariate models. In the case of similarity 

measurement between GLCM features, a Mahalanobis 

distance is applied. The classification is next performed 

using a k Nearest Neighbor classifier (kNN). The class of a 

stand is set to the most represented class in the kNN stands 

of the training data (k=5). The classification performances 

are next evaluated in terms of average overall accuracy over 

a hundred Monte Carlo runs. 

 

5. RESULTS AND DISCUSSION 

 

Cross-validation results are presented in Fig. 2 for the five 

tested modalities and for the five considered texture models. 

The modeling of the spatial dependence (SP) is best 

achieved using SIRV-based models with slightly better 

classification performances for the SIRVgauss model. 

Overall, multivariate models are displaying higher 

performances than the GLCM with the exception of the 

SCM estimator. This confirms the interest of multiscale 

wavelet-based approach to describe the texture. The scales 

of the spatial distribution explored by the GLCM and the 

multivariate models are indeed different due to the 

parameterization we have chosen for both approaches. 

Where GLCM achieve its highest performances by only 

investigating short distances (1 m), wavelet-based 

approaches explore larger ranges of object size and are 

probably more appropriate to describe the variation of tree 

crown size depending on the stand age.  

Besides, once the row orientation is forced to 0° in the 

SProt modality, the performances of the GLCM descriptors 

are significantly increased and exceed those of the 

multivariate models whereas results obtained with 

multivariate models are only moderately improved. Even 

though both GLCM-based and wavelet-based features are 

not rotation invariant due to the orientations considered 

during their computation, the latter probably better describes 

orientation-specific characteristics of the textures than the 

former. Also, the diversity of orientations present in the 

database could be enough to balance the lack of rotation 

invariance for both approaches. This could explain why 

rotation does not significantly improve the performances in 

the case of multivariate models. Nonetheless, once training 

and validation data display the same orientation, GLCM 

approach is more reliable.  

Adding color dependence features to spatial dependence 

parameters (SP+COL) does not increase overall 

classification performances for any wavelet-based models. 

However, when combining color dependence with the 

removal of the orientation factor (SProt+COL), a synergetic 

effect is revealed for all multivariate models with the 

 
Fig. 2.  Mean overall accuracies obtained by cross-validation. 

SP = spatial dependency, COL = color dependency, SP+COL 

= combination of spatial and color dependencies, SProt = 

spatial dependency after rotation of oriented stands, 

SProt+COL = combination of spatial dependency after 

rotation of oriented stands and color dependency. 



notable exception of SIRVg0. This modality displays the 

highest overall accuracy. 

To better understand classification errors, it is also 

worth mentioning that a significant part of the reference data 

(approximately 15%) is composed of outliers in terms of 

texture content. These stands are not aberrant in terms of age 

but display a textural content that makes them look different 

from the average visual aspect of the class they belong to. 

Various local phenomena could be the source of these 

discrepancies. For instance, in stands of over 10 years (age 

classes 2 and 3), forest thinning operations induce changes 

in forest density and crown growth which consequently alter 

texture patterns. Residuals of storm damages also cause 

local changes in forest density. Middle-aged damaged forest 

stands (class 2) can thereby share common features with 

older forests with the appearance of large clearing patches. 

Forest management practices such as plantation density vary 

sometimes from one land owner to the other and differences 

in forest patterns occur between young tree stands. Finally, 

practices may also change within the same stand or the 

satellite data can be acquired during an ongoing clearing 

operation. Hence, different patterns may be observed within 

one stand.  

All these phenomena illustrate the limits of the main a 

priori assumption of this study which is to consider that the 

relation between the age of a stand and the tree canopy 

spatial distribution is simple. Local management practices, 

site fertility and the past history of the studied stands are not 

to be neglected in the analysis. But, this also means that 

classification accuracies higher than 85% would be difficult 

to reach only through automatic textural analysis. 

 

6. CONCLUSION 

 

We investigated the interest of wavelet-based texture 

modeling for the classification of stand age in a managed 

mono-specific forest. Multivariate model based on the 

Gaussian SIRV configuration was confirmed as an 

interesting candidate approach for spatial dependence 

modeling in this context. Adding color dependence features 

and leveling the orientation in the database also proved to 

enhance the discrimination of age classes when used 

simultaneously. Nonetheless, the diversity of management 

practices, the site fertility or the past history of the studied 

stands will invariably introduce discrepancies between the 

observed texture of the stands and their actual age. Yet, the 

proposed models do most of the time fit the displayed 

texture and misclassifications are mainly due to these 

discrepancies. This suggests the potential interest of 

multivariate approaches for the estimation of other forest 

structure variables that are more directly related to the 

texture. For instance, the crown diameter, also a good 

indicator of the forest development stage, has a direct impact 

on the size of the object to be described and is related to the 

spatial distribution of these objects.  

 

7. ACKNOWLEDGMENT 

 

This work was supported by Aquitaine Regional Council 

and CNES (Centre National d’Etudes Spatiales) through the 

TOSCA project STELLA THR. The authors also wish to 

thank CNES and its Thematic Users Commissioning team 

for providing the PLEIADES data. The authors gratefully 

acknowledge Telespazio (EarthLab project) and Alliance 

Forêt-Bois for authorizing the use of their stand age 

reference data. 

 

8. REFERENCES 

 

[1] Lévesque J., King D.J., “Spatial analysis of radiometric 

fractions from high-resolution multispectral imagery for 

modeling individual tree crown and forest canopy structure 

and health”, Remote Sens. Environ., 84(4), 589-602, 2003. 

 

[2] Kayitakire F., Hamel C., Defourny P., “Retrieving forest 

structure variables based on image texture analysis and 

IKONOS-2 imagery”, Remote Sens. Environ., 102(3), 

390-401, 2006. 

 

[3] Béguet B., Chehata N., Boukir S., Guyon D., “Retrieving 

forest structure variables from very high resolution satellite 

images using an automatic method”, ISPRS Ann. 

Photogramm. Remote Sens. Spatial Inf. Sci., I-7, 1-6, 2012. 

 

[4] Do M.N., Vetterli M., “Wavelet-based texture retrieval 

using generalized Gaussian density and Kullback-Leibler 

distance”, IEEE Trans. Image Process., 11, 146-158, 2002. 

 

[5] Yao K., “A representation theorem and its applications 

to spherically-invariant processes”, IEEE Trans. Inf. Theory, 

IT-19(5), 600-608, 1973.  

 

[6] Kwitt, R., Uhl A., “A joint model of complex wavelet 

coefficients for texture retrieval”, 16th IEEE Int. Conf. on 

Image Processing (ICIP), 1877-1880, 2009. 

 

[7] Regniers O., Da Costa J.-P., Grenier G., Germain C., 

Bombrun L., “Texture based image retrieval and 

classification of very high resolution maritime pine forest 

images,” IEEE Int. Geoscience and Remote Sensing 

Symp.(IGARSS), 4038-4041, 2013. 

 

[8] Haralick R.M., Shanmugam K., Dinstein I., “Textural 

features for image classification”, IEEE Trans. Syst., Man, 

Cybern., Syst..,  6, 610-621, 1973. 

 

[9] Freitas C., Frery A., Correia A., “The polarimetric G 

distribution for SAR data analysis,” Environmetrics, 16, 13-

31, 2005. 


