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ABSTRACT

In this study, we propose to evaluate the potential of com-
bining very high resolution optical and SAR images for the
classification of oyster habitats in tidal flats. To describe the
classes of interest in both data, features are extracted by using
wavelet-based texture features and polarimetric inter-band de-
pendencies. A multisensor fusion scheme is then applied by
adopting a maximum probability rule based on the outputs of
SVM classifiers. Classification results show higher accura-
cies of detection of cultivated and abandoned oyster fields in
comparison to classifications obtained using only texture fea-
tures. This demonstrate the benefit of using both optical and
SAR data for oyster habitats mapping in tidal flats.

Index Terms— texture, multi-sensor fusion, wavelet,
SVM, classification, very high resolution, oyster habitats.

1. INTRODUCTION

Oyster farming is an important economic activity in France
with several growing areas along the Atlantic coast. For the
past decades, the oyster production in those areas has faced
various sources of pressures related for instance to conflicts
with other land uses, to a decreasing water quality as well as
to the frequent bloom of toxic microplantonic species which
forces the shell industry to sporadically cease sales. More re-
cently, a worlwide spread virus caused frequent episodes of
massive mortality of young oysters, leading to a significant
reduction of the global oyster production. These ecological
pressures contributes to a decrease of the economic viabil-
ity of the oyster production resulting in the desaffection of
numerous production site. These wild abandoned fields at-
tract oyster spat which tend to grow rapidly becoming a nu-
trient sink and thereby a source of competition for cultivated
oysters. In this constantly changing ecosystem, it becomes
therefore necessary to develop new approaches designed to
monitor this evolution by producing reliable cartography of
cultivated and abandoned fields.

Some recent publications demonstrate the interest of the
international community to detect and map oyster habitats
in tidal flats using remote sensing data [1, 2, 3]. In these
studies, the detection of oyster reefs is succesfully achieved
by exploiting the radar backscattering properties specific to

this land cover in SAR data (C- and X-band). In a previ-
ous study [4], we proposed another approach to detect cul-
tivated oyster fields in very high resolution (VHR) panchro-
matic Pléiades data using texture analysis. This texture-based
approach relies on the use of a multivariate model (Spheri-
cally Invariant Random Vector (SIRV) with a G0 distribution
(SIRVg0 in the following) [5]) to represent the joint distribu-
tion of wavelet coefficients in each subband obtained by an
orthogonal wavelet decomposition of the image. Parameters
estimated during this modeling process were further used in
a supervised classification procedure as a textural signature.
Results obtained through this texture analysis enabled to ef-
ficiently detect oyster racks without significantly mistaking
them with abandoned fields. Nonetheless, only the detection
of cultivated fields was addressed in this former study.

In this paper, we propose to take a step further in the
mapping of oyster fields by including abandoned fields in the
classification process. Even though the spatial resolution of
VHR SAR imagery is not sufficient to distinguish cultivated
fields from wild abandoned fields, the specific backscatter-
ing properties of oysters in this type of data could help in the
improvement of oyster detection. Therefore, in addition to
texture features computed from optical data, descriptors de-
rived from VHR SAR data are used and a multisensor fusion
scheme is proposed to enhance the mapping accuracy. This
fusion scheme is based on the probability outputs of SVM
classifiers.

2. STUDY SITE AND DATA

The study site is located in the Arcachon Bay, a mesotidal la-
goon of 180 km2 located in the South-West of France on the
Atlantic coast. This area largely occupied by oyster farms is
significantly affected by problems related to abandoned fields.
In the Arcachon Bay, oysters are traditionally grown on racks
of a few tens of meters to more than hundred meters long.
These racks are set directly on the sediment in groups of two
to five spaced by one to two meters (Fig. 1 line 1). When
abandoned, oyster spat settle on the metal structure of the for-
merly exploited racks and the anisotropic aspect of the racks
can most of the time still be observed in VHR remote sens-
ing data (structured abandoned fields - Fig. 1 line 2). Besides,
oysters can also be grown directly on the sediment without



Fig. 1. Oyster fields typology. Left: field photography, cen-
ter: extract of Pléiades panchromatic data, right: extract of
TerraSAR-X image HH-polarization.

the use of racks to protect them. When abandoned, these wild
growing areas are characterized by a more isotropic aspect
(unstructured abandoned fields - Fig. 1 line 3). The rest of the
land cover is mainly composed of clean areas and tidal flats
either composed of sand or muddy sand (Fig. 1 line 4). Three
classes are considered in the following for the classification
process: cultivated fields, abandoned fields (either structured
or unstructured) and tidal flats.

To perform the classification, we used two types of image
data. The first is a panchromatic Pléiades image acquired at
low tide in April 2013 with a spatial resolution of 0.5 m (PAN
in the following). The second is a high resolution SpotLight
TerraSAR-X data (1 m) with dual polarization (HH/VV) ac-
quired in December 2009 at a higher tide level than the PAN
image (TX in the following). It is noteworthy that the time
gap between the two data acquisition dates as well as the dif-
ference in the tide level could be a source of misclassifica-
tions.

3. METHODOLOGY

The approach used in this study is divided in three steps. The
first step is dedicated to the training phase during which fea-
tures are extracted from a training database containing regions
of interest (ROIs) representative of the different classes. In the
next step, the supervised classification is carried out using a
SVM classifier. Finally, in the last step, the classification re-
sults obtained with both PAN and TX images are fused and a
final classification is produced.

3.1. Feature Extraction

Prior to the classification, a training database is created from
both PAN and TX data by extracting ROIs representative of
three classes: cultivated oyster racks, abandoned oyster fields
and tidal flats (Fig. 1).

The ROIs extracted from the PAN data are further ana-
lyzed to extract texture features using a wavelet-based multi-
variate modeling approach as advocated in [4]. This approach
works as follows. Previous to the feature extraction, a Sta-
tionary Wavelet Transform [6] with Daubechies filter db4 is
applied on each ROI. Two scales and three orientations of
decomposition are chosen leading to the production of six
wavelet subbands. In each of these subbands, the wavelet co-
efficients located in a 3 × 3 neighborhood are clustered in
a random vector k. The distribution of these observations
of the spatial dependency can be further modeled using a
multivariate probability density function whose parameters
are estimated according to the maximum likelihood princi-
ple. In [4], we previously demonstrated that a SIRV model
(k =

√
τz) with an inverse gamma distributed multiplier τ

[5] is a well suited model to characterize and detect oyster
racks in panchromatic Pléiades image. This model is also
used here. Hence, for each ROI, a textural feature vector con-
taining an estimated covariance matrix and the parameters of
the inverse gamma distributed multiplier is extracted for each
wavelet subband.

In the case of the TX data, features derived from ROIs rep-
resent the intercanal dependency between HH and VV bands
exprssed in dB. Here, the observed vectors k contain for each
pixel of an ROI the values in the HH and VV polarimetric
bands. To model the distribution of the vectors k, a bivari-
ate Gaussian model is chosen. For each ROI, the extracted
feature vector hence contains the parameters of the Gaussian
distribution.

3.2. Supervised Classification

In order to avoid problems related to pixelwise classification
(selection of the size of a sliding window, mixture of textures,
high computational cost), the area to classify in the PAN data
is first segmented using a Mean-Shift algorithm [7]. This pre-
segmentation is deliberately over-segmented to preserve the
outlines of small or narrow oyster fields. The parameters of



the same multivariate models used during the training step are
then estimated from each region defined through this segmen-
tation. The same labeled mask representing the edges of the
regions is used for both PAN and TX data even though it is
initialy computed on the PAN image.

Once features were extracted from pre-segmented re-
gions, a simillarity measure is calculated between the model
estimated from each training ROI and the model estimated
from each region. The chosen similarity measure is an ap-
proximation of a geodesic distance between two SIRVg0
models [8] for the PAN data and a Kullback-Leibler diver-
gence between two multivariate Gaussians for the TX data.
These similarities can be used in a SVM classifier by defining
a Gaussian kernel K such that:

K(x, x′) = exp
(
−distance(x, x′)2

2σ2

)
(1)

where (x, x′) is a couple of observations and σ the standard
deviation of the Gaussian kernel. The value of σ is selected
here to maximise the performance of the classifier.

The SVM classification is performed separately on the
PAN and TX data. As the spatial resolution of the TX data
does not allow to clearly distinguish between oyster racks and
abandoned fields, these first two classifications only consider
two classes, i.e. oyster fields (cultivated or abandoned) and
tidal flats. For each region, an estimation of the class proba-
bilities is computed for both PAN and TX data according to
the approach proposed in [9]. These probability estimations
are further used in the following fusion process.

3.3. Fusion and Final Classification

The fusion process is based on a absolute maximum probabil-
ity rule and a threshold on the maximum. For each region to
classify, only the maximum probability of both SVM classi-
fiers is considered. If this maximum corresponds to the oys-
ter fields class and if this maximum is inferior to a selected
threshold, the corresponding region is classified as an oyster
field. The other regions are put in an exclusion class con-
taining those classifed as tidal flats and those rejected by the
decision rule.

Finally, all the regions classified in the fusion process
as oyster fields are once again classified using another SVM
classifier based only on texture features derived from the PAN
data. But, this time, all three classes (cultivated fields, aban-
doned fields and tidal flats) are included in the classification.

4. RESULTS AND DISCUSSION

An example of classification result on an area of interest in
the Arcachon Bay is presented in Fig. 2-D. This result was
obtained from the extracts of the PAN and TX data shown in
Fig. 2-A and Fig. 2-B respectively. The difference in terms
of tide level between both data is obvious with a few areas

Fig. 2. (A) extract of PAN image, (B) extract of TX HH polar-
ization, (C) SVM classification result using only the PAN im-
age, (D) SVM classification result after fusion between PAN
and TX. Cultivated oyster racks and abandoned fields are re-
spectively represented in blue and yellow.

visible in the PAN image that are submerged in the TX data.
Also, the time gap between the two images (December 2009
for the TX data and April 2013 for the PAN data) translates
into occupational changes. This is for example the case in
the southeastern part of the area where oyster racks are seen
in the TX data and not in the PAN. To better illustrate the
interest of the proposed fusion procedure, the classification
result in Fig. 2-D is compared with the same result obtained
with a SVM classifier and a probability threshold when using
only texture features derived from the PAN data (Fig. 2-C).

In Fig. 2-C, most of the oyster fields (cultivated or aban-
doned) are well detected with only a few false negatives where
oysters are partially submerged. These submerged areas are
generally associated with a weaker contrast in the PAN data
which does not allow to detect them properly when using tex-



ture features. Besides, this classification result shows false
positive detections with cultivated and abandoned fields sig-
nificantly over-detected. This is particularly the case in small
and narrow regions of only a hundred pixels defined during
the pre-segmentation. These small regions might not contain
a sufficient number of pixels to properly estimate the param-
eters of the SIRVg0 model and end up being misclassified.
Also, most of these regions are defined in narrow areas where
the textural content of the image is too poor to correspond to
trained texture features. However, because of the narrowness
of oyster racks, this over-segmentation of the PAN data is nec-
essary to preserve an accurate detection of these structures.

On the other hand, in the fusion result (Fig. 2-D), most
of these small over-detected areas are no longer misclassi-
fied and the contours of oyster racks and abandoned fields
are more accurately detected. Even though the polarimetric
TX data does not allow to differentiate between cultivated
and abandoned oyster fields, the high backscattering coeffi-
cient associated with oyster fields in this data combined with
texture features derived from the PAN data enables to detect
oyster habitats with a high precision. The fusion based on the
SVM maximum probability rule has proven to be adequate in
this particular context of application. Furthermore, this deci-
sion rule prevents any misclassifications related to differences
in terms of acquisition date or tide level between both data by
giving a higher confidence to the PAN data when both classi-
fications do not agree. Once identified during the fusion, the
oyster fields can be accurately further classified as cultivated
or abandoned by relying only on texture features as it was
demonstrated earlier in [4].

5. CONCLUSIONS

We investigated the potential of combining VHR Pléiades
panchromatic data with TerraSAR-X polarimetric data for the
classification of oyster habitats in tidal flats. The proposed
multi-sensor fusion scheme based on a maximum probabil-
ity decision rule enabled to combine SVM classifications
obtained with texture features and descriptors of the po-
larimetric channel dependencies. Results showed a higher
qualitative accuracy of classification when fusing classifica-
tions derived from both sensors than when using only texture
features derived from panchromatic data. In perspectives,
this approach will be tested and validated on other pairs of
Pléiades/TerraSAR-X data acquired on different oyster farm-
ing areas along the French Atlantic coast. These areas can
indeed display a variety of oyster habitats which are not
present in the Arcachon Bay, such as wild oysters growing on
rocky beds.
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d’Études Spatiales) through the TOSCA project COQUILLE.

The authors also wish to thank CNES and its Thematic Users
Commissioning team for providing the Pléiades data and the
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