arXiv:1405.4027v1 [cs.DB] 15 May 2014

Three-Way Joins on MapReduce:
An Experimental Study

Ben Kimmett Alex Thomo S. Venkatesh
University of Victoria, BC, Canada University of Victoria, BC, Canada University of Victoria, BC, Canada
blk@uvic.ca thomo@cs.uvic.ca venkat@cs.uvic.ca

Abstract—We study three-way joins on MapReduce. Joins are in MapReduce. While joining two tables of data is easy to
very useful in a multitude of applications from data integration implement from an algorithmic point of view, joining three o

and traversing social networks, to mining graphs and autom&é- more tables brings several challenges to overcome.
based constructions. However, Jjoins are expensive, evenrfo
moderate data sets; we need efficient algorithms to perform In this paper, we focus on three-way joins. Afrati and

distributed computation of joins qsing clgsters of many mahines. Uliman in [2], [3] give an elegant algorithm for computing
MapReduce has become an increasingly popular distributed three-way and multi-way joins in MapReduce. However, as we
computing system and programming paradigm. We consider a gegcripe later, their main idea for computing the join isdas
state-of-the-art MapReduce multi-way join algorithm by Afrati on the assumption of having a limited number of processes

and Ullman and show when it is appropriate for use on ver L - LA
large data sets. By providing a deta?lgd prerimental studywey (reducers) for processing intermediate results. Thisiimiihg

demonstrate that this algorithm scales much better than wha factor for the scalability of a multi-way join for large chess

is suggested by the original paper. However, if the join rest ~ With thousands of machines. Also, more often than not, one
needs to be summarized or aggregated, as opposed to beingynl IS more interested in summarizing or aggregating the result
enumerated, then the aggregation step can be integrated inta of the join in some way. The algorithm proposed lin [2], [3]
cascade of two-way joins, making it more efficient than the dter needs to produce the entire join result before an aggregator

algorithm, and thus becomes the preferred solution. summarize it. In contrast, a simple cascade of two way joins
may be a better choice, as it allows interleaving the aggimgya
. INTRODUCTION with the computation of the intermediate result.

The importance of joins cannot be overstated. Joins are We outline the details of how to perform this optimization,
used explicitly or implicitly when performing a multitudg o and then perform a detailed experimental study on the perfor
everyday tasks, such as connecting two or more datasetd bag@ance of the algorithm of [2] [3] versus a simple cascade of
on common attributes, comparing tuples with other tuples ifwo-way joins. Our results reveal two surprising facts:
the same table using selfjoins, traversing graphs (d.f.[1Z],

[8], [10]), mining graphs and social networks (cf. [17]],[4 1) For real data (such as those coming from edge-lists of
[18], [11]) computing graph statistics and cubes (€.f| [{59], social networks), the algorithm ofl[2].][3] can scale on
[20]), and multiplying matrices (c.f[[13]), to name a few. clusters much bigger than the original papers suggest,
Joins are so useful, they find application even in algorithms and

requiring the computation of intersection of large aut@mat 2) When aggregation is required (rather than enumerat-
and transducers (c.f[[115][_[14]), or probabilistic reasgn ing the raw join result) a cascade of two-way joins is
on graph databases (c.f.[9]). In fact, it is hard to imagine the preferred choice exhibiting a significant gain in
a domain where joins areot present, albeit sometimes in execution cost.

disguise. This is because of our innate need, in many fields

of research, to always be able to connect different pieces of We pay special attention to applying joins for multiplica-
data or information together. tion of large, sparse matrices because of the wide appligabi

)) _in social network and web analysis. This is also in line wité t
In many of the aforementioned settings, the datasets inprime use cases dfl[2].][3], which also come from the analysis
volved are very big. For example, Facebook, the most populasf large social graphs. Such graphs are often represented as
social network, contains data for over 900 million userssparse matrices by listing the non-empty elements of their

and their relationships. To traverse the Facebook graph qfcidence matrix (the so-called edge list table).
friendships and compute statistics would involve a seriies o

challenging multi-way joins. The main reason for the diffigu
is that joins are expensive, even for datasets of moderzge si
As such, devising distributed algorithms for computinghgoi
on large data sets is of the utmost importance.

The outline of the paper is as follows: In Sectioh I, we
formally describe joins, and then matrix multiplicationdan
graph computations based on joins. In Secfigh Il we describ
the MapReduce framework. In Sectipn] IV we discuss three-

MapReduce (c.f[[5],16],17]) is a popular distributed com- way join algorithms for MapReduce. In Sectiéd V we give
puting framework that can work with thousands of machinesaggregation algorithms for join results. In Sectibnl VI we
in a fault-tolerant way. Unsurprisingly, joins have beereon present our experimental evaluation. Secfiof VII conciuitie
of the first candidates to be considered for implementatiompaper.

http://arxiv.org/abs/1405.4027v1

[1. JOINS, MATRICES, GRAPHS distributed system is Hadoop; an open-source Java implemen
Let R(A, B,V and S(B,C, W), be two tables with at- tation based on the Hadoop Distributed File System (HDFS).

tributes (columnsW, B, V, and B, C, W, respectively. The From an algorithmic point of view, MapReduce simplifies
join R(A,B,V) x S(B,C,W) is table distributed computing. All a programmer needs to do is im-
plement a Map and a Reduce function, without having to deal
J(A,B,C VW) = {(a,b,c,v,w): with low level details of machine communication, data tfans
(a,b,r) € R(A,B,V) and scheduling, and fault-tolerance. Depending on the number o
(b,c,y) € S(B,C,W)}. machines and configuration of the system, the Map and Reduce

o) functions can run in many machines at once.
The definition is extended in the natural way whénB, C,

V, andW are sets of attributes, as opposed to single attributes. There are always two phases in a MapReduce job, the Map
phase and the Reduce phase. The latter starts once the former

The above is also called a “two-way” join becaus® completes. The processes running the map function aredcalle

tables are joined. If three tables are joined, we refer to thenappers, and the processes running the reduce function are
join as being “three-way”. Join is an associative operati®@ called reducers.

(R(A,B,V) » S(B,C,W)) x T(C,D,X) = R(A, B,V) x _ _
(S(B,C,W)) x T(C,D, X)). Both the map and reduce functions takey-value pairs
i o o (KVPs) as input. They also emit key-value pairs; the exact

With minimal work, the concept of a join can be ex- construction of any KVP depends on the individual map or
tended to perform matrix multiplication. A tablg(A, B,V) reduce function used. The records emitted by the mappers are
represents a sparse matrix, with each tupdeb,v) in R sorted and shuffled by the system before being sent to the
representing the presence ofin the matrix, at rowa and reducers. The guarantee of the system is that all the emitted
columnb. KVPs with the same key are sent to the same reducer. A

When two matrix tablesR(A, B, V) and S(B, C, W) are reducer can receive KVPs with many different keys, but if it
sioined” the effect is to perfc;rm’ the first st’ep7 of matrix eceives one KVPs with a specific key, it is certain to receive

multiplication. R and S are joined on their common attribute, &/l other KVPs with that same key.

B, and theV and W values are multiplied. Call the result A two-way join R(A,B,V) x S(B,C,W) can be im-
J(A,C, P). Observe that in the result we only kedpandC, plemented in MapReduce as follows. Initially, each mapper
and multiply the values ot and W rather than just output js assigned a chunk of data, which can contain tuples from

them as in the join definition. In effect, the row vectors ot th p(A B V), S(B,C, W), or both. The specification for the
matrix represented by? have been multiplied by the column wmap and Reduce functions is as follows.

vectors of the matrix represented BYy]
Map function.

The next step is to perform summation of the=v-w For each pair(tid, (a,b,v)), where (a,b,v) € R(A, B,V),
values of J(A,C, P) tuples that agree onml and C, and emit (b, (a, v, R)).
produce one tupléz, ¢, s,,c) for each existing,, c combination For each pair(tid, (b, c,w)), where (b, c,w) € S(B,C,W),
in J(A,C, P). That is, we group by, ¢ and aggregate using emit (b, (c,w, 9)).
sum. This is the equivalent of summing the intermediatelt®su .
of matrix multiplication to yield the finished matrix. Reduce function.

o _ Join all (a,b,v)’s from (b, (a,v, R))

Now, graphs can be represented as incidence matricegith all (b, ¢, w)’s from (b, (¢, w, S)), matching onb.
which are often quite sparse for real graphs. We can use joirEmit ((a, b, ¢, v, w), 1), wheret’s value is unimportant. Some
based matrix multiplication to multiply graph matrices lwit attributes may optionally be omitted from the output.
themselves: times and thus obtain the number (or the weight)
of paths of lengthn + 1 between the starting and ending nodes gecause of the system guarantee that all KVPs with the

listed in the final output. This is important in the friend-of ¢5me key are sent to the same reducer, the reducer recdieing t

friend analysis of social networks. (b, (_,_,_)) pairs has all the information it needs to compute
Also, by considering the diagonal of the result (thosethe section of the join related to valie
(a,¢,5q.c) tuples witha = ¢) for binary incidence matrices, What really matters for the efficiency of a MapReduce

we can obtain the number of triangles in the graph. Namelyy|gorithms is the total amount of 1/O performed by all the

the number of triangles is the sum of all ., with @ = ¢, processes. Emitted data is considered 1/O; this is becatse d

divided by three. emission and transmission is realized using HDFS. The total
As the matrix multiplication is a simple extension of the amount of 1/O is called theommunication cost. However, as

join followed by a group by and aggregation, we will first typical in databases when we compare algorithms, we do not

focus on MapReduce algorithms for join, then modify them tocount the cost of writing the final output. The reasoning hehi
handle matrix multiplication. this is that the output is either small enough to be consurged b

human users (in which case the cost can be safely ignored),
or if not, it will be pipelined into another process (posgibl
another MapReduce round) which will summarize or aggregate

MapReduce is used to describe both a distributed computt in some way. In this case, the size of the output would be
ing system and an algorithmic paradigm, used to process largcounted in the communication cost of the next process, and so
sets of data. The most popular incarnation of MapReduce asia not included in this cost estimate.

I1l. M APREDUCE

The communication cost for the above join 48 + 2s,
wherer ands are the sizes of? and .S, respectively. This is
because each tuple & andS will be read once by a mapper,
and the results (which are the same size, as the mapper emits
a single tuple for each one it reads) will be read again, with
each modified tuple oR and S read by a single reducer.

IV. THREE-WAY JOINS

Computing the thre_e way join R(A, B,V) ol Fig. 1. This chart demonstrates how the 1,3J algorithm pass¢a to
S(B,C,W) ~T(C,D,X) is harder, and can be done severalreducers. KVPs fronk and 7" are sent to a row’ and ‘column’ of reducers,

different ways. The simplest way way is to do a cascade ofespectively, while tuples frons' go to a single reducer to join them together.
two two-way joins: first, comput®(A, B,V) x S(B,C, W),
then join the result with?'(C, D, X). Since this algorithm
uses two rounds of MapReduce, we call it ttvo-round
three-way join algorithm, or (2,3J). The communication cos
for the cascade cannot be determined beforehand because o . |
size of the intermediate joi(A, B) x S(B,C) cannot be se_f]om), such as when computing the third power of a graph
known before we compute it, but once this cost is known, thétdjacency matrix, we have= s =, s0k; = k2 = vk, and
cost of the cascade & + 2s + 2t + 2|R x S|, wherer, s, N communication cost equals + 2rvVk.

andt are the sizes oR, S, andT.

As shown in [2], [3], this cost is minimized whely, =
t Vkr/t andky = \/kt/r. For these values, the communication
tisr + 2s 4+t + 2vkrt. When we join a table to itself (a

Remark 1. It is not always clear when, and if, 1,3J is better
An alternate algorithm for three-way joins is proposed bythan 2,3J. While the 2,3J algorithm can generate a significan
Afrati and Ullman in [2], [3]. This algorithm uses only one cost when it produces intermediate results, the 1,3J akgori
round of MapReduce; therefore, we call it tiee-round three generates multiple KVPs for each tuplefihand?’. The more
way join, or 1,3J. In the 1,3J algorithm, the number of reducerseducers are used in the computation, the more KVPs 1,3J will
to be used is an explicit parameter= kiky (in fact two generate; however, 2,3J will always generate the same numbe
parameterg; andks whose product i&). We create two hash of KVPs given the same input. Thus, there is a scalability
functions,h andg, that hash td; andk, buckets, respectively. problem with 1,3J. After a certain point, more machines do

Then the map and reduce functions are as follows. not necessary mean better efficiency. For a realistic exampl
. considered in[]2],[I8], 1,3J's communication cost surpasse
Map function. 2,3J after reaching 960 reducers. Using today’s multicore

commodity machines of 8 cores, this translates into only 120

e For each(tid, (b, c, w)) from 5, machines. Nonetheless, we show experimentally in the next

emit ((A(b), g(c)), (5, (b, ¢, w))). section that for datasets derived from real-world graphs, t
e For each(tid, (a,b,v)) from R, critical number of reducers is typically far greater. THere,
emit ((h(b),7), (R, (a,b,v))), for j € [1, ka]. 1,3J wins over 2,3J for modest clusters of computers when the
) goal is to only toenumerate the result. However, this may not
» For each(tid, (¢,d, x)) from T, be the goal of several common applications.

emit ((¢, g(c)), (T, (¢, d, z))), for i € [1, kq].
Remark 2. More often then not, we do not consume the result

Reduce function. , of the join directly, but instead summarize or aggregate it i
Join all (b, ¢, w),s from ((n(b), h(c)), (S, (b, c, w)))’s some way, e.g. summation in matrix multiplication or congti

with all (a,b,v?s from ((h(b), h(c)), (R, (a,b,v))?s in statistical applications. When employing 1,3J, we need t
and all (c, d, z)'s from ((h(b), g(c)), (T, (¢, d,x)))’s, wait for the join to be fully computed, and only then may

matching on b and ¢, respectively, and emitting e apply the aggregation. In contrast, if we use 2,3J, we can

((a,b,¢,d,v,w,2),1). Some attributes may optionally yn the aggregation in stages, applying it to the intermtedia

be omitted. two-way join as described in the next section. As we show
The mappers will emit one key-value pair for each tuple Otexpenmentally, such an optimization yields significaninga

the middle tableS, andk, andk, KVPs for each tuple ofr iN terms of communication cost.

and R, respectively. Letd, ¢, w) be a tuple inS. The reducer

receiving KVPs with the key((h(b), h(c)) will have all the V. AGGREGATION
information to construct the part of the three-way join doet Here we will use join-based matrix multiplication as an
(b,c,w). example. Aggregations for other problems are similar. 2,3J

with aggregation, call it 2,3JA, requires the use of another
The communication cost of this algorithm (is+ s +t) + MapReduce round to serve as the aggregator.

(s+ k1t + kar), wherer + s+t is the cost to read the chunks . .
of R, S, andT once,s is the cost to move eadlh,c) € Sto . . T}r%eAagErsgatogwg lg’%?/ after cc;n;lputhg the first two-way
the reducer handlingh(b), h(c)), k1t is the cost to move each join R(A, B,V) x 5(B,C, W) Is as follows:
(¢,d) € T to the reducers handling, g(c)), for i € [1,k], Map function.
and kor is the cost to move eactu,b) € R to the reducers For all tuples((a,b,c,v,w),T), emit ((a,c),p), wherep =
handling(h(b), j), for j € [1, k1]. v - w.

Reduce function.
For all tuples((a, c), p), sum all the tuplesp values, returning

100M

‘Amazon Intermediate Communication Cost

Google Web Intermediate Communication Cost
160M

((Q,C),Saﬁc). o ————;fﬁ _—
) i . / 120M /
The same aggregator is also used after the second join. . ///
£ g 80M
The aggregator employed after computing the three-way ™ / =/
join using 1,3J is as follows. - aom
Map function. - N

16 36 49 64 81 100 121 132 16 36 49 64 81 100 121 132

For all tuples((a,b,c,d,v,w,x),T), emit ((a,d),p), where
p=v-w-x.

Reducers Reducers
- 13 o 23 < 13 <23

Wikitalk Intermediate Communication Cost

Reduce function.
For all tuples((a, d), p), sum all the tuplesp values, returning
((a7 d)’ Sa7d)' 200M 258

We call 1,3J followed by this aggregator 1,3JA.

250M 3B

150M

Tuples
Tuples
-
&
8

2,3JA computesR(A,B,V) x S(B,C,W) [of size oo 1
r’], then aggregates the result, yieldidyg(R(A, B,V) x o
S(B,C,W)) [of sizer”]. Thisis then joined With'(C, D, X). oo
The communication cost is similar to that of 2,3J, but with "= = & & & w = = e e woa owom w
the addition of2r”, for a total of 6r + 2r’ + 27 tuples. <13 <23 13 © 23

The exact” depends on how well the aggregator can reduce
R(A,B,V) x S(B,C,W), but it is always equal to or less 0
than (usually much less than).

Pokec Intermediate Communication Cost LiveJournal Intermediate Communication Cost

3B

Unlike 2,3J and 2,3JA, the communication cost of 1,3J
for 1,3JA rises with the number of reducers. Recall, 1,3J's
communication cost igr+2rv/k tuples, where: is the number
of reducers. The computation cost of 1,3JAis-2rvk+2r", " w®
wherer’” is the size of the raw three-way join. e

—

2B

Tuples

16 36 49 64 81 100 121 132 16 36 49 64 81

EVALUATION .. R N

100 121 132

VI.

Our experiments ran on a 33-node (4 cores per node, maxi-
mum 132 MapReduce instances running at any one time) clus- w.om
ter, using Apache Hadoop 1.2.1. For data, we acquired seven zm
datasets from the Stanford Large Network Dataset Collectio
(http://snap.stanford.edu/data/). Each dataset repieda di- 4
rected graph. Of the datasets, five (Slashdot, Twitter, taliki ®
Pokec, and LiveJournal) were social in nature, represgntin
user relationships (Twitter, Pokec, Livejournal) or i@tetions
(voting on other users for Slashdot, comments on talk pages » = o o w o -
for Wikitalk). The remaining two datasets each represented . -
different data: the Amazon set was derived from Amazon’s
"customers who bought item A also bought item B” database':i)g- rzdw- i':qzszé’r: zgﬁ)fmgg(')atl‘z \1/v?e’:€> z?dhtz)?gngﬁgw“‘sf;:ﬁgﬂfmvmgﬁd
while the G_oogle Web dataseF IS a small chunk of I_ntemegrié)ht). 3rd row: Pokec (Ieft),g LiveJourngal ('right). Bottoleft: Twitter.
structure (with edges representing links between pagésghw
was released by Google as part of a programming competition.

Twitter Intermediate Communication Cost

1,000M
, 80OM
4

600M
400M

200M

In all experiments, each dataset was joined to itself twice,
creating a three-way selfjoin. The three copies of the @atas 100,000
will still be referred to ask, S, andT.

10,000
A. Results

67,860 76,452
15,625
7,569
3,540
1,000
For the first set of tests, we ran our implementation of 2,3J 10 5 169
and 1,3J on each dataset. We measured the communication "
cost as defined above. The results are shown in Figure 2.
1 SN T T TN SN T

Amazon Google Slashdot Twitter Wikitalk Pokec Live) ournal

Reducers Needed to Surpass 2,3] s Communication Cost

For every dataset, 1,3J had a lower communication costig. 3. For the 1,3J's intermediate communication cost tpass the 2,3J's
than 2,3J for a large number of reducers. After a certaingedu on a specific dataset, it would have to use the listed numbeechfcers.
threshold, the 2,3J cost became lower than the 1,3J coshéut

http://snap.stanford.edu/data/

I A Output A in R
number of reducers the 1,3] would need to use to cost more Siecuf 2 A0 fter Second Join Round

than the 2,3J is typically very large, as shown in Figure 3.
This is a surprising fact that shows that 1,3J can scale much_
more that what[[2],[[3] suggest (only 960 reducers for a large””
hypothetical social network). o
As shown in Figurél2, the Twitter dataset’s communication
cost was far lower when running the 1,3J algorithm. A cluster®*
running the two algorithms would need to have 67,860 reduc-
ers (a 260x261 reducer array, or about 8,400 8-core maghineso®
before the 1,3J's communication cost would be larger than
the 2,3J's. Similarly, the LiveJournal dataset would haveé Fig. 5. This chart shows the size of the output of the 2,3JAasueed as a
run on a cluster with 7,569 reducers (an 87x87 reducer arrapgrcentage of the output size of the 1,3J, where aggregitinot used.
about 950 8-core machines) before the cost of running the 1,3
algorithm upon it would grow greater than the cost of running
the 2,3J on the same. VII. CONCLUSIONS

30.8%
1.7%

Amazon Google Web Slashdot08 Twitter Wikitalk Pokec LiveJournal

For the second set of tests, we compared 2,3JA and 1,3JA We foc_used on three-v_vay joins fc_)r MapRedu(_:e. .SUCh joins
e especially useful for friends-of-friends analysis &rahgle

on each dataset, and the results are shown in Fidure 6. On tR¢ S X : .
graphs of the larger datasets, the 1,3JA line still has aesbpcomputatlon in social ”etWOFkS- We considered the a'g“’.“t.h
(the 2,3JA line is flat), but it cannot be easily observed due tog :[f]J [_?g] (1,3) versus a simple ;:alsg‘z;\d_e gf two(—jway Jo'nﬁ
the graph’s scale; FiguFé 6 [bottom right] illustrates tiggual ~ (2:3J). The communication cost of 1,3J is dependent on the

slope of one such line. The 2,3JAs cost does not change as t ymber of reduceLs; tbhe morﬁ the numb(_er O.f reduceLs used in
cluster size increases, while the 1,3JAs cost only getetarg € computation, the bigger the communication cost becomes
On the other hand, the communication cost of 2,3J does not

&hange when the number of reducers changes. We shpwed that
was far less than the 1,3JA algorithm’s, a fact due entirelyl:3J c@n scale much better than what was suggested in[2], [3]
to the reduced output size. If the intermediate aggregatdpten by one or two orders of magnitude. However, when the
combined some number of KVPs)(into one, and that Kvp result of the join needs to be aggregated in some way as in the
producedm tuples in the aggregated final output, ther m case of matrix multiplication, then a cascade of two-wangoi

tuples identical sets ofmn tuples) would be output in the (2’3‘]A). is prefe(able t01,3JA as the aggr_egation can beqnhsh
unaggregated result. to the intermediate results of 2,3JA significantly reduding

communication cost incurred.

The benefits of this (as shown in Figlile 4) were transferred
over to the 2,3JA's second join round, producing a redudtion REFERENCES
output size. The exact reduction in size is shown in Figlire 5.
As an example, the output from the primary aggregation round[1] Gephi. http://gephi.org/.
on the Pokec dataset is 76.4% of the size of first two-way join,[2] F. N. Afrati and J. D. Ullman. Optimizing joins in a mapehece
a little larger than the average. This benefit carries ovéhéo environment. INEDBT, pages 99-110, 2010.
algorithm’s output: the 2,3JA's Pokec output is 69.1% theesi [3] F. N. Afrati and J. D. Ullman. Optimizing multiway joinsiia map-
of the 1,3J's output on the same dataset. In comparison, the rz%dlulce environment EEE Trans. Knowl. Data Eng., 23(9):1282-1298,
Liverumal data;et’s intermeqia}te aggr?gated resul6.9% .. [4 D Cr.]akrabarti and C. Faloutsos. Graph mining: Laws,egators, and
Elhze_ ZSO/IoZ?hngEQS (];Ifr?It‘letV\:ILc,)év‘\]laguiglﬂy the final 2,3JA output is algorithms. ACM Comput. Surv., 38(1), 2006.

For each dataset, the 2,3JA algorithm’s communication co

[5] J. Dean and S. Ghemawat. Mapreduce: Simplified data psoug on
large clusters. IOSDI, pages 137-150, 2004.

[6] J. Dean and S. Ghemawat. Mapreduce: simplified data psatg on
large clusters.Commun. ACM, 51(1):107-113, 2008.
Size of 2,3) First Round Output After Aggregation [7] J.Dean and S. Ghemawat. Mapreduce: a flexible data psingesool.
100% Commun. ACM, 53(1):72-77, 2010.
[8] G. Grahne and A. Thomo. Regular path queries under appeig
semantics.Ann. Math. Artif. Intell., 46(1-2):165-190, 2006.

[9] N. Hassanlou, M. Shoaran, and A. Thomo. Probabilistepgrsumma-
rization. InWAIM, pages 545-556, 2013.

[10] N. Koochakzadeh, A. Sarraf, K. Kianmehr, J. G. Rokned & Al-
hajj. Netdriller: A powerful social network analysis tooln ICDM
Workshops, pages 1235-1238, 2011.

[11] N. Korovaiko and A. Thomo. Trust prediction from usem ratings.
Social Netw. Analys. Mining, 3(3):749-759, 2013.

[12] Z. Miao, D. C. Stefanescu, and A. Thomo. Grid-aware @atbn of

Fig. 4. This chart shows the size of the intermediate aggjeegaf the first regular path queries on spatial networks. AfNA, pages 158-165,

round of the 2,3JA, as a percentage of the size of the firstweaspjoin. 2007.

[13] J. Myung and S. goo Lee. Matrix chain multiplication viaulti-way
join algorithms in mapreduce. IFCUIMC, page 53, 2012.

75%

50%

25%

0%

Amazon Google Web Slashdot08 Twitter Wikitalk Pokec Livejournal

/Amazon Final Communication Cost

[14] M. Shoaran and A. Thomo. Evolving schemas for streamimg Theor. asom a3 Vet el Gommaniation Cost
Comput. Sci., 412(35):4545-4557, 2011. . et e —
—
[15] A. Thomo, S. Venkatesh, and Y. Y. Ye. Visibly pushdowarsducers - o
for approximate validation of streaming xml. FolKS pages 219-238, T o
2008. 8 o g e e———e—e——
[16] Y. Tian, R. A. Hankins, and J. M. Patel. Efficient aggréga for graph 150M o
summarization. I8 GMOD Conference, pages 567-580, 2008. oo
75M
[17] W. Wang, C. Wang, Y. Zhu, B. Shi, J. Pei, X. Yan, and J. Han.
Graphminer: a structural pattern-mining system for largek-hased M % @ & & 10 = M % @ & & w0 1 m
graph databases and its applications. IBMOD Conference, pages o 13 X Taa 13 N Tan
879-881, 2005. ' ' ' '
[18] X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger. Scan: mdural Stashdot: Final Communication Cost Wikitalk Final Communication Cost
clustering algorithm for networks. IKDD, pages 824-833, 2007. 128 3008
[19] N. Zhang, Y. Tian, and J. M. Patel. Discovery-driven gitasumma- - -
rization. InICDE, pages 880-891, 2010. o
[20] P. Zhao, X. Li, D. Xin, and J. Han. Graph cube: on warelmmisand . . >
olap multidimensional networks. I88GMOD Conference, pages 853— R
864’ 2011 1008 4 A A A A A A A
3B
50B
0B 0B
16 36 49 64 81 100 121 132 16 36 49 64 81 100 121 132
- 13| RwﬁucleZJA < 13 Re(zceZ?BJA
Pokec Final Communication Cost LiveJournal Final Communication Cost
1258 900B
s 7508
A A A a4 c008
758
%;L 4508
F 508 A A A A e A A A
3008
258 1508
0B 0B
16 36 49 64 81 100 121 132 16 36 49 64 81 100 121 132
- 1,3 Rax(e;,BJA < 13 /= 2,3 A
Twitter Final Communication Cost
3508 Twitter Final Communication Cost [Zoomed In]
312.31B
08 e //
312.38
2508
J/
%2005 B 312208 / /
2 1508 g
312.298
1008 /
508 312.288 /
I A -
16 36 49 64 81 100 121 132 16 36 49 64 81 100 121 132
13 Reljce;:ﬂA 13 Reducers

Fig. 6. Sizes of communication cost of 1,3JA and 2,3JA. Tap: thmazon
(left), Google Web (right). 2nd row: Slashdot (left), Wik (right). 3rd row:
Pokec (left), LiveJournal (right). Bottom: Twitter (leftYwitter graph scaled
to show slope of 1,3J line (right).

	I Introduction
	II Joins, Matrices, Graphs
	III MapReduce
	IV Three-Way Joins
	V Aggregation
	VI Evaluation
	VI-A Results

	VII Conclusions
	References

