
Iris Presentation Attack Detection by Attention-based and
Deep Pixel-wise Binary Supervision Network

Meiling Fang1,2, Naser Damer1,2, Fadi Boutros1,2, Florian Kirchbuchner1,2, Arjan Kuijper1,2
1Fraunhofer Institute for Computer Graphics Research IGD, Darmstadt, Germany

2Mathematical and Applied Visual Computing, TU Darmstadt, Darmstadt, Germany
Email: meiling.fang@igd.fraunhofer.de

Abstract

Iris presentation attack detection (PAD) plays a vital role
in iris recognition systems. Most existing CNN-based iris
PAD solutions 1) perform only binary label supervision dur-
ing the training of CNNs, serving global information learn-
ing but weakening the capture of local discriminative fea-
tures, 2) prefer the stacked deeper convolutions or expert-
designed networks, raising the risk of overfitting, 3) fuse
multiple PAD systems or various types of features, increas-
ing difficulty for deployment on mobile devices. Hence,
we propose a novel attention-based deep pixel-wise bi-
nary supervision (A-PBS) method. Pixel-wise supervision
is first able to capture the fine-grained pixel/patch-level
cues. Then, the attention mechanism guides the network
to automatically find regions that most contribute to an
accurate PAD decision. Extensive experiments are per-
formed on LivDet-Iris 2017 and three other publicly avail-
able databases to show the effectiveness and robustness of
proposed A-PBS methods. For instance, the A-PBS model
achieves an HTER of 6.50% on the IIITD-WVU database
outperforming state-of-the-art methods.

1. Introduction

In recent years, iris recognition systems are being de-
ployed in many law enforcement or civil applications [16,
2, 3]. However, iris recognition systems are vulnerable to
Presentation Attacks (PAs) [32, 5], performing to obfuscate
the identity or impersonate a specific person ranging from
printouts, replay, or textured contact lenses. Therefore, Pre-
sentation Attack Detection (PAD) field has received increas-
ing attention to secure the recognition systems.

Recent iris PAD works [22, 6, 9, 24, 7, 8] are com-
peting to boost the performance using Convolution Neural
Network (CNN) to facilitate discriminative feature learning.
Even though the CNN-based algorithms achieved good re-
sults under intra-database setups, they do not generalized
well across databases and unseen attacks. This situation

was verified in the LivDet-Iris competitions. The LivDet-
Iris is an international competition series launched in 2013
to assess the current state-of-the-art (SoTA) in the iris PAD
field. The two most recent edition took place in 2017 [32]
and 2020 [5]. The results reported in the LivDet-Iris 2017
[32] databases pointed out that there are still advancements
to be made in the detection of iris PAs, especially under
cross-PA, cross-sensor, or cross-database scenarios. Sub-
sequently, LivDet-Iris 2020 [5] reported a significant per-
formance degradation on novel PAs, showing that the iris
PAD is still a challenging task. No specific training data
was offered and the test data was not publicly available as of
now for the LivDet-Iris 2020. Therefore, our experiments
were conducted on LivDet-Iris 2017 and other three pub-
licly available databases. By reviewing most of the recent
iris PAD works (see Sec. 2), we find that all CNN-based iris
PAD solutions trained models by binary supervision, i.e.,
networks were only informed that an iris image is bona fide
or attack. Binary supervised training facilitates the use of
global information but may cause overfitting. Moreover,
the network might not be able to optimally locate the re-
gions that contribute the most to make accurate decisions
based only on the binary information provided.

To target these issues, we introduce an Attention-
based Pixel-wise Binary Supervision (A-PBS) network (See
Fig.1). The main contributions of the work include: 1)
we exploit deep Pixel-wise Binary Supervision (PBS) along
with binary classification for capturing subtle features in
attacking iris samples with the help of spatially positional
supervision. 2) we propose a novel effective and ro-
bust attention-based PBS (A-PBS) architecture, an extended
method of PBS, for fine-grained local information learn-
ing in the iris PAD task, 3) we conduct extensive exper-
iments on LivDet-Iris 2017 and other three publicly avail-
able databases indicating that our proposed PBS and A-PBS
solution outperforms SoTA PAD approaches in most experi-
mental settings. Moreover, the A-PBS method exhibits gen-
eralizability across unknown PAs, sensors, and databases.
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2. Related Works
CNN-based iris PAD: In recent years, many works

[9, 6, 24, 22, 29, 8] leveraged deep learning techniques
and showed great progress in iris PAD performance.
Kuehlkamp et al. [22] explored combinations of CNNs
with the hand-crafted features. However, training 61 CNNs
needs high computational resources and can be considered
as an over-tailored solution. Yadav et al. [29] also employed
the fusion of hand-crafted features with CNN features and
achieved good results. Unlike fusing the hand-crafted and
CNN-based features, Fang et al. [6] suggested a multi-layer
deep features fusion approach (MLF) based on the charac-
teristics of networks that different convolution layers en-
code the different levels of information. Apart from the
fusion methods, a deep learning-based framework named
Micro Stripe Analyses (MSA) [9, 7] was introduce to cap-
ture the artifacts around the iris/sclera boundary and showed
a good performance on textured lens attacks. Yadav et al.
[31] presented DensePAD method to detec PAs by utilizing
DenseNet architecture [14]. Furthermore, Sharma and Ross
[24] also exploited the architectural benefits of DenseNet
[14] to propose an iris PA detector (D-NetPAD) evalu-
ated on a proprietary database and the LivDet-Iris 2017
databases. Although fine-tuned D-NetPAD achieved good
results on LivDet-Iris 2017 databases with the help of their
private additional data, scratch D-NetPAD still failed in the
case of cross-database scenarios. These works inspired us
to use DenseNet [14] as the backbone for further design of
network architectures. Very recently, Chen et al. [4] pro-
posed an attention-guided iris PAD method for refine the
feature maps of DenseNet [14]. However, this work used
conventional sample binary supervision and did not report
cross-database experiments to verify the generalizability of
the added attention module.

Limitations: To our knowledge, current CNN-based iris
PAD solutions train models only through binary supervi-
sion (bona fide or attack). From the above recent iris PAD
literature, it can be seen that deep learning-based methods
boost the performance but still have the risk of overfitting
under cross-PA/cross-database scenarios. Hence, some re-
cent methods proposed the fusion of multiple PAD systems
or features to improve the generalizability, which makes
it challenging for deployment. One of the major reasons
causing overfitting is the lack of availability of a sufficient
amount of variant iris data for training networks. Another
possible reason might be binary supervision. While the bi-
nary classification model provides useful global informa-
tion, its ability to capture subtle differences in attacking
iris samples may be weakened, and thus the deep features
might be less discriminative. This possible cause motivates
us to exploit binary masks to supervise the training of our
PAD model, because a binary mask label may help to su-
pervise the information at each spatial location. However,

PBS may also lead to another issue, as the model misses the
exploration of important regions due to the ’equal’ focus on
each pixel/patch. To overcome some of these difficulties,
we propose the A-PBS architecture to force the network to
find regions that should be emphasized or suppressed for a
more accurate iris PAD decision. The detailed introduction
of PBS and A-PBS can be found in Sec. 3.

3. Methodology
In this section, we first introduce DenseNet [14] as a pre-

liminary architecture. Then, our proposed Pixel-wise Bi-
nary Supervision (PBS) and Attention-based PBS (A-PBS)
methods are described. As shown in Fig. 1, the first gray
block (a) presents the basic DenseNet architecture with bi-
nary supervision, the second gray block (b) introduces the
binary and PBS, and the third block (c) is the PBS with the
fused multi-scale spatial attention mechanism (A-PBS).

3.1. Baseline: DenseNet

DenseNet [14] introduced direct connection between
any two layers with the same feature-map size in a feed-
forward fashion. The reasons motivating our choice of
DensetNet are: 1) whilst following a simple connectivity
rule, DenseNets naturally integrate the properties of iden-
tity mappings and deep supervision. 2) DenseNet has al-
ready shown its superiority in ris PAD [31, 24, 5]. As shown
in Fig. 1.(a), we reuse two dense and transition blocks of
pre-trained DenseNet121. Following the second transition
block, an average pooling layer and a fully-connected (FC)
classification layer are sequentially appended to generate
the final prediction to determine whether the iris image is
bona fide or attack. PBS and A-PBS networks will be ex-
panded on this basic architecture later.

3.2. Pixel-wise Binary Supervision Network (PBS)

From the recent iris PAD literature [9, 6, 24, 22], it
can be seen that CNN-based methods outperformed hand-
crafted feature-based methods. In typical CNN-based iris
PAD methods, networks are designed such that feeding pre-
processed iris image as input to learn discriminative fea-
tures between bona fide and artifacts. To that end, a FC
layer is generally introduced to output a prediction score su-
pervised by binary label (bona fide or attack). Recent face
PAD works have shown that auxiliary supervision [23, 10]
improved their performance. Binary label supervised classi-
fication learns semantic features by capture global informa-
tion but may cause overfitting. Moreover, such embedded
’globally’ features might lose the local detailed information
in spatial position. These drawbacks give us the insight that
additional pixel-wise binary along with binary supervision
might improve the iris attack detection results. First, such
supervision approach can be seen as a combination of patch-
based and vanilla CNN based methods. To be specific, each
pixel-wise score in output feature map is considered as the



Figure 1. An overview of (a) baseline DenseNet, (b) proposed PBS and (c) proposed A-PBS networks.

score generated from the patches in an iris image. Second,
the binary mask supervision would be provided for the deep
embedding features in each spatial position. Hence, an in-
termediate feature map is predicted before the final binary
classification layer (as shown in Fig. 1.(b)). The output
from the Transition Block 2 is 384 channels with the size
of 14× 14. A 1× 1 convolution layer is added to produced
the map. Finally, a FC layer is used to generates prediction.

3.3. Attention-based PBS Network (A-PBS)

The architecture of PBS is designed coarsely (simply uti-
lizing the intermediate feature map) based on the DenseNet
[14], which might be sub-optimal for iris PAD task. To en-
hance that, and inspired by Convolutional Block Attention
Mechanism (CBAM) [28] and MLF [6], we propose an A-
PBS method with multi-scale feature fusion (Fig. 1.(c)).

Although PBS can boost performance of iris PAD, it
shows imperfect invariation under more complicated cross-
PA or cross-database scenarios (See results in Tab. 4). As
a result, it is worth finding the important regions to focus
on, although it contradicts learning more discriminative fea-
tures. In contrast, the attention mechanism aims to automat-
ically learn essential discriminate features from inputs that
are relevant to attack detection. Woo et al. [28] presented an
attention module consisting of the channel and spatial dis-
tinctive sub-modules, which possessed consistent improve-
ments in classification and detection performance with var-
ious network architectures. However, only spatial attention
module is adopted in our case due to the following reasons:
1) the Squeeze-and-Excitation (SE) based channel attention

module focuses only on the inter-channel relationship by
using dedicated global feature descriptors, which leads to
a loss of information (e.g., class-deterministic pixels) and
may result in further performance degradation when the do-
main is shifted, e.g., different sensors and changing illu-
mination, 2) the spatial attention module utilizes the inter-
spatial relationship of features. Specifically, it focuses on
’where’ is an informative part, which is more proper for
producing output feature maps for supervision. Moreover,
based on the fact that the network embeds different layers
of information at different levels of abstraction, the MLF [6]
approach confirmed that the fusing deep feature from mul-
tiple layers is beneficial to enhance the robustness of the
networks in the iris PAD task. Nevertheless, we propose to
fuse feature maps generated from different levels directly
inside the network instead of fusing features extracted from
a trained model in MLF [6]. One reason is that finding the
best combination of network layers to fuse is a challenging
task and difficult to generalize well, especially when target-
ing different network architectures.

As illustrated in Fig. 1, three spatial attention modules
are added after MaxPool, Transition Block 1, and Transition
Block 2, respectively. The feature learned from the MaxPool
or two Transition Blocks can be considered as low-, middle-
and high-level features and denoted as

Flevel ∈ RC×H×W , level ∈ {low, mid, high}

. Then, the generated attention maps Alevel ∈ RH×W

encoding where to emphasize or suppress are used to re-
fine Flevel. The refined feature F ′levelcan be formulated



as F ′level = Flevel ⊗ Alevel where ⊗ is matrix multipli-
cation. Finally, such three different level refined features
are concatenated together and then fed into a 1×1 convolu-
tion layer to produce the pixel-wise feature map for super-
vision. It should be noticed that the size of convolutional
kernel in three spatial attention modules is different. As
mentioned earlier, the deeper the network layer, the more
complex and abstract the extracted features. Therefore, we
should use smaller convolutional kernels for deeper features
to locate useful region. The kernel sizes of low-, middle-
and high-level layers are thus set to 7, 5, and 3, respectively.
The experiments have been demonstrated later in Sec. 4 and
showed that A-PBS network possesses better performance
and generalizability than the PBS approach.
3.4. Loss Function

For the loss function, Binary Cross Entropy (BCE) loss
is used for final binary supervision. For the sake of robust
PBS needed in iris PAD, Smooth L1 (SmoothL1) loss is
utilized to help the network reduce its sensitivity to outliers
in the feature map. The equations for SmoothL1 is shown
below:

LSmoothL1 =
1

n

∑
z

where z =


1

2
· (y − x)2, if |y − x| < 1

|y − x| − 1

2
, otherwise

where n is the amount number of pixels in the output map
(14× 14 in our case). The equation of BCE is:

LBCE = −[y · log p+ (1− y) · log(1− p)]

where y in both loss equations presents the ground truth
label. x in SmoothL1 loss presents to the value in feature
map, while p in BCE loss is predicted probability. The over-
all lossLoverall is formulated asLoverall = λ·LSmoothL1+
(1− λ) · LBCE . The λ is set to 0.2 in our experiments.
3.5. Implementation Details

For the databases, whose distribution of bona fides and
attacks are imbalanced in the training set, class balancing is
done by under-sampling the majority class. Data augmen-
tation is performed during training using random horizontal
flips with a probability of 0.5. By considering the limited
amount of iris data, the model weight of DenseNet, PBS
and A-PBS models are first initialized by the base architec-
ture DenseNet121 trained on the ImageNet dataset and then
fine-tuned by iris PAD data. The Adam optimizer is used
for training with a initial learning rate of 1e−4 and a weight
decay of 1e−6. To avoid overfitting, the model is trained
with the maximum 20 epochs and the learning rate halved
every 6 epochs. The batch size is 64. In the testing stage,
we use the binary output as the final prediction score. The
proposed method was implemented using the Pytorch.

4. Experimental Evaluation

4.1. Databases

The proposed method is evaluated on multiple databases:
three databases comprising of textured contact lens at-
tacks captured by different sensors [17, 18, 30], and
three databases (Clarkson, Notre Dame and IIITD-WVU)
from the LivDet-Iris 2017 competition [32]. The Warsaw
database in the LivDet-Iris 2017 is no longer publicly avail-
able due to General Data Protection Regulation (GDPR) is-
sues. For the experiments in NDCLD13, NDCLD15, IIIT-
CLI databases, 5-fold cross-validation was performed due
to no pre-defined training and testing sets. For the exper-
iments in competition databases, we followed the defined
data partition and experimental setting [32]. Subjects in
each fold or defined partition are dis-joint. The summery
of the used databases is listed in Tab 1.

NDCLD13: The NDCLD13 database consists of 5100
images and is conceptually divided into two sets: 1)
LG4000 including 4200 images captured by IrisAccess
LG4000 camera, 2) AD100 comprising of 900 images cap-
tured by risGuard AD100 camera. Both the training and the
test set are divided equally into no lens (bona fide), soft lens
(bona fide), and textured lens (attack) classes.

NDCLD15: The 7300 images in the NDCLD15 [17]
were captured by two sensors, IrisGuard AD100 and IrisAc-
cess LG4000 under MIR illumination and controlled envi-
ronments. The NDCLD15 contains iris images wearing no
lenses, soft lenses, textured lenses.

IIIT-D CLI: IIIT-D CLI database contains 6570 iris im-
ages of 101 subjects with left and right eyes. For each in-
dividual, three types of images were captured: 1) no lens,
2) soft lens, and 3) textured lens. Iris images are divided
into two sets based on captured sensors: 1) Cogent dual iris
sensor and 2) VistaFA2E single iris sensor.

LivDet-Iris 2017 Database: Though the new edition
LivDet-Iris competition was held in 2020, we still eval-
uate the algorithms in databases provided by LivDet-Iris
2017 for several reasons. First, no official training data
was announced in the LivDet-Iris 2020, because the orga-
nizers encouraged the participants to use all available data
(both publicly and proprietary) to improve the effectiveness
and robustness. Second, the test data is not publicly avail-
able. To make a fair comparison with SoTA algorithms
on equivalent data, we use databases in LivDet-Iris 2017
for restricting the factors affecting the evaluation to the al-
gorithm itself rather than the data. Third, the LivDet-Iris
2017 competition databases are still challenging due to the
cross-PA and cross-database scenario settings. The Clark-
son and Notre Dame database are designed for cross-PA
scenarios, while the IIIT-WVU database is designed for a
cross-database evaluation due to the different sensors and
acquisition environments. The Clarkson testing set includes



Database # Training # Testing Type of Iris Images
NDCLD-2015 [17] 6,000 1,300 Real, soft and textured lens

NDCLD-2013 [18] LG4000 3,000 1,200 Real, soft and textured lens
AD100 600 300 Real, soft and textured lens

IIIT-D CLI [20, 30] Cognet 1,723 1,785 Real, soft and textured lens
Vista 1,523 1,553 Real, soft and textured lens

LivDet-Iris 2017 [32] Clarkson (cross-PAD) 4937 3158 Real, textured lens, printouts
Notre Dame (cross-PA) 1,200 3,600 Real, textured lenses
IIITD-WVU (cross-DB) 6,250 4,209 Real, textured lenses, printouts, lens printouts

Table 1. Characteristics of the used databases. All databases have the training and test sets based on their own experimental setting in the
related papers. The Warsaw database in Iris-LivDet-2017 competition are no longer publicly available.

additional unknown visible light image printouts and un-
known textured lenses (unknown pattern). Moreover, Notre
Dame focused on the unknown textured lenses. However,
the Warsaw database is no longer publicly available.

4.2. Evaluation Metrics

The following metrics are used to measure the PAD al-
gorithm performance: 1) Attack Presentation Classification
Error Rate (APCER), the proportion of attack images incor-
rectly classified as bona fide samples, 2) Bona fide Presen-
tation Classification Error Rate (BPCER), the proportion of
bona fide images incorrectly classified as attack samples, 3)
Half Total Error Rate (HTER), the average of APCER and
BPCER. The APCER and BPCER follows the standard def-
inition presented in the ISO/IEC 30107-3 [15] and adopted
in most PAD literature including in LivDet-Iris 2017. The
threshold for determining the APCER and BPCER is 0.5
as defined in the LivDet-Iris 2017 protocol. In addition, for
further comparison on IIITD-CLI [30, 20] database, we also
report the Correct Classification Accuracy (CCR), which is
the ratio between the total number of correctly classified im-
ages and the number of all classified presentations. More-
over, the performance of our proposed methods is evaluated
in terms of True Detection Rate (TDR) at a False Detection
Rate (FDR) of 0.2% (TDR at 0.2% FDR is normally used
to demonstrate the PAD performance in practice). TDR is
1 -APCER, and FDR is the same as BPCER. An Equal Er-
ror Rate (EER) locating at the intersection of APCER and
BPCER is also reported in Tab. 4. The metrics beyond
APCER and BPCER are presented to enable a direct com-
parison with reported results in SoTAs.

4.3. Results on LivDet-Iris 2017 Database

Tab. 2 summarizes the results in terms of APCER,
BPCER, and HTER on the LivDet-Iris 2017 databases. We
evaluate the algorithms on databases provided by LivDet-
Iris 2017. The evaluation and comparison on LivDet-Iris
2020 are not included due to 1) no officially offered training
data, 2) not publicly available test data. Moreover, LivDet-
Iris 2017 databases are designed for cross-PA and cross-
database scenarios, which is still considered a challenging
task. In this work, we aim to focus on the impact of the algo-
rithm itself on PAD performance rather than the diversity of

data. Consequently, to make a fair comparison with SoTA
algorithms on equivalent data, we compare to the Scratch
version of the D-NetPAD results [24], since Pre-trained and
Fine-tuned D-NetPAD used additional data (including part
of Notre Dame test data) for training. This was not an issue
with the other compared SoTA methods.

It can be observed in Tab. 2 that A-PBS architecture
achieves significantly improved performance in compari-
son to DenseNet and also slightly lower HTER values than
the PBS model in all cases. For instance, the HTER value
on Notre Dame is decreased from 8.14% by DenseNet and
4.97% by PBS to 3.94% by A-PBS. Although the slightly
worse results on Notre Dame might be caused by the insuf-
ficient data in the training set, our PBS and A-PBS methods
show significant superiority on the most challenging IIITD-
WVU database. Moreover, we plot the PA score distribu-
tion of the bona fide and PAs in Fig.2 for further analysis.
The score distribution generated by A-PBS shows an evi-
dent better separation between bona fide (green) and PAs
(blue). In addition to reporting the results determined by
a threshold of 0.5, we also measure the performance of
DenseNet, PBS, and A-PBS in terms of its TDR at 0.2%
FDR (to follow SoTA trends []) in Tab. 3. It is worth
noting that our A-PBS method obtains the highest TDR
value (90.00%) on unknown-test set in Notre Dame, while
the second-highest TDR is 76.89% achieved by PBS. We
further evaluate the generalizability of our models under
cross-database scenario, e.g., the model trained on Notre
Dame is tested on Clarkson and IIITD-WVU. As shown in
Tab. 4, the A-PBS model outperforms DenseNet and PBS in
most cases, which verifying that additional spatial attention
modules can reduce the overfitting of the PBS model and
capture fine-grained features. Furthermore, the DenseNet
and A-PBS models trained on Notre Dame even exceed
the prior SoTAs when testing on the IIIT-WVU database
(8.81% HTER by DenseNet and 9.49% by A-PBS, while
the best prior SoTA achieved 11.13% (see Tab. 2)). It should
be noted that the Notre Dame training dataset contains only
textured lens attacks while Clarkson and IIIT-WVU test-
ing datasets comprise of both textured lens and printouts
attacks, which makes this evaluation scenario partially con-
sider unknown PAs. In such an unknown-PAs situation, our



Database Metric PAD Algorithm (%)
Winner [32] SpoofNet [19] Meta-Fusion [22] D-NetPAD [24] MLF [6] MSA [9, 7] DenseNet PBS A-PBS

Clarkson
APCER 13.39 33.00 18.66 5.78 - - 10.64 8.97 6.16
BPCER 0.81 0.00 0.24 0.94 - - 0.00 0.00 0.81
HTER 7.10 16.50 9.45 3.36 - - 5.32 4.48 3.48

Notre Dame
APCER 7.78 18.05 4.61 10.38 2.71 12.28 16.00 8.89 7.88
BPCER 0.28 0.94 1.94 3.32 1.89 0.17 0.28 1.06 0.00
HTER 4.03 9.50 3.28 6.81 2.31 6.23 8.14 4.97 3.94

IIITD-WVU
APCER 29.40 0.34 12.32 36.41 5.39 2.31 2.88 5.76 8.86
BPCER 3.99 36.89 17.52 10.12 24.79 19.94 17.95 8.26 4.13
HTER 16.70 18.62 14.92 23.27 15.09 11.13 10.41 7.01 6.50

Table 2. Iris PAD performance of our proposed methods and existing SoTA algorithms on LivDet-Iris 2017 databases in terms of APCER
(%), BPCER (%) and HTER (%) which determined by a threshold of 0.5. The Winner in first column refers to the winner of each
competition database. Bold numbers indicate the first two lowest HTERs.

Database TDR (%) @ 0.2% FDR
D-NetPAD DenseNet PBS A-PBS

Clarkson 92.05 92.89 94.02 92.35

Notre Dame K 100 99.68 99.78 99.78
U 66.55 58.33 76.89 90.00

IIITD-WVU 29.30 58.97 69.32 72.00

Table 3. Iris PAD performance reported in terms of TDR (%) at
0.2% FDR on the LivDet-Iris 2017 databases. K indicates known
test subset and U is unknown subset. The highest TDR is in bold.

A-PBS method achieved significantly improved results.In
general, the cross-database scenario is still a challenging
problem since many D-EER values are above 20% (Tab. 4).

Figure 2. Score distribution of bona fide (green) and PAs (blue)
on the IIITD-WVU test set. The histograms from left to right are
produced by DenseNet, PBS, and A-PBS, respectively. The larger
separability (measured by Fisher Discriminant Ratio (FDR)) and
maller overlap indicate higher classification performance.

4.4. Results on NDCLD-2013/2015 Database

Tab. 5 compares the iris PAD performance of our models
with five SoTA methods on NDCLD2015 and two differ-
ent subsets in the NDCLD-2013 database. It can be seen
from Tab. 5 that our A-PBS model performs the best on all
databases, revealing the excellent effectiveness of a com-
bination of PBS and attention module on textured contact
lens attacks. In addition to comparison with SoTAs, we
also report the TDR (%) at 0.2% FDR in Tab. 6. Despite all
three models produce similarly good results, A-PBS is still
slightly better than DenseNet and PBS. The near-perfect re-
sults on NDCLD-2013/-2015 databases hint at the obsoles-
cence and limitations of the current iris PAD databases and
call for the need for more diversity in iris PAD data.

4.5. Results on IIITD-CLI Database

Most of the existing works reported the results us-
ing CCR metric on IIITD-CLI database [30, 20], we also
strictly follow its experimental protocol and the experimen-
tal results are compared in Tab.7. In addition, the TDR at
0.2% FDR is reported in Tab.6 . The experiments are per-
formed on Cognet and Vista sensor subsets, respectively.
As shown in Tab. 5, our models outperform all hand-crafted
and CNN-based methods by a large margin (99.79% on
Cognet subset and 100% on Vista subset). The near-perfect
classification performance achieved by DenseNet, PBS, and
A-PBS reveals that despite the improvements of deep learn-
ing models, large-scale iris PAD databases are urgently
needed to be collected for future studies.

4.6. Visualization and Analysis

Figure 3. Score-CAM visualizations for bona fide and attack sam-
ples in the IIITD-WVU test set. The darker the color of the region,
the higher the attention on this area. The column from left to right
refers to the raw samples, maps produced by DenseNet, PBS, and
A-PBS model, respectively. The first row is the bona fide samples
and the left rows are textured contact lens and printouts attacks.

PBS is expected to learn more discriminative features by
supervising each pixel/patch in comparison with binary su-
pervised DenseNet. Subsequently, the A-PBS model, an ex-
tended model of PBS, is hypothesized to automatically lo-
cate the important regions that carry the features most use-
ful for making an accurate iris PAD decision. To further
verify these assumptions, Score-Weighted Class Activation
Mapping (Score-CAM) [26] is used to generate the visual-



Trained Dataset Notre Dame Clarkson IIITD-WVU
Tested Dataset Clarkson IIITD-WVU Notre Dame IIITD-WVU Notre Dame Clarkson

Metric EER HTER EER HTER EER HTER EER HTER EER HTER EER HTER
DenseNet 30.43 32.01 7.84 8.81 22.33 31.11 26.78 42.40 18.33 19.78 22.64 46.21

PBS 44.42 45.31 18.37 17.49 28.61 32.42 25.78 42.48 12.39 16.86 37.24 47.17
A-PBS 20.55 22.46 7.11 9.49 21.33 23.08 24.47 34.17 15.06 27.61 21.63 21.99

Table 4. Iris PAD performance measured under cross-database scenarios and reported in terms of EER (%) and HTER (%). HTER is
determined by a threshold of 0.5. The lowest error rate is in bold.

Database Metric Presentation Attack Detection Algorithm (%)
LBP[12] WLBP [33] DESIST [21] MHVF [29] MSA [9, 7] DenseNet PBS A-PBS

NDCLD15 [17]
ACPER 6.15 50.58 29.81 1.92 0.18 1.58 1.09 0.08
BPCER 38.70 4.41 9.22 0.39 0.00 0.14 0.00 0.06
HTER 22.43 27.50 19.52 1.16 0.09 0.86 0.54 0.07

NDCLD13 (LG4000) [18]
APCER 0.00 2.00 0.50 0.00 0.00 0.20 0.00 0.00
BPCER 0.38 1.00 0.50 0.00 0.00 0.28 0.03 0.00
HTER 0.19 1.50 0.50 0.00 0.00 0.24 0.02 0.00

NDCLD13 (AD100) [18]
APCER 0.00 9.00 2.00 1.00 1.00 0.00 0.00 0.00
BPCER 11.50 14.00 1.50 0.00 0.00 0.00 0.00 0.00
HTER 5.75 11.50 1.75 0.50 0.50 0.00 0.00 0.00

Table 5. Iris PAD performance of our proposed methods and existing SoTAs on NDCLD-2013/-2015 databases with a threshold of 0.5.

Database TDR (%) @ 0.2% FDR
DenseNet PBS A-PBS

NDCLD15 99.45 99.84 99.96
NDCLD13 (LG4000) 99.75 100 100
NDCLD13 (AD100) 100 100 100
IIITD-CLI (Cognet) 99.02 99.59 99.57
IIITD-CLI (Vista) 100 100 100

Table 6. Iris PAD performance reported in terms of TDR (%) at
0.2% FDR on NDCLD-2013/-2015databases.

PAD Algorithms Cogent Vista
Textural Features [27] 55.53 87.06

WLBP [33] 65.40 66.91
LBP+SVM [12] 77.46 76.01

LBP+PHOG+SVM [1] 75.80 74.45
mLBP [30] 80.87 93.91

ResNet18 [13] 85.15 80.97
VGG [25] 90.40 94.82

MVANet [11] 94.90 95.11
DenseNet 99.37 100

PBS 99.62 100
A-PBS 99.70 100

Table 7. Iris PAD performance in terms of CCR (%) on IIITD-CLI.

izations for randomly chosen bona fide and attack iris im-
ages (these images belong to the same identity) in the IIIT-
WVU test set. As illustrated in Fig. 3, it is clear that PBS
and A-PBS models pay more attention to the iris region,
while the DenseNet model seems to lose some information.
By observing the heatmaps produced by PBS, it is noticed
that the attention appears to cover almost the whole iris and
pupil area. This is consistent with our assumption and ex-
pectation for PBS. Furthermore, it is clear in Fig. 3 that the
use of the spatial attention module has enabled the model
to shift more focus to the circular iris. To be specific, the
attention in the corners and boundaries of the image, even
including the pupil is slightly decreased.

5. Conclusion

In this work, we propose a novel attention-based deep
pixel-wise binary supervision (A-PBS) method for iris
PAD. The proposed method aimed at 1) capture the fine-
grained pixel/patch-level cues with the help of PBS, 2) find
regions that the most contribute to an accurate PAD decision
automatically by the attention mechanism. Extensive exper-
iments are performed on LivDet-Iris 2017 and other three
publicly available databases to verify the effectiveness and
robustness of proposed A-PBS methods. The A-PBS model
outperforms SoTA methods in most experimental cases in-
cluding scenarios with unknown attacks, sensors, databases.
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