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Abstract

Evaluating the risk level of adversarial images is essen-
tial for safely deploying face authentication models in the
real world. Popular approaches for physical-world attacks,
such as print or replay attacks, suffer from some limitations,
like including physical and geometrical artifacts. Recently
adversarial attacks have gained attraction, which try to dig-
itally deceive the learning strategy of a recognition system
using slight modifications to the captured image. While
most previous research assumes that the adversarial image
could be digitally fed into the authentication systems, this is
not always the case for systems deployed in the real world.
This paper demonstrates the vulnerability of face authenti-
cation systems to adversarial images in physical world sce-
narios. We propose AdvGen, an automated Generative Ad-
versarial Network, to simulate print and replay attacks and
generate adversarial images that can fool state-of-the-art
PADs in a physical domain attack setting. Using this attack
strategy, the attack success rate goes up to 82.01%. We test
AdvGen extensively on four datasets and ten state-of-the-art
PADs. We also demonstrate the effectiveness of our attack
by conducting experiments in a realistic, physical environ-
ment.

1. Introduction

Face recognition systems are extensively used in real-
time applications, such as surveillance systems, forensics,
automated border control, user authentication [43], pay-
ment processing, and security control systems. To prevent
unauthorized access and attacks, Presentation Attack Detec-
tors (PADs) are integrated into these systems (Figure 3) to
detect and reject presentation attacks, such as print attacks
and replay attacks. As presentation attacks try to bypass the
authentication system, understanding and correcting the po-
tential pitfalls of a PAD module is as essential as designing
high-accuracy recognition algorithms.

Most of the current state-of-the-art approaches use auxil-

Figure 1. Example live images and corresponding adversarial im-
ages generated by AdvGen. First Column: live images from pre-
sentation attack datasets, second column: the corresponding ad-
versarial images generated by AdvGen, third column: the pre-
dicted class along with the confidence score and recognized iden-
tity for a generated image(presenting an adversarial image gener-
ated by our model to the face recognition, fourth column: replay
attack on a mobile screen, fifth column: replay attack on a laptop
screen. The proposed method generates visually indistinguishable
adversarial images from the input that is robust to distortions in-
troduced after physical transformations.

iary information [55, 3, 53] to improve the performance and
generalizability of the presentation attack detectors. Pre-
sentation and adversarial attacks on face recognition sys-
tems are still a significant concern. In a presentation at-
tack, attacks are created using printed photographs, re-
played videos, wearing a mask or makeup, etc. For gener-
ating presentation attacks, the hacker must actively partici-
pate by wearing a mask or replaying a photograph/video of
the genuine individual, which may be conspicuous in sce-
narios involving human operators. Adversarial attacks, on
the other hand, do not require active participation during
verification.

The use of deep learning has significantly improved the
accuracy of Presentation Attack Detectors. Adversarial at-
tacks [40, 19, 33, 13], however, exploit the vulnerability of
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Figure 2. Experimental pipelines to evaluate the performance of
the adversarial attacks. (a) shows the pipeline used when we attack
a PAD in the digital domain, and (b) shows our testing pipeline in
a physical domain. The digital image has to undergo two transfor-
mations and has to be effective after distortions are introduced in
these processes.

these deep learning models and have recently emerged as a
serious threat to face recognition systems. Adversarial ex-
amples are generated by adding perturbations to the input
images, which are usually imperceptible to humans but can
cause the model to make incorrect predictions. The major-
ity of research on adversarial attacks [35, 40, 19] presumes
that the attacker can directly input the digitally generated
adversarial example into the machine learning model. Such
attacks are typically referred to as digital domain attacks.
However, this assumption does not hold in the case of anti-
spoofing, where the system is designed to work in the phys-
ical world.

Adversarial attacks in the physical domain have gained
significant attention in recent times due to their practical-
ity and complexity. To attack the face anti-spoofing system
in a physical world setting, the spoof image created by the
attacker must be printed or displayed in the real world and
then captured by the system’s camera. This process of con-
verting digital images to physical and then back to digital is
called image rebroadcast [1]. The changes made to the im-
age during this rebroadcast process help the anti-spoofing
detector to recognize that the digital image is fake by look-
ing exactly for the spoofing artifacts introduced during the
rebroadcast process and prevent unauthorized access to the
system. As a new spoofing pattern may be introduced after
the attack, adversarial attacks need to act in a pre-emptive
manner. Therefore, it is challenging to create an adversarial
example that can effectively attack an anti-spoofing system
in a physical domain setting. We show the difference be-
tween a physical and digital domain attack in Figure 2.

After identifying the challenges associated with phys-
ical attacks, we present AdvGen , an automated method
to create adversarial face images. AdvGen uses a Condi-
tional Generative Adversarial Network to simulate presen-
tation attacks and generate adversarial images that can fool

Figure 3. A typical Face authentication pipeline. Face PAD acts as
a gatekeeper to face recognition module.

state-of-the-art PADs in a physical domain attack setting.
Our proposed method, AdvGen , generates adversarial face
images that mimic the process of physical presentation at-
tacks, such as print and replay attacks. When a live image
is passed through AdvGen , it simulates the printing and
displaying process to create an adversarial image that re-
tains the characteristics of a printed or displayed image but
is classified as real when passed through a spoof classifier.
Moreover, AdvGen ensures that the identity of the original
face is preserved. The objective of AdvGen is to incorpo-
rate the properties of physical adversarial attacks into dig-
ital adversarial attacks. The contributions of the paper can
be summarized as follows:

1. We design an identity preservation regularization term
to enhance the identity preserving capability of a cy-
cleGAN and name it IdGAN. IdGAN, given a real im-
age, can generate a printed or replayed spoof version
of it by preserving identity.

2. We propose AdvGen , a generative adversarial network
trained to generate perturbations that are robust to dis-
tortions introduced to an image during physical trans-
formations.

3. A systematic mathematical formulation for the prob-
lem of generation of adversarial physical perturbation
and modeling it as the learning objective of a deep gen-
erative model.

4. We show that AdvGen is a more effective use of gen-
erating robust physical adversarial perturbations by
comparing it against four datasets: SiW [57], MSU-
MFSD [48], Replay-Attack [9] and OULU-NPU [5].
(Figure 1).

2. Related Works
Adversarial Attacks Many adversarial attack algorithms
have indicated that deep learning models are broadly vul-
nerable to adversarial samples. For white-box attacks,
where the attacker has complete knowledge of the tar-
get model, including its architecture and parameters, the
gradient-based approaches [19, 8, 31, 13, 15, 6, 44] can be
conducted by adding adversarial perturbations to the pix-
els of the original images, where all the perturbations are
derived from the back-propagation gradients regarding the
adversarial constraints. For black-box attacks, where the at-
tacker has limited knowledge of the target model and must



make queries to the model to infer its behavior in order to
craft an effective attack, one interesting direction is to uti-
lize a substitute/surrogate model to perform transfer-based
attacks. Recent works [59, 50, 14] claim that input diversity
can further boost attack transferability. In the image classifi-
cation domain, semi-whitebox approaches based on Gener-
ative Adversarial Networks (GANs) rely on softmax proba-
bilities [49, 45, 39, 52]. Compared to digital attacks, physi-
cal attacks require much larger perturbation strengths to en-
hance the adversary’s resilience to various physical condi-
tions such as lightness and object deformation [2, 51]. Min-
max optimization problem and transferability phenomenon
are being explored for adversarial training [6, 41]. These
explorations focus mostly on the region around natural ex-
amples where the loss is (close to) linear.

Generative Adversarial Networks (GANs) Generative
Adversarial Networks [18] are now being used in a wide
variety of applications. These include image synthesis
applications [36, 12], style transfer [42, 23, 17], image-
to-image translation [20, 60], and representation learning
[36, 37, 32]. Previous studies with GAN have shown that
it is possible to generate high-resolution images up to 1024
× 1024 resolution in various domains such as the human
face, vehicles, and animals [25, 26]. In [19] proposes a Fast
Gradient Sign Method (FGSM) to generate adversarial ex-
amples. It computes the gradient of the loss function with
respect to pixels and moves a single step based on the sign
of the gradient. While this method is fast, using only a sin-
gle direction based on the linear approximation of the loss
function often leads to sub-optimal results.

Adversarial Attacks on Face Recognition Current adver-
sarial face synthesis methods include works by AdvFaces
[10], which learns to perturb the salient regions of the face,
unlike FGSM [19] and PGD [31], which perturbs every
pixel in the image and image is generated by gradient-based
methods. LatentHSJA [34] manipulates the latent vectors
for fooling the classification model, and [56] which crafts
replay-attack only to fool CNN-based face recognition sys-
tem. Methods that rely on white-box manipulations of face
recognition models are discussed first here. Bose et al. craft
adversarial examples by solving constrained optimization
such that a face detector cannot detect a face [4]. The ad-
versarial eyeglasses can also be synthesized via generative
networks [38]. But since these works are based on a white-
box approach, it seems impractical in real-world scenarios.
Dong et al. [15] proposed an evolutionary optimization
method for generating adversarial faces in black-box set-
tings. This method requires at least 1, 000 queries to the
target face recognition system before a realistic adversarial
face can be synthesized. Song et al. [52] employed a con-
ditional variation autoencoder GAN for crafting adversarial
face images in a semi-whitebox setting. Here, they only
focused on impersonation attacks and require at least five
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Figure 4. Synthesizing adversarial face images using AdvGen con-
sists of two stages: Stage 1: Training of IdGAN which, given a
live image, learns to generate geometrically diverse spoof images.
These generated images produced by IdGAN simulate printing and
replay. Identity loss is introduced as an identity regularizer to pre-
serve the subject’s identity in the generated images. Stage 2: We
apply de-spoofing and EOT on the generated spoof images to get
the physical and geometric noises. These are fed into AdvGen’s
generator to generate the adversarial perturbation. The generated
image from AdvGen is robust to physical as well as geometric dis-
tortions.

images of the target subject for training and inference.

3. Methodology
AdvGen consists of three components i) a simulator net-

work that emulates printing and replaying input images, ii)
a decomposition network that can decompose spoof faces
into noise signal and live faces, and iii) a generator network
supervised using a formulated loss to generate physical ad-
versarial perturbations.

We formulate the problem of generating a robust physi-
cal adversarial perturbation as an optimization objective in
Section 3.1. Then we describe the architecture of the sim-
ulator network in Section 3.2. In Section 3.3, we elaborate
on modeling the formulated optimization objective using a
Generative Neural network.

3.1. Problem Formulation

First, we formulate the creation of an adversarial image
in the digital domain, and then we modify it to the physical



domain.
Let I denote an input image and ltrue its corresponding

label. Let ltarget ̸= ltrue be the target label of the attack.
Let f (·) denote the output of the target neural network. The
process of generating an adversarial perturbation δ involves
solving the following optimization problem:

argmin
δ

L(f(I + δ), ltarget),

subject to ∥ δ ∥p< ϵ
(1)

where L(·) is the neural network’s loss function, and ∥ · ∥p
denotes the Lp-norm. To solve the above-constrained op-
timization problem efficiently, we reformulate it in the
Lagrangian-relaxed form:

argmin
δ

L(f(I + δ), ltarget) + λ ∥ δ ∥p (2)

where λ is a hyper-parameter that controls the regulariza-
tion of the distortion ∥ δ ∥p.

In a physical domain setting, we denote a spoof image
as Is. The spoof detection network is not fed directly with
Iadv = Is + δ∗ (δ∗ is the optimal digital perturbation ob-
tained by using Eq. 2 with its physically recaptured version
Ir = P(Iadv) = P(Is + δ∗) where we use P(·) to denote
the physical broadcasting and recapture procedure. P(·) is
capable of destroying the effect of ρ∗.

In order to ensure that the perturbation remains effective
even after the image has been rebroadcasted, it is important
to consider the possible transformations that the image may
undergo during this process. This will allow us to create
a robust perturbation that can withstand these transforma-
tions. T denotes the set of all transformations in the phys-
ical process. Perturbation ρ can be obtained by optimizing
the average loss over T ,

argmin
ρ

Et∼T [J (fs(t(I) + ρ), ltarget)] + λ ∥ ρ ∥p (3)

Here fs denotes the output of a face presentation attack de-
tector for a transformed image I after applying a broadcast-
ing transform t selected from a set of physical transforms T
and then applying a perturbation ρ obtained using Eq. 3.

3.2. Physical Simulator Network

We train IdGAN, an architecture derived from Cycle-
GAN, to learn the simulation from real to spoof. This net-
work learns to add physical and geometrical perturbations
to an input image. It has two benefits: i) the simulated im-
age will be useful in the next stage of attack generation, ii)
This network is trained on data exposed to physical aug-
mentations(rotation, random crop, resize, etc.), making the
network capable of generating spoof images with physical
variations.
Generators: The network consists of two generators Grs

Figure 5. Loss terms used to train IdGAN. along with conventional
Ladv and Lcycle, we introduce a Lid to preserve identity in the
generated image, which is a crucial step for the stage 2.

and Gsr. Generators are based on Convolution based
encoder-decoder architectures and generate a feature repre-
sentation of the input image Ir, and the decoder generates
the corresponding presentation attack variants of the input
Ir. The discriminators Dr and Ds distinguish between the
captured examples and the generated samples by the gener-
ators. The network is trained using three types of losses:

1. Identity Regularizer: The generated image should
preserve the identity of the input. This would be a criti-
cal component in the adversarial attack generation. We
introduce an identity-preserving regularization term to
CycleGAN. The network, at every iteration, tries to
preserve identity by minimizing the cosine similarity
between the face embeddings of the generated image
and the input image. The face embeddings are gen-
erated using a pretrained ArcFace [11]. The identity
regularizer is defined as,

Lid(Grs,Gsr, Ir, Is) = Ex[1−F [Gsr(Grs(Ir)), Ir]]
+ Ex[1−F [Grs(Gsr(Is)), Is]]

(4)

2. Adversarial Loss: Adversarial loss creates a 2-player
adversary between the generator and discriminator,
leading to better training through competition. An
MSE-based adversarial loss is used and defined as,

Ladv(Grs,Ds,Ir,Dr) = EIs∼pdata(Is)log[Ds(Is)]+
EIr∼pdata(Ir)log[1−Ds(Grs(Ir))]

Ladv(Gsr,Dr,Is,Ds) = EIr∼pdata(Ir)log[Dr(Ir)]+
EIs∼pdata(Is)log[1−Dr(Gsr(Is))]

Ladv = Ladv(Grs,Ds, Ir,Dr)+

Ladv(Gsr,Dr, Is,Ds)

(5)

3. Cycle Consistency Loss: Adversarial loss leaves the
learning unconstrained. Hence the Cycle Consistency



Loss is added as a regularization term to the genera-
tor’s objectives shown in Figure 5. This loss is defined
as,

Lcyc(Grs, Ir) = EIr∼pdata(Ir)[∥Gsr(Grs(Ir))− Ir∥1]
Lcyc(Gsr, Is) = EIs∼pdata(Is)[∥Grs(Gsr(Is))− Is∥1]
Lcycle = Lcyc(Grs, Ir) + Lcyc(Gsr, Is)

(6)

Here ∥·∥1 denotes L1 norm

Finally, IdGAN is trained using the following objective,

L = Ladv + λcycle × Lcycle + λid × Lid (7)

3.3. Modelling the Physical Transformation

A real image I undergoes physical transformations
such as color distortion and display, printing, and imaging
artifacts to become a spoof image [24]. In addition, the
presenter may wish to introduce geometric distortions like
rotation, capture distance, folding the presentation medium,
etc. These distortions need to be carefully modeled. To
generate the perturbation, we use a generative neural
network to model the optimization problem. AdvGen is
optimized over the formulated loss. Figure 4 outlines the
proposed architecture. AdvGen consists of a generator G, a
discriminator D, a spoof noise synthesiser S and a geomet-
ric distortion sampler F . Together these modules model
every necessary component in the formulated objective.

Generator The generator G of AdvGen takes in an
input image x ∈ X and generates a perturbation G(x). In
order to maintain the original visual quality of the input
image and avoid generating a completely new face image,
the generator produces an additive perturbation that is
applied to the input image as x + G(x). The generator’s
loss has the following components:

Physical Perturbation Hinge Loss: To generate per-
turbations that include physical distortions, we use a
pretrained noise decomposition network [24]. It is in
the synthesized spoof image from AdvGen , and returns
decomposed physical noise and live faces. This synthesized
noise serves as the perturbation to be added to the real
image. This noise is an unbounded physical noise. Hence
we introduce this noise to the generation pipeline using a
soft hinge loss on the L2 norm bounding the amount of
physical noise introduced by [8, 29] formulated as:

Lphy = Ex[max(ϵ1, ∥Phy(x)∥2)] (8)

ϵ1 is a user-specific bound on the added perturbation and
Phy(·) denotes physical noise from the decomposition

network.

Geometric Distortion Hinge Loss: Presentation of a
physical medium is always subject to geometric distortions
such as rotation, zooming, folding, etc., due to human er-
rors. To make the attack robust to geometric distortions, Ad-
vGen is trained with geometric augmentations to generate
spoof images with diverse geometric variations. To model
these distortions, Expectation over Transforms(EOT) [2] is
applied over the generated spoof images. Modeling these
transformations diversifies the set of physical transforms
modeled by the generator. The generated geometric per-
turbation is controlled using a geometric hinge loss

Lgeom = Ex[max(ϵ2, ∥Geom∥2)] (9)

ϵ2 is a user-specific bound on the added perturbation and
Geom(·) denotes geometric perturbation obtained from
EOT.

Identity Regularizer Loss: The perturbation must pre-
serve the identity of the target. We introduce an identity reg-
ularizer to the generator loss, which maximizes the cosine
similarity between the identity embeddings obtained from a
pretrained ArcFace [11] matcher. We define it as,

Lidentity = Ex[1−F(x, x+ G(x))] (10)

Discriminator: We introduce a discriminator D which dis-
tinguishes between the generated samples x+G(x) and the
corresponding real sample x. This Discriminator is based
on PatchGAN and projects the input to a patch-based ma-
trix where each value in the matrix corresponds to the score
of the particular patch’s discriminative score. trained using
the adversarial loss:

LGAN = Ex[logD(x)] + Ex[log(1−D(x+ G(x))] (11)

AdvGen is trained to generate identity-preserving physi-
cal perturbation in an end-to-end on the following objective:

L = λphy × Lphy + λgeom × Lgeom+

λidentity × Lidentity + λGAN × LGAN

(12)

4. Experiments
In this section, we first introduce the datasets used and

the experimental setup. Then we evaluate the performance
of our framework in different settings and explain the eval-
uation metrics:

4.1. Datasets and Baselines

We train AdvGen on OULU-NPU [5] and test on
SiW [57], MSU-MFSD [48], Replay-Attack [9] and



Attack Success Rate on OULU-NPU(%) and SSIM after attack
BIM [28] EOT [2] RP2 [16] D2P [21] Ours

CDCN [55] 41.19 55.82 63.12 68.37 81.02
CDCNpp [58] 37.47 51.61 59.39 64.26 78.22
C-CDN [54] 38.38 51.58 60.83 65.49 79.34
DC-CDN [54] 39.95 53.83 61.36 66.03 80.55
SSAN-M [47] 40.06 52.02 61.40 65.27 80.42
SSAN-R [47] 34.54 49.83 57.03 61.79 75.15
DBMNet [22] 38.78 52.69 59.89 62.74 79.63
STDN [30] 40.92 53.93 61.67 63.29 80.98
Meta-FAS [7] 35.38 47.67 57.25 59.53 76.19
De-Spoofing [24] 46.44 58.43 65.41 68.66 84.67
SSIM in [0,1] 0.64 0.38 00.32 0.45 0.98

Table 1. Comparison of attack success rates on different models and ours using four different datasets.

OULU-NPU [5]1 datasets. OULU-NPU [5] face presenta-
tion attack detection database contains 4,950 real access and
attack videos belonging to 55 different subjects. SiW [57]
contains 4,478 15s long videos for 165 subjects. For each
subject, there are eight live and up to 20 spoof videos.
MSU-MFSD [48] contains 280 video recordings of gen-
uine and attack faces for 35 individuals. Replay-Attack [9]
consists of 1300 video clips of photo and video attacks for
50 clients under different lighting conditions.

We compare our proposed method with four state-of-the-
art physical attack generation methods BIM [28], EOT [2],
RP2 [16], D2P [21]. To compare our method’s effective-
ness in the physical vs. digital domain, we implement four
standard digital adversarial attacks FGSM [19], PGD [31],
BIM [28], and Carlini & Wagner [8]. We use TorchAt-
tack’s [27] implementations of the above methods by per-
turbing the necessary parameters to generate effective at-
tacks. To establish the effectiveness and generalizability of
our proposed attack across different spoof detection models,
we compare the ASR of our generated images from OULU-
NPU across ten state-of-the-art face anti-spoofing models in
Table 1.

4.2. Evaluation Metrics

By comparing our network against state-of-the-art base-
lines, we quantify the adversarial attacks’ effectiveness via
i) attack success rate (ASR) and ii) structural similarity
(SSIM) [46].

The attack success rate (ASR) is computed as

ASR =
No. of attacks classified as real

Total number of attacks
× 100% (13)

1We train on training and validations sets of Protocol 1 of OULU-NPU
and test on the corresponding test set

To quantify the effectiveness of the generated adversar-
ial images with the input image, we compute the Struc-
tural Similarity Index (SSIM) metric calculated between
the adversarial image and the real image as proposed in
research[46]:

4.3. Experimental Setup

All experiments are conducted on print and replay attack
scenarios. We use an HP Smart Tank 580 printer to print
all the images. For display, we use two mediums, MacBook
Pro (Intel Iris Plus Graphics 640 1536 MB) and Redmi K20
pro (Super AMOLED, HDR10 display). All images are
captured from a distance ranging from 20cm to 40cm.

To validate the effectiveness of our developed attack
method, we deploy four state-of-the-art face anti-spoofing
methods to a streamlit app. The app takes a real-time feed
and returns the predicted identity of the person along with
spoof/live prediction along with its confidence.

We create a test set of 300 images per dataset comprising
different identities. From OULU-NPU, we sample 20 iden-
tities; from SiW, we sample 50 identities; from REPLAY-
ATTACK, we sample 15 identities; from MSU-MFSD, we
sample 15 identities. The sampled images are manually
handpicked to ensure that maximum diversity is covered in
terms of variations. To validate results for EOT, we man-
ually perform physical distortions like rotation on the print
and replay displays, change of brightness in the replay at-
tacks, and folding the presentation medium in print attacks.

4.4. Experimental Settings

We use ADAM optimizers with β1 = 0.5 and β2 = 0.9.
Each mini-batch consists of 1 face image. We train Adv-
Gen for 100 epochs with a fixed learning rate of 0.0002.



Figure 6. Experimental pipelines to evaluate the performance of
the attacks. (a) shows the pipeline used when we attack a PAD in
the digital domain, and (b) shows our testing pipeline in a physical
world setting.

We also use identity loss with parameters λi = 1.0. We train
two separate models for print and video-replay attacks. A
unified model for both attacks is also trained with the same
hyperparameters. We iteratively perform FGSM over Ad-
vGen with ϵ = 0.1. All experiments are conducted using
PyTorch.

5. Results and Analysis
5.1. Effectiveness in Physical Domain

Attack Success Rate (%)
Digital Domain Physical Domain

BIM [28] 98.04 41.22
FGSM [19] 75.32 23.13

GA 79.56 26.92
IGSA 100.00 34.22
IGA 99.64 31.48

PGD [31] 98.63 36.42
AdvGen 100 81.02

Table 2. Performance of state-of-the-art adversarial attack methods
in the digital and physical domain.

To evaluate the effectiveness of the proposed method in
the physical domain, we perform a digital attack using con-
ventional attack strategies and our method on the test set
of 300 images curated from OULU-NPU. Then the adver-
sarial images are printed and presented physically to a pre-
sentation attack detector. The performance of all attacks is
optimal in the digital domain but significantly drops when

transferred to the physical domain, as demonstrated in Ta-
ble 2. The ASR of the standard methods is less than 50 in
the physical domain, while our method clearly outperforms
these values. These empirical results clearly demonstrate
that including physical spoofing noise makes the attack ro-
bust to transformations incurred through physical processes.

5.2. Comparison Studies

In Table 1, we present the findings from our comparative
studies against state-of-the-art physical adversarial attack
methods. Compared to the state-of-the-art methods, our
method is significantly better at generating robust attacks
in terms of achieved ASR. In terms of structural similar-
ity, our method stands out in preserving visual information
in the generated image and outperforms the other methods.
Our method learns to generate imperceptible noise signals
at locations on the face that are not significant for identity
recognition. BIM [28] iteratively generates perturbations on
the input image, hence preserving visual features to some
extent, but the ASR on the generated images is low because
of its inability to model physical perturbations. Attack im-
ages generated using EOT, RP2, and D2P have higher ASR
by virtue of their design to address generic physical dis-
tortions in their noise modeling. They are able to generate
physically robust attacks as compared to BIM, but these are
not specifically physical perturbations introduced on a face
image due to physical transformations like printing or dis-
play on a screen. Our method models this noise and hence
is better at modeling.

5.3. Effectiveness with Geometric Distortions

In physical presentations, geometric distortions like cap-
turing viewpoint, rotation, scaling, and perspective changes
of the display medium and folding of the printed medium
are unavoidable. Being trained on distortions sampled by
Expectation Over Transformation(EOT) [2], our method is
robust to geometric distortions like viewpoint changes, ro-
tation, and brightness. Figure 8 demonstrates the effective-
ness of our methods through various geometric distortions.

5.4. Ablation Study

AdvGen is trained using four loss terms, each contribut-
ing to one component to be added to the generated pertur-
bation. To analyze the importance of each module, we train
four variants of AdvGen for comparison by dropping Lphy ,
Lgeom, Lidentity and LGAN and show results in Figure 7.
Without a discriminator, i.e., with LGAN , the visual qual-
ity of generated images is affected, and undesirable artifacts
are introduced. Without a physical perturbation hinge Lphy ,
the generated perturbation is not robust enough to physi-
cal transformation and gets classified as a ”spoof.” Pertur-
bations generated without being regulated by any geomet-
ric distortion Lgeom fail even when even a small geomet-



(a) Input Image (b) without
LGAN

(c) without
Lphy

(d) without
Lgeom

(e) without
Lidentity

(f) with all

Figure 7. Variants of AdvGen trained without GAN loss, physical perturbation hinge loss, geometric distortion hinge loss, and identity
loss, respectively.

(a) Rotation (b) View Point (c) Physical Distortion (d) Brightness

Figure 8. Effectiveness of AdvGen after applying geometric dis-
tortions. Adversarial image is classified as real (a) after rotation,
(b) changing the viewpoint of the camera, (c) applying physical
distortions, like folding the image, and (d) changing the bright-
ness level of the setup.

(c) Adversarial Image(b) Perturbation(a) Input Image

Figure 9. Visualization of the generated perturbation. (a) shows
the input image, which can be live or spoof, (b) the locations of
the input face resulting in perturbation we get from AdvGen , and
(c) shows the final adversarial image.

ric distortion is performed. Without an identity regularizer,
though, the generated perturbation is robust for a presen-
tation attack generator but fails to pass the identity check.
The generated perturbation by such a generator perturbs the
identity. We conclude that to generate a perceptually realis-
tic and robust perturbation, every component is necessary.

6. Future Works
Focusing on the print and reply attack scenario, we pro-

posed AdvGen , which generates adversarial images to fool
a face PAD. Below, we list a few points that we would like
to pursue in the future:

1. Extending our attack to a scenario in which the attack
is carried out by showing a 3D and paper mask, make-

up, mannequin, etc., of the adversarial example to the
authentication system.

2. From the defender’s side, future research has to be
performed to recover robustness against anti-spoofing
and design new CNN-based face authentication sys-
tems capable of working in the presence of adversarial
spoofing attacks.

3. Having demonstrated the threats posed by replay and
print attacks exploiting adversarial examples, we plan
to propose a defense for such attacks. We will create a
system that would be capable of working in the pres-
ence of such adversarial print and replay images.

7. Conclusion
In this paper, we have created a physical attack on a

CNN-based face authentication system that has an anti-
spoofing module. We demonstrate that attacking an anti-
spoofing face authentication system in the physical domain
is more challenging and comes with additional difficul-
ties than attacking systems in other application scenarios.
Our new framework, called AdvGen , can produce adver-
sarial images that mimic a printing and replay procedure.
Through experimentation, we have demonstrated that Adv-
Gen can generate synthetic adversarial prints that are capa-
ble of bypassing the Presentation Attack Detectors (PADs)
and fooling a face recognition system, all while maintaining
the subject’s identity.
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