
INDEPENDENT COMPONENT ANALYSIS BASED INCOHERENT TARGET
DECOMPOSITIONS FOR POLARIMETRIC SAR DATA - PRACTICAL ASPECTS

Gabriel Vasile∗

∗ Grenoble-Image-sPeach-Signal-Automatics Lab, GIPSA-lab

Univ. Grenoble Alpes, CNRS / Grenoble-INP, Grenoble, France

gabriel.vasile@grenoble-inp.fr

ABSTRACT

The Independent Component Analysis (ICA) has been re-
cently introduced as a reliable alternative to identify canoni-
cal scattering mechanisms within PolSAR images. This pa-
per addresses an important practical aspect for applying such
methods on real data, namely speckle filtering with ICA. A
novel algorithm is introduced by adjusting the Lee’s sigma
filter to the particular nature of the Touzi’s polarimetric de-
composition. In its current form, it allows the use of the ICA
mixing matrix in the derived speckle filter.

Index Terms— Independent Component Analysis, Pol-
SAR, speckle filtering

1. INTRODUCTION

Polarimetric target decomposition is a PolSAR image inter-
pretation technique that relies on the analysis of the interac-
tion between the illuminated area and the transmitted wave-
form, considering each polarimetric state of the latter. More
specifically, it enables the description of an image cell as a
sum of canonical scattering mechanisms (also called as target
vectors) making it more intuitive to understand the behaviour
of the clutter and therefore to analyse it [1].

Polarimetric target decompositions are mainly classified
in coherent, if their interest lies on the scattering matrix
analysis for each resolution cell, like the ones proposed by
Cameron [2], or incoherent, if they are based on a statistical
analysis of neighbouring pixels. Incoherent target decompo-
sition (ICTD) theory assumes that the scattering process in
most natural media is a combination of coherent speckle noise
and random vector scattering effects. Therefore, a stochastic
approach is required and the concept of average or dominant
scattering mechanisms is associated to each imaging cell [3].
Most methods described in the literature focus on the Her-
mitian, semidefinite positive coherence or covariance matrix
[3]. Nevertheless, the investigation of higher order moments
has recently sparked great interest of the SAR community,
introducing supplementary information to the clutter analysis
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and consequently leading to new ICTD approaches [4], [5],
[6].

The combined use of the Eigenvector approach with
Cloude and Pottier’s parametrisation gave rise to one of the
most employed and most traditional classification schemes
in PolSAR data analysis, the H/α feature space [7]. The en-
tropy, H, measures the degree of randomness of the scattering
phenomenon, given as a function of the eigenvalues of the
coherence matrix. Each eigenvector correspond to a scatter-
ing mechanism within the image cell and therefore each one
will provide a different α angle. The authors in [7] state that
the best estimate of such parameter to represent the image
cell is an weighted average based on the eigenvalues of the
coherence matrix.

The parameters H and α are plotted in a plane, originat-
ing the so called H/α feature space. Upon the introduction
of the aforementioned method, Cloude and Pottier suggested
the partitioning of the plane in 9 regions, based on the po-
larimetric behaviour of known type of natural phenomenons.
Therefore, once the H and the average α parameters are ex-
tracted from the target polarimetric signature, it is straightfor-
ward to classify it as one of the corresponding type of scat-
tering mechanisms. Many works are based on such method,
from geophysical parameters inversion algorithms (in varied
regions from the globe) to detection and classification algo-
rithms. Having a remarkable correspondence to ground truth,
the usage of this unsupervised technique has had very few
improvements since its conception. Nevertheless, there is an
important remark still uncovered related to this method. The
orthogonality constraint of the eigenvectors of the coherence
matrix generates unfeasible regions in the plane. It is impor-
tant to highlight that these regions are mathematically, and not
physically, unfeasible.

Within this context, this paper addresses some of the main
practical considerations when applying the independent com-
ponent analysis (ICA) as an ICTD method with respect to
both the H/α and the TSVM [1] decompositions.



2. ICA BASED ICTD

In [4], a new strategy to polarimetric target decomposition
was presented by incorporating the ICA as an alternative to
identify the canonical scattering mechanisms within an image
cell. The ICA is a blind source separation technique based on
higher order statistical moments and cumulants whose utility
has already been explored in many different research areas,
such as wireless communications, data compression and brain
imaging applications. The results presented in [4] proved it to
be a very promising area in polarimetry, mainly when non-
Gaussian heterogeneous clutters (inherent to high resolution
SAR systems) are under study. The theoretical potential in
estimating similar entropy and first component, when com-
pared to traditional eigenvector decomposition, but rather a
second most dominant component independent with respect
to the first one and unconstrained by the orthogonality intro-
duces an alternative way of physically interpreting a polari-
metric SAR image. In [5], the ability of ICA to correctly
identify clutters composed by non-orthogonal type of scatters
is further investigated, as well as its performance under a slid-
ing window approach, enabling a more accurate comparison
to the results obtained with the Eigenvector based approach.

In general, the limiting curves on the H/α plane reduce
the analysis of high entropy type of targets in a more limit-
ing way than the analysis of low entropy ones. Even though
polarimetry is a better suited tool to analyse low entropy type
of targets, the ability to correctly estimate the parameters that
describe the illuminated scatters is crucial. Once again, it is
important to highlight that these regions are mathematically,
and not physically, unfeasible [6].

Previous results [5] demonstrate the 11×11 spatial neigh-
bourhood is well suited for the estimation of the Touzi’s
TSVM parameters from the ICA mixing matrix (using Sigle
Look Complex target vectors). This In the present work, our
focus relies on addressing the following practical issue: to
apply speckle filtering in ICA-ICTD for better preservation
of spatial features.

3. ICA-ICTD SPECKLE FILTERING

One of the most powerful and widely used speckle filters in
PolSAR is the Lee’s sigma filter, with its recent improvement
proposed in [8]. In this paper, we propose to use the same
algorithm for deriving the adaptive MMSE coefficient b from
Eq. (6) in [8]. Further on, the following modifications are
operated.

Firstly, instead of using each intensity image separately,
we propose to use the Polarimetric Whitening Filter for taking
into account simultaneously all the PolSAR channels. To do
that, one good candidate is the texture parameter τ from [9]
computed in each pixel:

τ̂ = k†[M̂ ]−1
FPk, (1)

where [M̂ ]−1
FP is the Fixed Point polarimetric covariance ma-

trix estimated over the centred boxcar neighbourhood and k
the corresponding target vector.

Secondly, the MMSE filter is modified in each pixel of the
PolSAR span image as:

ŝ = (1− b)σ̂0 + bτ̂ , (2)

where σ̂0 =
k†[M̂ ]−1

FPk

k†[T̂ ]−1
SCMk

and [T̂ ]SCM the sample covariance

matrix.
Thirdly, the strong deterministic scatterers, previously de-

tected by the 98th percentile as in [8], are updating the values
of the MMSE coefficient b to 1. For each pixel, the values
of this coefficient is stored and will be used later for filtering
the corresponding TSVM parameters. One can notice that, at
this stage, we have available the filtered PolSAR span and the
MMSE coefficient images.

When adapting the Lee’s sigma filter to the ICA-ICTD,
the most important constraint is the non-orthogonality of the
ICA derived backscattering mechanisms. In [8], the MMSE
filter from Eq. (2) has been directly applied for the multi-look
PolSAR covariance matrix. This holds because two Sample
Covariance estimates can be averaged, but this is not true for
the ICA derived mixing matrices.

Instead of taking the average of the two covariance matri-
ces, the mixing matrices barycenter could be addressed. The
implementation of such approach is not straightforward, since
the task of estimating matrix geometric means is a complex
subject. The concept of geometric mean for more than two
matrices has only been fully defined recently [10], powered
by the association of the geometric mean of two positive defi-
nite matrices, [M ]1 and [M ]2, as the midpoint of the geodesic
(with respect to a natural Riemannian metric) joining [M ]1
and [M ]2. While the derived theory is valid when addressing
positive definite matrices (which is the case of the covariance
matrices), it does not hold for the mixing matrices estimated
with ICA, which are not necessarily positive definite.

Nevertheless, the solution relies on the rotational invari-
ance of the Touzi’s TSVM decomposition. From [1], one can
observe that the rotation invariant scattering vector has the
following form:

−→v orient−inv = µ

 cosαs cos(2τm)
sinαse

jΦαs

−j cosαs sin(2τm)

 , (3)

where the four roll-invariant parameters αs (symmetric scat-
tering type magnitude), Φαs (symmetric scattering type
phase), τm (helicity), and µ (maximum amplitude return)
are necessary for an unambiguous description of the corre-
sponding PolSAR scattering mechanism. As described in [1],
−→v orient−inv is obtained by constructing the Graves power
matrix and performing the con-diagonalization from [11]
followed by the Huynen desying.



In each pixel, we propose to filter independently each ro-
tation invariant scattering vector −→v orient−inv

i retrieved from
the columns of the ICA derived mixing matrix (i = 1, 3 for
monostatic PolSAR). The two vector estimates −→v orient−inv

3×3

and −→v orient−inv
11×11 correspond to the ICA applied indepen-

dently on 3 × 3 and respectively 11 × 11 boxcar neighbour-
hoods:̂−→v orient−inv = (1− b)−→v orient−inv

11×11 + b−→v orient−inv
3×3 . (4)

Finally, the Cloude and Pottier entropy can be evaluated
using the maximum amplitude returns µi, while the Cloude
and Pottier α is equivalent to Touzi’s αs for symmetric scat-
tering [1].

4. POLSAR EXPERIMENTAL RESULTS

The PolSAR dataset was acquired by the French Aerospace
Lab (ONERA), in 2009, over the French Guiana, in the
frame of the ESA campaign TropiSAR. Fig. 1-(a),(b) shows
the classification results obtained using the H/α eigenvector
decomposition (PCA) and H/α ICA decomposition, respec-
tively. One can notice that similar mechanisms were detected,
mostly in zone 2, with significantly less bias in the ICA based
ICTD.

(a) (b)

Fig. 1. Paracou P-band airborne dataset, H/α classification
map: (a) PCA and (b) ICA.

The PolSAR speckle filtering results are illustrated in Fig.
2-(a),(b). In this paper, a decimation by a factor 2 has been
applied both in range and azimuth (equivalent to a 4-look co-
variance matrix). As expected, the proposed MMSE filter out-
performs the boxcar filter in terms of spatial resolution preser-
vation.

Fig. 4-(a),(b),(c),(d) shows the Touzi’s roll invariant
TSVM parameters computed by ICA MMSE speckle filter-
ing, as compared to the ones obtained by applying the boxcar
filter and PCA from Fig. 3-(a),(b),(c),(d).

Finally, we propose to analyse the results by represent-
ing the derived TSVM parameters of symmetric targets on
the Poincaré sphere (helicity equal 0). It can be observed in
Fig. 5-(a),(b) that the second and the third most dominant
mechanism (represented in blue and green, respectively) oc-
cupy different position onto the sphere, thus meaning that the

(a)

(b)

Fig. 2. Paracou P-band airborne dataset, speckle filtering re-
sults, filtered PolSAR span image (in dB) : (a) boxcar and (b)
MMSE.

(a)

(b)

(c)

(d)

Fig. 3. Paracou P-band airborne dataset, TSVM parameters
after PCA boxcar speckle filtering: (a) entropy, (b) symmet-
ric scattering type magnitude, (c) helicity and (d) symmetric
scattering type phase.
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Fig. 4. Paracou P-band airborne dataset, TSVM parameters
after ICA MMSE speckle filtering: (a) entropy, (b) symmet-
ric scattering type magnitude, (c) helicity and (d) symmetric
scattering type phase.

non-orthogonality of ICA will produce different mechanisms,
indeed.

5. CONCLUSION

This paper addressed one important practical aspect when
computing the ICA-ICTD on real PolSAR data: speckle fil-
tering. By applying the MMSE filter on each of the ICA
derived rotation invariant scattering vectors, we demonstrated
the spatial resolution can be better preserved with respect to
the conventional PolSAR boxcar speckle filter. Further stud-
ies will address plugging the ICA-ICTD in a reliable PolSAR
segmentation algorithm.
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