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ABSTRACT 

 

In this work we describe the methodology applied for the 

retrieval of global LAI, FAPAR and FVC from 

Advanced Very High Resolution Radiometer (AVHRR) 

on board the Meteorological–Operational (MetOp) polar 

orbiting satellites also known as EUMETSAT Polar 

System (EPS). A novel approach has been developed for 

the joint retrieval of three parameters (LAI, FVC, and 

FAPAR) instead of training one model per parameter. 

The method relies on multi-output Gaussian Processes 

Regression (GPR) trained over PROSAIL EPS 

simulations. A sensitivity analysis is performed to assess 

several sources of uncertainties in retrievals and 

maximize the positive impact of modeling the noise in 

training simulations. We describes the main features of 

the operational processing chain along with the current 

status of the global EPS vegetation products, including 

details about its overall quality and preliminary 

assessment of the products based on intercomparsion 

with equivalent (MODIS, PROBA-V) satellite 

vegetation products. 

 

 

 

1. INTRODUCTION 

 

The main purpose of the LSA-SAF is to develop and 

implement algorithms that allow an operational use of 

land surface variables taking full advantage of remotely 

sensed data from EUMETSAT satellites and sensors to 

measure land surface variables. 

Since the end of 2008, the LSA-SAF generates and 

disseminates Fractional Vegetation Cover (FVC), Leaf 

area Index (LAI) and Fraction of Absorbed 

Photosynthetically Active Radiation (FAPAR) from 

SEVIRI/MSG data for the whole Meteosat disk at two 

different time resolutions: daily and 10-day. LAI is 

defined as half the total area of green elements per unit 

horizontal ground area [1] accounting for the amount of 

green vegetation that absorbs or scatters solar radiation. 

These parameters are used as indicators of the state and 

evolution of the vegetation cover, and have been used in 

many agronomic, ecological and meteorological models 

and applications [2-3]. 

 This paper describes the algorithm currently 

integrated in the LSA-SAF operational system to 

produce in near real time and on a 10-day basis global 

LAI, FAPAR and FVC biophysical products from 

AVHRR/MetOp data. Unlike the approach adopted to 

produce SEVIRI/MSG vegetation products, the proposed 

algorithm relies on the inversion of Radiative Transfer 

Models (RTMs) for the sake of consistency allowing a 

joint retrieval of vegetation parameters. 

The remainder of this work is organized as follows. 

Section 2 outlines the main components of the proposed 

multi-output retrieval chain, including the RTM, the 

machine learning approaches considered and the 

assessment of the uncertainty of estimates. Section 3 

describes the global EPS products along with useful 

details about its overall quality and outlines preliminary 

validation results. Eventually, Section 4 draws final 

conclusions and outlines future work. 

 
2. ALGORITHM DESCRIPTION 

 

The procedure for deriving biophysical parameters relied 

on an two-step hybrid method: (1) run the RTM in direct 

mode to build a database of reflectance and associated 

biophysical parameters representing a broad set of 

canopy parameterizations, (2) train a non-parametric 

regression model over the generated simulations using 

different machine learning approaches.  

The main goal of the proposed algorithm is the 

inversion of the PROSAIL RTM with a family of 

proposed multi-output kernel-based retrieval methods 

and neural networks. The best method in terms of 

stability, accuracy and robustness was then implemented 

into the operational chain for the joint retrieval LAI, FVC 

and FAPAR maps globally from corresponding EPS 

surface reflectance data. A general outline of the 

methodology is shown Fig. 1. 

 

2.1. EUMETSAT AVHRR/MetOp  

 

The EPS is Europe’s first polar orbiting operational 

meteorological satellite. EUMETSAT has the 

operational responsibility for the MetOp satellites, the 

first of which (MetOp-A) was successfully launched on 

October 19, 2006, the second (MetOp-B) in September 



17, 2012, whereas the launch of the third (MetOp-C) is 

foreseen for October 2018.  

 
 

 

Fig. 1. Workflow of the retrieval methodology for the 

derivation of the EPS LAI, FVC and FAPAR products. 

 

MetOp carries on-board a wide range of sensors, and 

among them, the AVHRR instrument is the main sensor 

in charge of providing, providing Earth observations 

with view zenith angles up to about 60°. This sensor 

offers capability to observe the whole globe every day at 

1.1 km spatial resolution (at nadir). The input of the 

proposed algorithm is the normalized spectral reflectance 

factor, i.e. BRDF k0 parameter in three EPS channels, 

centred at about 0.63 μm (red, C1), 0.87 (NIR, C2) and 

1.61 μm (MIR, C3). The algorithm of EPS vegetation 

products uses as input atmospherically corrected cloud-

cleared directional coefficients of the BRDF model, an 

internal product derived from the albedo algorithm [4].  

 

 

2.2. PROSAIL simulations 

 

The version 5 of PROSPECT and the SAILH  were used 

for PROSAIL RTM coupling. The simulations 

considered realistic distributions of all leaf and canopy 

parameters along with bareground spectra representative 

of all global conditions. A white Gaussian noise was 

added to the reflectances of the PROSAIL simulations: 

 

Rtrain() = Rsim() + 𝒩(0, σ2())     (1) 

 

where Rtrain() represent reflectance values for band λ 

used as input in the retrieval algorithm, as obtained 

adding to PROSAIL simulations, Rsim(), a normal 

distribution of noise with standard deviation σ(). 

 

 

2.3. Inversion Methods: multi-output GPR 

 

In order to invert PROSAIL, we used three powerful non-

linear regression methods: the Neural Networks (NNs), 

and two related kernel-based regression algorithms: the 

KRR (kernel ridge regression) and the GPR. For the joint 

retrieval of LAI, FAPAR and FVC we propose multi-

output versions.  

GPs assume that a multivariate Gaussian prior 

governs a set of unobserved latent functions, and their 

likelihood. The observations shape this prior to produce 

posterior probabilistic estimates. The joint distribution of 

training and test data is a multidimensional Gaussian and 

the predicted distribution can be estimated by 

conditioning on the training data. Standard regression 

approximates outputs (in or case, the biophysical 

parameter) as the sum of some unknown latent function 

f(x) of the inputs (in or case, the normalised reflectance 

(k0) on the three EPS bands) plus constant Gaussian 

noise, i.e. 

y = f(x) + εn,  εn~𝒩(0, σn
2).          (3) 

 

A zero mean GP prior is placed on the latent function 

f(x) and a Gaussian prior is used for each latent noise 

term εn, f(x)~GP(0, kθ) where kθ is a covariance 

function parametrized by θ and σn is a hyperparameter 

that specifies the noise power. Given the priors GP, 

samples drawn from f(x) at the set of locations xi =
{xi

1, xi
2, xi

3}i=1
N  (in our case, N is the number of training 

reflectances simulated with PROSAIL) follow a joint 

multivariate Gaussian with zero mean and covariance 

matrix K with [K]ij = kθ (xi,xj). The GP induces a 

predictive distribution described by the equations: 

 

𝜇𝐺𝑃𝑅∗ = 𝐤∗
⊤(𝐊 + 𝜎𝑛

2𝐈)−1𝐲 = 𝐤∗
⊤𝛼      (4) 

𝜎𝐺𝑃𝑅∗
2 = 𝜎2 + 𝑘∗∗−𝐤∗

⊤(𝐊 + 𝜎𝑛
2𝐈)−1𝐤∗      (5) 

 

where k∗ = [k(x∗, x1), … , k(x∗, xN)] is an N×1 vector 

and k∗∗ = k(x∗, x∗). The GPR model offers a full 

posterior probability establishing a relationship between 

the input and the output variables, from which one can 

compute pointwise estimations, μGPR∗ and also 

confidence estimates σGPR∗
2 . 

When the goal is to predict multiple variables, the 

construction of a unique model able to do all the 

prediction simultaneously may be advantageous, both in 

computational terms, prediction accuracy and 

consistency of the predictions.. In order to achieve this 

goal, the three single output methods considered above 

have been adapted to derive jointly the three EPS 

vegetation parameters (i.e, LAI, FAPAR and FVC). This 

approach was achieved formulating multi-output 

versions of the NN (NNmulti), KRR (KRrmulti), and GPR 

(GPRmulti).  

In the case of NN, the approach is a multioutput 

algorithm per se given its characteristics, and relied on 

the optimisation of the number of hidden layers and 



neurons, and the learning rate. The optimization of the 

hyperparameters for the kernel methods was done either 

by cross validation or by maximizing the marginal 

likelihood in the case of KRRmulti and GPRmulti. In the 

standard GPR case we inferred the hyperparameters in 

θ = [υ, σ, σ1 … σb] and model weights using an 

optimization of the evidence, whereas in the GPRmulti we 

need to optimize the parameters taking into account a 

global cost function that sumarizes all the cost functions 

(one per output) into a global cost function. 

 

2.4 Algorithm Optimization 

 

We assessed the GPRmulti gain in accuracy measuring the 

reduction in RMSE over test (unseen) PROSAIL EPS 

simulations with regard to NNmulti and KRRmulti. Results 

have indicated that important gains in accuracy are 

obtained for the joint estimation of LAI, FVC and 

FAPAR, with regard to single-output GPR and the two 

considered multi-output methods, with a gain in LAI 

accuracy of 4% and 5% with regard to NNmulti and 

KRRmulti, respectively, and showing similar 

improvement in the case of FVC and FAPAR. 

     In addition, an optimization of the optimal amount of 

noise indicated that adding moderate noise (e.g. 

σ=0.015) works reasonably well in all conditions, with 

overall relative LAI error reductions of 39% for dense 

green canopies, 30% for dense dark canopies and 25% 

for intermediate canopies.  

 

2.5. Products uncertainty estimation 

 

The algorithm provides an estimate of the confidence 

assigned at each pixel, taking into account two major 

sources of error: 

i. The GPR predictive standard deviation (σGPR), 

which quantifies the confidence on the 

associated estimate. 

ii. A σ𝑘0
error, which propagates the effects of the 

inaccuracies of the BRDF model parameters, on 

the prediction of biophysical parameters. 

 

3. THE EPS GLOBAL PRODUCTS  

 

The multi-output GPR model allows identifying the 

nonlinear relationship between the three AHVRR/MetOp 

vegetation products and atmospherically corrected 

cloud-cleared k0 BRDF product. Fig. 2 shows of the 

LSA-SAF EPS VEGA (FVC, LAI and FAPAR) 10-day 

products. The AVHRR based fields are generated pixel-

by-pixel, inheriting the temporal and spatial 

characteristics of the EPS ten-day albedo (ETAL) 

product. The products are level 3 full globe rectified 

images in sinusoidal projection, centered at (0°N, 0°W), 

with a resolution of 1.1km×1.1km. The ETAL is based 

on AVHRR observations obtained through composite 

periods of 20 days [4]. We can see that the maps present 

a good spatial completeness, except in areas usually 

covered by snow. The is partly due to the recursive 

temporal composition scheme of k0 inputs maps, which 

gradually achieve complete spatial coverage after the 

initialization of the method. All FVC, LAI and FAPAR 

products are disseminated as a separate file, containing 4 

datasets: (1) a vegetation field, (2) an error estimate field, 

(3) a quality control information field; and (4) the “age” 

of the information (Z_age) for each image pixel. The 

products and their respective error estimates are 

produced using the HDF5 signed 16-bit integer variable. 

The timeslot in the filename of this product corresponds 

to the last day of the 20-day time-compositing period. 

The algorithm provides an estimate of the confidence 

or uncertainty assigned at each pixel (see examples of 

overall error estimates in Fig. 3). Since the first one 

quantifies how close a pixel is to the training data, 

inspection of σGPR maps may improve the selection of 

PROSAIL inputs, such as certain backgrounds not 

initially included in the preliminary retrieval, and 

identify possible invalid outliers such as pixels 

contaminated by traces of snow/ice, undetected clouds or 

residual atmospheric effects. Beyond certain uncertainty 

limits (e.g., 0.20 for FVC and FAPAR, and 1.5 for LAI) 

estimations may be regarded as unreliable and its use 

should be restricted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 2. EPS LAI (top), FVC (middle) and FAPAR (bottom) 

products for 15th June, 2016. 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Errors associated to EPS LAI (top), FVC (middle) and 

FAPAR (bottom) products for 15th June, 2016.  

 

The seasonal variations in the quality and coverage of 

the products have been also assessed. In overall, around 

80% of pixels for all variables showed good (i.e. <0.1 for 

FVC/FAPAR; <1 for LAI) and medium ([0.10, 0.15] for 

FVC/FAPAR; [1.0, 1.5] for LAI) quality levels. Only 

around the 2%, 0.2% and 3.2% of pixels showed poor 

consistency for FVC, LAI and FAPAR, respectively. 

Clearly, the best performance for all products 

corresponds to areas with latitudes below 40ºN, such as 

in Africa and Australia continents, with optimal quality 

retrievals in about 90% of the regions and a negligible 

percentage of poor quality or unprocessed pixels.  

The LSA-SAF vegetation products are routinely 

validated. The adopted strategy for validation of EPS 

vegetation products consists of three main steps: 1) 

evaluation of errors in the main variables used as input 

for EPS algorithm and assessment of the impact on EPS 

products; 2) inter-comparison with other satellite derived 

vegetation products; and 3) comparison with in situ 

measurements. The results of a preliminary assessment 

of the EPS vegetation products has revealed overall 

statistical good results compared with references 

PROBA-V V1 and MODIS (C5 and C6) over a network 

of sites [5-6]. 

 

 4. CONCLUSIONS  

 

In this work a novel algorithm has been developed for the 

determination of global vegetation parameters based on 

data acquired by the AVHRR instrument onboard the 

satellites of the MetOp series forming the European Polar 

System. The algorithm was integrated in the LSA-SAF 

operational system and products are reliably generated 

and delivered in near real time on a 10-day basis from the 

LSA-SAF website hosted at IPMA 

(http://landsaf.meteo.pt).  

Estimating several biophysical parameters 

simultaneously may be beneficial to attain consistent and 

computationally efficient predictions. The proposed 

algorithm has demonstrated a good performance and 

provides also an effective means to reject possible invalid 

observations. The results of this study have revealed the 

convenience of adding noise levels to reduce retrieval 

errors and produce more stable solutions.  

Future work will complete the validation studies. The 

products will be thoroughly assessed to ensure the 

reliability for all biomes and seasons. The retrieval 

algorithm will be adapted to take full advantage of the 

enhanced spectral and directional capabilities of the EPS 

Second Generation (EPS-SG/VII and EPS-SG/3MI) 

products. The current validation activities will be 

continued and extended to Meteosat Thrid Generation 

(MTG) products with a special focus on inter-calibration 

and temporal consistency between available families of 

LSA SAF vegetation products. 
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