
Encoding robust representation for graph generation
Dongmian Zou

Institute for Mathematics and its Applications
University of Minnesota, Twin Cities

Minneapolis, USA
dzou@umn.edu

Gilad Lerman
School of Mathematics

University of Minnesota, Twin Cities
Minneapolis, USA
lerman@umn.edu

Abstract—Generative networks have made it possible to gen-
erate meaningful signals such as images and texts from simple
noise. Recently, generative methods based on GAN and VAE
were developed for graphs and graph signals. However, the
mathematical properties of these methods are unclear, and
training good generative models is difficult. This work proposes
a graph generation model that uses a recent adaptation of
Mallat’s scattering transform to graphs. The proposed model
is naturally composed of an encoder and a decoder. The encoder
is a Gaussianized graph scattering transform, which is robust
to signal and graph manipulation. The decoder is a simple
fully connected network that is adapted to specific tasks, such
as link prediction, signal generation on graphs and full graph
and signal generation. The training of our proposed system is
efficient since it is only applied to the decoder and the hardware
requirements are moderate. Numerical results demonstrate state-
of-the-art performance of the proposed system for both link
prediction and graph and signal generation.

I. INTRODUCTION

Generative neural networks have been successfully applied
to various tasks such as the generation of images and texts.
Their development is based on fruitful methods of deep
learning, such as convolutional and recurrent neural networks.
These and other methods of deep learning, which were initially
developed for problems in the Euclidean domain1, have been
successfully generalized to address supervised learning tasks
in the graph domain. In particular, a variety of graph convolu-
tional networks have been developed, including networks with
prescribed parameters [1], [2] and trained networks [3]–[6]. It
is natural to use these tools to build generative models in the
graph domain.

Most generative graph networks directly use standard graph
networks by following either of the following two generative
frameworks: the generative adversarial network (GAN) [7] and
the variational auto-encoder (VAE) [8]. In a GAN, a generator
and an auxiliary adversarial discriminator are trained together.
On the other hand, in VAE, an encoder and a decoder (or
generator) are both trained according to Bayesian models. Both
frameworks contain two components (generator and discrim-
inator or encoder and decoder), where each of them requires
training. For GAN, training two components corresponds to
a difficult min-max problem. On the other hand, training the
two components in VAE can be described as a relatively easier

This research has been supported by NSF award DMS-18-30418.
1We remark that the Euclidean and graph domains include scenarios whose

underlying datasets have Euclidean and graph structures, respectively.

non-convex minimization problem. However, it is a crude
approximation to the motivating variational inference formula-
tion. Given an encoding process with guaranteed mathematical
properties, one can focus on training only the decoder, which
in this case is the generator. In the Euclidean domain, [9]
uses the scattering transform as an encoder, which is robust to
deformations of input signals, and learn a generative model by
minimizing the l1-loss for reconstructing the training images.
We adopt a similar method, using a graph scattering transform
as an encoder for graph signals, which is robust to signal and
graph manipulations, and train neural networks corresponding
to respective tasks. Note that the graph scattering transform
can be either carried out in the spectral domain [1] or in the
graph domain [2]. More specifically, spectral-domain wavelets
[10] are one-dimensional wavelets applied to the eigenvalues
of the graph Laplacian, whereas graph-domain wavelets, or
diffusion wavelets [11], are multi-scale functions on the ver-
tices of the graph that use dyadic powers of the diffusion op-
erator. The advantage of the former graph scattering transform
is its guaranteed robustness to signal manipulation, which is
a consequence of its energy preservation [1]. We therefore
emphasize this transform here, but we also experiment with
the other transform. We also remark that the spectral-domain
wavelets of the former transform allow flexible choices of
wavelet functions. We note that a conventional generative
scattering network [9] is not as competitive as state-of-the-art
results based on GAN and VAE for image generation tasks.
This is probably due to the complexity of some Euclidean-
type datasets and their nontrivial high frequency components.
Nevertheless, graph-type datasets have a discrete nature, and
they often do not exhibit high frequency components. There-
fore, the graph scattering transform might be competitive and
efficient for specific generative tasks in the graph domain.

We consider three types of graph generation tasks:

• Link prediction: In this task, one is interested in predicting
whether two vertices from the same graph are connected.
The common input includes a graph with missing edges
and features of vertices. The goal is to decide whether an
edge exists between any pair of vertices. This can be viewed
as generating a graph from a latent representation of the
partially available graph.
A well-known application of this task is the prediction of
citations. Common citation datasets were collected by [12]

ar
X

iv
:1

80
9.

10
85

1v
2 

 [
cs

.L
G

] 
 1

5 
Ja

n 
20

19



and further pre-processed by [13]. These datasets of publi-
cations and citations contain features for each publication as
well as citation linkage, which are modeled by an undirected
graph. In the pre-processed data, one only partially knows
the citation linkage and the task is to recover the citations
for all pairs of publications.

• Signal generation on graphs: In this task, the graph is fixed
and the set of vertices and edges is known. The goal is
to generate signals on the given graph. Although we are
unaware of convincing data of this type, we believe that this
is a potentially useful task. Among the three tasks we review
here, it is most similar to generation tasks in Euclidean
domains. We can thus enforce some graph structure in
special Euclidean-type or grid-type datasets. Here we pursue
this idea with the Fashion-MNIST dataset of images of
clothing items [14]. We do not consider the domain of a
28 × 28 pixel image as Euclidean, but associate to it a
graph, where each pixel is connected by an edge with its
nearby neighbors. Each image is then a signal on this graph.
One then needs graph-based methods for generating these
signals.

• Graph and signal generation: In this task, one needs to
generate both the graph structure and the signals on the
graph. An interesting application is the design of chemical
molecules. A network learns from a given dataset, such as
QM9 [15], to generate both the atoms (signals on vertices)
and the bonds (edges) from a latent sample. This can be
used as a purely machine learning-based approach for the
design of new drugs [16].
Our proposed method is easy to implement. Furthermore,

the adjustment of the structure of the decoder to the three types
of tasks does not require a lot of effort. Unlike GAN or VAE,
the model in this paper only requires training the generator.
Meanwhile, there is flexibility in designing the graph wavelets
and in choosing the decoder structure. We believe it is a
highly adaptable method for various graph tasks and indeed
our numerical experiments demonstrate competitive results.

II. BACKGROUND

We overview previous relevant works as follows: §II-A
reviews generative scattering networks, §II-B reviews graph
convolutional networks, and §II-C reviews some recent graph
generative models.

A. Scattering networks for generative models

The generative scattering network [9] can be considered
as an encoder-decoder system in which one only needs to
train the decoder. The feature extraction part of the encoder
is a scattering transform [17], [18] with fixed parameters. It
provides multi-scale signal representation, which is Lipschitz
continuous with respect to small deformations. The next part
of the encoder aims to map the transformed signals into
samples of a Gaussian latent variable. We refer to this step as
Gaussianization. We later describe in §III two Gaussianization
methods.

Fig. 1: The structure of a generative scattering network.

The decoder D can be taken to be a multi-layer perceptron
(MLP) and is trained by minimizing the reconstruction loss.
Fig. 1 shows the structure of a generative scattering model. In
order to generate samples, initial samples are generated from
the latent Gaussian variable and then the decoder is applied
to them resulting in the final samples.

B. Graph convolutional networks

Convolution is a key contributor for the recent success of
deep learning. In the Euclidean domain, convolutional net-
works are helpful in learning multi-scale representations. The
same idea was introduced to graphs by exploiting the spectral
graph representation, that is, the spectral decomposition of the
graph weight matrix or graph Laplacian [3], [19]. A common
proposal for a graph convolution uses pointwise multiplication
of the graph Fourier-transformed signals, where the graph
Fourier transform uses the basis of the spectral decomposition
of the Graph Laplacian in place of the discrete Fourier basis.
One can apply nonlinear functions such as the ReLU for each
graph vertex. A variety of good approximations to the spectral
approach are able to speed up the spectral decomposition
process and maintain accuracy [4], [5].

A special type of graph convolutional network (GCN) is the
graph scattering network [1], which does not require training
and was proved to be approximately invariant to permutations
and stable to sufficiently small signal or graph manipulations.
A graph scattering network uses graph wavelets [10] defined
on the eigenspace of the graph Laplacian to construct multi-
layer models. Alternatively, [2] construct graph scattering
transforms using an earlier graph wavelet transform [11]. In
general, the graph wavelets of [10] are more flexible as one
can choose different kinds of wavelets on the spectral domain
according to different tasks. While the graph wavelets of [11]
are not flexible, they use the normalized graph Laplacian and
the corresponding diffusion map and metric, which might be
natural for particular applications.

C. Graph generative networks

Several recent papers address graph generation networks
with either a GAN or a VAE structure, where specific designs
are often needed for different applications.

Recent graph generative models with a GAN structure
include NetGAN [20], GraphGAN [21] and MolGAN [22].
NetGAN aims to generate graphs with properties, such as
max degree and triangle count, that are similar to training
samples. GraphGAN generates distribution of edges in order to
solve node classification and recommendation problems whose
tasks are very similar to that of the link prediction problem.



MolGAN is designed for molecule generation and generates
signals with respect to both vertices and edges.

Recent graph generative models with a VAE structure in-
clude VGAE [13], GraphVAE [23] and JT-VAE [24]. VGAE
aims to solve the link prediction problem by completing
the adjacency matrix. GraphVAE is designed for molecule
generation. It generates the adjacency matrix as well as the
vertex and edge features. JT-VAE is specifically designed for
generating complex molecules while enforcing validity.

III. GRAPH GENERATIVE SCATTERING NETWORK

Existing graph generation networks require training either
GAN or VAE, which is a difficult task. Furthermore, the design
of a graph generation network is often complex [20], [22],
[24] and its hyperparameter selection might be difficult. In
view of these obstacles, we propose here the graph generative
scattering network. It is composed of two components: an en-
coder and a decoder. The encoder is a graph scattering network
[1], which is followed by a Gaussianization step. It produces
a latent Gaussianized representation for the graph signal. It
is also used to form a latent “Gaussian distribution.” The
parameters of the graph scattering network are predetermined,
unlike the parameters of a generative auto-encoder which are
learned. The decoder is trained by using the Gaussianized
latent representation of the data and minimizing a loss function
chosen according to the corresponding task. In all of the
graph-specific tasks we mentioned in §I, the decoder can be
taken to be a network with fully-connected layers, whose
structure is determined by the specific task. Generation is
obtained by applying the trained decoder to the latent Gaussian
distribution. More details on forming the encoder and decoder
are provided in §III-A and §III-B, respectively.

A. Details of the Encoder
In order to fully understand the formation of the encoder,

we review the graph scattering network of [1] and explain how
to form a Gaussian distribution from its output. We consider
a graph G = (V,E) with |V | = N vertices. A signal in
L2(V ;RK) can be regarded as a matrix X ∈ RN×K . The
scattering transform can be regarded as a function that acts
on the columns of X . Let L ∈ RN×N be the unnormalized
graph Laplacian L = D−W , where D is the diagonal matrix
of degrees and W is the weight (adjacency) matrix whose
(n,m)-th entry is the weight of the edge connecting vertices
vn and vm. Its spectral decomposition can be written as L =∑N−1

l=0 λlulu
∗
l , with 0 = λ0 ≤ · · · ≤ λN−1. We assume a

limiting scale, J ∈ Z, and dyadic wavelets, φ and ψ, satisfying
|φ̂−J |2 +

∑
j>−J |ψ̂j |2 = 1, where

ψ̂j(ω) = ψ̂(2−jω) for j > −J and φ̂−J(ω) = φ̂(2−Jω).

For f ∈ RN , the graph wavelet transform [10] is

f ∗ψj =
N−1∑
l=0

ulu
∗
l f ψ̂(2−jλl), for j > −J ;

f ∗ φ−J =

N−1∑
l=0

ulu
∗
l f φ̂(2Jλl) .

For any m no larger than the number of layers, a path
p = (j1, · · · , jm) is a vector of m scales of the graph
wavelets, which satisfy 0 ≤ j1, · · · , jm ≤ J−1. The scattering
propagator with respect to a path p is obtained by consecutive
application of convolutions with wavelets of these scales and
absolute values, which serve as nonlinearities, in the following
way

U [p]f =
∣∣∣∣∣∣f ∗ψj1

∣∣ ∗ψj2

∣∣ ∗ · · · ∗ψjm

∣∣ .
The scattering transform with respect to the path p is obtained
by S[p]f = U [p]f ∗ φ−J .

Let P denote the collection of all paths of length no larger
than the number of layers. The scattering transform of f with
respect to P is

S[P]f = (S[p]f)p∈P .

A simple illustration of the scattering transform is provided in
Fig. 1 of [1]. Note that the scattering transform depends on the
underlying graph. For simplicity, we exclude this dependence
from our notation.

For the K-dimensional signal X = [X1| · · · |XK ] ∈
RN×K , the scattering transform is

S[P]X = (S[P]Xk)Kk=1 .

We remark that if the set P has L elements, then defining
M = LK, S[P](X) can be represented as a matrix in RN×M

or a vector in RN ·M . We denote the latter vector by X̄ .
Zou and Lerman [1] establish various theoretical properties

of the scattering transform S[P]. In particular, they show that it
preserves the energy—that is, the l2 norm—of each signal. The
usefulness of this property for graph generation will be dis-
cussed later. Another important property they establish is the
robustness of the scattering transform to small perturbations
of the signal and the graph [1, §5]. This robustness implies
that similar signals and graphs are encoded as similar latent
codes.

The last step of the encoder maps the transformed data
points so that one may possibly generate them with a Gaussian
distribution, as required by the generator. We earlier referred
to this mapping as Gaussianization. We describe two possible
mappings that were previously suggested for related tasks.
Following [9], one such mapping is whitening. Specifically,
let {X̄(t)}Tt=1 be the scattering transform vectors of the input
samples and let X̄ be the representing matrix of {X̄(t)}Tt=1.
That is, X̄ = (X̄

(t)
)Tt=1 ∈ RT×NM . As advocated in

[9], a dimension reduction by PCA can be further applied
to {X̄(t)}Tt=1. Next, using the following mean and sample
covariance of the scattering transform vectors

µ =
1

T

T∑
t=1

X̄
(t) and Σ =

1

T

T∑
t=1

(X̄
(t) − µ)(X̄

(t) − µ)∗ ,

the whitening map A is

AX̄ = Σ−1/2(X̄ − µ) . (1)



The whitened samples are uncorrelated and the hope in [9]
is that their distribution will be close to that of a normal
distribution with identity covariance.

The output of the encoder with a whitening transformation
is guaranteed to have similar robustness results to signal and
graph manipulations as the ones established in [1] for the graph
scattering transform with additional factor of ‖Σ−1/2‖, where
‖·‖ denotes the spectral norm of the corresponding matrix. We
remark that due to the initial dimension reduction that removed
small eigenvalues of the sample covariance of the transformed
data points, ‖Σ−1/2‖, is not expected to be large.

One problem with the whitening process is that the dis-
tribution of its output may not be close to Gaussian. While
traditional Gaussianization methods [25], [26] can improve the
distribution of the output, their encoding may not be robust to
signal and graph manipulation.

An alternative to whitening is a spherization procedure
inspired by [27]. That is, the data points {X̄(t)}Tt=1 are
normalized to lie on the unit sphere in the Euclidean norm. The
hope is that these mapped data points can be generated from a
Gaussian with their sample mean and covariance. In general,
this may not be the case, though [27] have a heuristic and
incomplete argument for this property in a different setting.
This argument can be made precise by using the Gaussian
Annulus Theorem (see e.g., [28, Theorem 2.9]).

Due to the energy preservation property of the full graph
scattering transform of [1], one can instead spherize the input
data points and the result of the encoder will be the same.
Therefore, in theory, the encoder is robust to signal and graph
manipulation with respect to the original data after spheriza-
tion. Due to this property and similarly to [27], we do not
initialize the spherization by centering with the sample mean.
In practice, since scattering is only applied to a finite number
of layers, the energy is contracted. Therefore, it is better to
normalize after the scattering and this is what we do in our
experiments. The final stage of the encoder with spherization
calculates the sample mean µs and covariance σs for the
spherized scattering output and fits a Gaussian N (µs,σs),
which is used as the latent distribution for sampling.

We denote the original samples by {X(t)}Tt=1 and the
corresponding data matrix in RT×NM by X . We further
denote the output of the encoder (with either whitening or
spherization) by Φ[P](X ), or in short Φ(X ). We note that the
mapping Φ can also be applied to any signal X ∈ RN×K . We
denote the feature vector corresponding to the K-dimensional
signal X by z = Φ[P](X) ∈ RN×M . We will refer to z as
a latent code.

B. Details of the decoder

Recall that the decoder is a network with fully-connected
layers. We describe its architecture according to the following
three different tasks.

1) Link prediction: For link prediction, we encode the
features of the partially available graph into a latent vector,
and use the same vector to generate the full graph via the
learned decoder. Note that in this task only one fixed graph

Fig. 2: Sketch of a graph scattering network for link prediction.

Fig. 3: Sketch of a graph scattering network for signal gener-
ation on graphs.

is given, and thus no Gaussianization procedure is applied
in the encoder. That is, the linear transformation A in (1)
is the identity. The input includes a weight matrix W train,
which contains weights for the partially available edges, and a
feature matrix X ∈ RN×K of K-dimensional signals on the
N nodes. The encoder is a scattering network Φ that maps X
and W train ∈ RN×N into a latent representation z ∈ RN×M .
As in [13], the decoder is a simple network D such that
D(z) = σ(D̃(z)D̃(z)T ), where σ is the softmax function
and D̃ is an MLP. The networkD, whose parameters are those
of D̃, is trained to minimize the cross-entropy loss function

L(D) =
∑

i,j:W (i,j)6=0

[− logD(Φ(X,W ))(i, j)] . (2)

The structure of the entire network is illustrated in Fig. 2.
2) Signal generation on graphs: For signal generation on

graphs, which we also refer to as graph signal generation, one
is given a fixed graph domain and different signals on the
nodes of this graph and the goal is to generate similar signals.
An input random variable X ∈ RN×K is first mapped by the
scattering transform to S[P](X) and then to a Gaussian z =
Φ[P](X) ∈ RN×M . The decoder D is taken to be an MLP
that maps z to a matrix D(z) in RN×K . The parameters of D
are obtained by minimizing the reconstruction loss function

L(D) = T−1
T∑

t=1

∥∥∥X(t) −D(Φ(X(t)))
∥∥∥ , (3)

where {X(t)}Tt=1 are the training data points. The structure
of the generative network is the same as in Fig. 1, where in
the current case S is the graph scattering transform. Fig. 3
illustrates the generation procedure.

3) Graph and signal generation: The scattering transform
can be used as an encoder for generating both the graph and
the signal on it. We train two MLP’s D1 and D2, where both



Fig. 4: Sketch of the graph scattering network for graph and
signal generation.

take the Gaussian random variable z = Φ(X) as input. The
network D1 is used to generate the graph signal X and the
network D2(z) = σ(D̃2(z)D̃2(z)T ) is used to generate the
weight matrix W . They are trained at the same time, with the
reconstruction loss function

L(D1,D2) =T−1
T∑

t=1

[ ∥∥∥W (t) −D1(Φ(X(t)))
∥∥∥+∥∥∥X(t) −D2(Φ(X(t)))

∥∥∥ ], (4)

where {(X(t),W (t))}Tt=1 are the training data points. The
norms can be replaced with cross-entropy losses if one wants
the outputs to be categorical, as in the molecule generation
task. Fig. 4 illustrates this generation procedure.

IV. EXPERIMENTS

We test our proposed method, whose code is available at
https://github.com/dmzou/SCAT, and compare it with other
available algorithms using datasets addressing the three dif-
ferent tasks reviewed in §I.

Even though we advocate using the graph scattering network
of [1] (due to its robustness to signal manipulation), we
also tested our generation algorithm with the graph scattering
network of [2]. When addressing link prediction (so a Gaus-
sianization procedure is not applied), we denote by SCAT-
S and SCAT-D our proposed generative procedure with the
spectral and diffusion networks of [1] and [2] respectively. For
the other two applications, we distinguish between the two
Gaussianization procedures: whitening and spherization. We
use “W” to denote whitening and “N” to denote normalization,
i.e., spherization. We use, as above, “S” to denote the spectral
graph scattering transform in [1] and “D” to denote the
diffusion graph scattering transform in [2]. We denote the four
resulting networks by SCAT-SW, SCAT-DW, SCAT-SN and
SCAT-DN.

Following [1] we use in all experiments the simple Shannon
wavelet and the limiting scale J = 3 for SCAT-S, SCAT-SW
and SCAT-SN. We similarly use J = 3 and choose t = 3 (t
is the power of multiplying diffusion operator) for SCAT-D,
SCAT-DW and SCAT-DN. For link prediction, we take 2-layer
scattering as it performs better on the validation set; for the
other two tasks, we take 3-layer scattering.

Our method requires moderate memory and GPU and we
easily tested it on a PC with 8GB RAM and GTX1060 GPU.

TABLE I: Characteristics of three citation datasets

Dataset Vertices Edges Classes Features
Cora 2708 5429 7 1433
Citeseer 3327 4732 6 3703
Pubmed 19717 44338 3 500

Comparison with VGAE on the Pubmed dataset demanded
more advanced GPU. We thus report results of all experiments
on a Linux machine with 64GB RAM and GTX1080Ti GPU.

A. Link prediction for citation data

We predict links for the three citation datasets of [12]: Cora,
Citeseer and Pubmed. Each dataset contains information about
publications in certain fields and the corresponding citation
linkage between these publications. This information can be
embedded in a graph in which the publications and citations
are represented by vertices and edges, respectively. Although
the citation link is directed, we follow the common convention
of assuming an undirected and unweighted graph. That is, if
any of two papers cite the other, an edge is drawn between
them. Table I lists some characteristics of the three datasets.

We use the preprocessing step suggested in [13] and docu-
mented in https://github.com/tkipf/gae for all tests. It divides
the original edges into 85% training, 5% validating and 10%
testing sets.

For SCAT-S and SCAT-D, the dimension of the output of
the scattering transform is reduced to 128. The decoder D̃
in both models is taken to be a single dense layer of size
512, activated by the ReLU function. In order to minimize
(2), we use the Adam optimizer [29] with a learning rate of
0.001, where we train 1,000 epochs for each run. We record
the following two common scores: area under curve (AUC)
and average precision (AP). Similarly to [13], we take 10
runs for each setting and record the average and standard
deviation. Table II reports our results for SCAT-S and SCAT-
D, together with results for GAE and VGAE [13]. We note
that SCAT-S improves over the previous results for all the three
datasets, while SCAT-D achieves comparable results with GAE
and VGAE. The averaged time for the scattering transform
of SCAT-S and SCAT-D, applied to Cora/Citeseer/Pubmed,
is 2.82s/6.43s/492.90s and 1.77s/4.31s/346.43s respectively.
SCAT-S requires more time due to the spectral decomposition,
whose average time for the 3 datasets is 1.24s/2.16s/317.43s.
Table III reports the training time for each epoch. This table
implies that SCAT-S and SCAT-D are much more efficient.
This is because only parameters in the decoder need to be
updated. Combining the times of the scattering transforms
reported above, which are executed once, and the training
times for each epoch in Table III, multiplied by the number
of epochs, we conclude that the total times of SCAT-S and
SCAT-D are more efficient.

B. Signal generation on graphs

We use the Fashion-MNIST dataset [14] for a sanity check
of SCAT for the problem of graph signal generation. Any
element of this dataset is a 28 × 28 grayscale pixel image



TABLE II: Results for link prediction using the citation datasets. We report the mean and standard deviation over 10 runs for
each setting. All models for the same dataset are trained based on the same training and validating links.

Dataset Cora Citeseer Pubmed
AUC (%) AP (%) AUC (%) AP (%) AUC (%) AP (%)

SCAT-S 94.48 ± 0.15 94.63 ± 0.17 97.27 ± 0.12 97.57 ± 0.12 97.52 ± 0.03 97.19 ± 0.04
SCAT-D 92.08 ± 0.09 93.05 ± 0.11 92.54 ± 0.14 94.16 ± 0.12 92.73 ± 0.17 93.56 ± 0.09
GAE 91.34 ± 0.52 92.62 ± 0.38 92.37 ± 0.67 93.72 ± 0.58 96.35 ± 0.18 96.53 ± 0.16
VGAE 91.14 ± 0.40 92.16 ± 0.29 92.70 ± 0.76 93.93 ± 0.57 95.68 ± 0.35 95.92 ± 0.32

TABLE III: Time for training an epoch for the citation data

Dataset SCAT-S SCAT-D GAE VGAE
Cora 8.1ms 8.1ms 209.1ms 206.4ms
Citeseer 8.1ms 8.1ms 298.6ms 302.3ms
Pubmed 64.9ms 64.9ms 7832.6ms 7889.2ms

and can be considered as a graph in the following way: the
pixels are the graph vertices, and nearby pixels are connected
by graph edges. The edges and weights are formed as in [1].
That is, each pixel represents a vertex and it is connected with
its four nearest neighbors with weight e−1 and its four nearest
diagonal neighbors with weight e−2.

The encoder of this network is a graph scattering transform.
Its output dimension is reduced to 256 from 28 × 28 × 13 =
10,192. The decoder is an MLP of two hidden layers of size
512. In order to minimize (3), we use the Adam optimizer
with a learning rate of 0.001, where we train 2,000 epochs
for each run. To avoid mode collapse, we have restricted the
dataset to the “boots” category, which contains 5,454 training
examples. Sample images from this category are demonstrated
in Fig. 6a.

To generate an “image” (or graph signal), we take a sample
z ∈ RN from N (0, I) for SCAT-SW and SCAT-DW, and from
N (µs,Σs) for SCAT-SN and SCAT-DN, and report the output
of the decoder. Figs. 6b-6e illustrate samples generated by
these networks, while using the graph associated with a 28×28
pixel image. We report the `1 reconstruction loss defined in
(3) in Table IV. Note that the averaged `1-norm of the training
images is 174.56. We also report the times for scattering and
training a single epoch.

Our experiments indicate that training models with spher-
ization converges faster than with whitening. To see this, we
plot the reconstruction loss as a function of epoch for the first
500 epochs for the four methods we tested in Fig. 5. It is clear
that SCAT-SN and SCAT-DN converge much faster in the first
300 epochs.

The images generated in Figs. 6b-6e are of similar quality
for all the scattering methods. Note that some high frequency

TABLE IV: Reconstruction loss and time for scattering trans-
form (for the complete training data) and training an epoch
for the Fashion-MNIST dataset

SCAT-SW SCAT-DW SCAT-SN SCAT-DN
Reconstr. loss 0.0482 0.0532 0.0513 0.0548
Time (scattering) 1,128.6ms 1,484.3ms 1,148.3ms 1,566.0ms
Time (epoch) 39.4ms 39.1ms 30.7ms 30.6ms

Fig. 5: Reconstruction loss with respect to epoch for training
SCAT models for the Fashion-MNIST data. No difference is
noted after 500 epochs.

components, that is, details, of these images are missing. This
phenomena is is common with the Euclidean generative scat-
tering network of [9]. Nevertheless, common graph-type data
often do not have high-frequency components. For instance,
in the molecular data reviewed in §IV-C, the signals on each
vertex just take five different values.

For comparison with other methods, Figs. 6f and 6g il-
lustrate samples generated from graph generative models that
combine VAE/GAN with the graph convolutional layers pro-
posed in [5]. Specifically, for what we call VAE-GCN, we
construct a graph-based VAE in which the encoder consists
of two graph convolutional layers while the decoder is an
MLP of two hidden layers. The latent mean and variance both
have dimension 256 and the hidden layers of the MLP have
dimension 512. For what we call GAN-GCN, we replace the
discriminator of a vanilla GAN with two graph convolutional
layers and use an MLP with two hidden layers of dimension
512 for the generator.

All three methods are trained using Adam with a learning
rate of 0.001. The latent noise for both GAN-GCN and
GAN-FCN is of dimension 256. The training time for each
epoch for VAE-GCN and GAN-GCN is 3.947s and 1.761s
respectively, which is much slower than training SCAT models
since parameters from both the generator and the discriminator
need to be updated for GAN-GCN, and parameters from both
the encoder and the decoder need to be updated for VAE-
GCN. Observing Figs. 6f and 6g, we see that samples from
VAE-GCN look blurrier than those of SCAT models and also
miss high-frequency information. Samples from GAN-GCN
are very noisy and still miss high-frequency information and
suggest that the model suffers from a severe mode collapse.



(a) Original data. (b) SCAT-SW. (c) SCAT-SN. (d) SCAT-DW.

(e) SCAT-DN. (f) VAE-GCN. (g) GAN-GCN.

Fig. 6: Original and generated images for boots of Fashion-MNIST data.

C. Graph generation for molecular data

We test graph and signal generation using the molecular
dataset QM9 [15]. This dataset contains 134k molecules made
of the following atoms: C, H, O, N, and F. There are two
common ways of embedding these kinds of datasets into an
interpretable feature space. Kusner et al. [30] treat molecules
as “words” by looking at their simplified molecular-input line-
entry (SMILE) strings. Graphs are also commonly used to
represent molecules, where the graph vertices represent the
atoms composing the molecule and the graph edges are the
bonds. The vertex signals assign the four different atom types
to the vertices. While there are five type of atoms, H is
automatically determined by the other atoms and the given
chemical bonds. Therefore, only labels of the four heavy atoms
(C, O, N or F) need to be assigned. Since the dataset has
molecules with at most 9 heavy atoms, we assume graphs
with 9 vertices and assign a dummy value for vertices without
assignment of a heavy atom. Each heavy atom and the dummy
one are assigned a one-hot vector, i.e., a unit coordinate vector
in R5, and each atom is represented by one of these five one-
hot vectors.

For graph generation, there is no unique benchmark for
checking the quality of the generated graphs. Bojchevski et
al. [20] proposed to use graph properties such as the max
degree and the number of triangles for graph generation.
However, it is often hard to compare these graph properties and
there is no motivation for using them for molecule generation.
Samanta et al. [31] proposed to check validity (whether a
sample is a valid chemical molecule), uniqueness (whether

TABLE V: Time for the scattering transform (for the complete
training data) and training an epoch for the QM9 dataset

SCAT-SW SCAT-DW SCAT-SN SCAT-DN
Time (scattering) 137.12s 94.75s 132.01s 95.95s
Time (epoch) 3.68s 3.66s 3.71s 3.69s

a sample is unique among all generated samples) and novelty
(whether a sample is different from any sample in the training
data). We use these measures since they are more quantitative
and experiments on QM9 by [22] and [23] also report them.
They are checked after converting the graphs into SMILE
strings using the RDKit package (https://www.rdkit.org/).

The full QM9 dataset is used for training. This choice is the
same as that in [22, §5.3]. It is different than [23], in which a
small set of molecules is used for training and only molecules
with 9 heavy atoms are considered.

As explained in §III-B3, for this application of graph
generation, the SCAT decoders for both vertices and edges are
MLP’s. In our experiments, both of them have three hidden
layers of dimension 128, 256, 512, respectively. We take
the encoder to be a graph scattering transform, with output
dimension reduced to 135 (15 for each vertex). In order to
minimize (4), we use the Adam optimizer with a learning rate
of 0.001, where we train 300 epochs. Table V reports the
computational times of scattering and training on this dataset.

Using SCAT, we generate 10k molecules and record the
validity, uniqueness, and novelty in Table VI. For comparison,
we also record results reported for GraphVAE in [23] and
our test of MolGAN [22] based on the codes available at



TABLE VI: Comparison of graph generation by GraphVAE,
MolGAN and SCAT using the QM9 dataset. Values are
reported in percentages according to 10k generated samples.
Since the GraphVAE code is unavailable, results are copied
from the paper and marked with parenthesis.

Algorithm Valid Unique Novel
GraphVAE (55.7) (76.0) (61.6)
GraphVAE (imp) (56.2) (42.0) (75.8)
GraphVAE (no GM) (81.0) (24.1) (61.0)
MolGAN (no RL) 90.4 31.1 97.8
MolGAN (RL Valid) 100.0 0.3 13.6
MolGAN (RL Unique) 99.2 37.1 64.5
MolGAN (RL Novel) 98.5 0.6 100.0
SCAT-SW 65.4 92.7 86.9
SCAT-DW 38.0 98.1 94.2
SCAT-SN 64.9 92.0 85.7
SCAT-DN 47.4 98.3 92.0

https://github.com/nicola-decao/MolGAN. For MolGAN, we
perfrom four different tests. The first one (no RL) applies
MolGAN without reinforcement learning (RL). The next three
(RL Valid, RL Unique and RL Novel) apply RL for validity,
uniqueness and novelty, respectively. An RL step is done after
each five epochs. For each setting we only report the best result
among six choices of the parameter λ (0.01, 0.05, 0.1, 0.25,
0.5, 0.75) and three choices of the dropout rate (0, 0.1, 0.25)
used in [22]. Without RL, it takes approximately 11 seconds
to train an epoch; with RL for validity or uniqueness, it takes
15-18s to train an epoch; with RL for novelty, it takes 93-122s
to train an epoch.

All the SCAT models achieve high scores in uniqueness and
novelty. Note that SCAT-DW and SCAT-DN achieve slightly
higher uniqueness and novelty than SCAT-SW and SCAT-
SN, but they have notably lower score in validity. We remark
that it is possible to achieve high validity with the scattering
generative models. We were able to achieve 93.9/17.6/98.6 for
valid/unique/novel scores if we train SCAT-SW using an MLP
with a single hidden layer with dimension 5 for the vertices
and 32 for the edges. However, a simpler model leads to severe
mode collapse, as implied by the low uniqueness score. We
observed that this simple model assigns “carbon” to a lot of
vertices, and it has two effects: first, it is easier to construct
valid molecules2. Second, it causes mode collapse as there is
not much variety of molecular decompositions.

We show samples of molecules generated by SCAT-SW with
a decoder with three hidden layers in Fig. 7a and samples
generated by SCAT-SW with a decoder with one hidden layer
in Fig. 7b. It can be seen that many molecules in Fig. 7b are
composed only of carbon (and hydrogen); in contrast, there
are more oxygen and nitrogen in the samples in Fig. 7a. We
believe that in order to explore new design of drugs, it is more
important to generate molecules with more variety. Therefore,
the results from three-layer decoders are more meaningful.

As a comparison, the three measures reported for GraphVAE

2A carbon vertex can have degree at most four while keeping the molecule
valid. The largest possible degree is only three for a nitrogen vertex and two
for an oxygen vertex.

are moderate. MolGAN has good validity and novelty scores,
but low uniqueness score, which indicates a mode collapse
[22]. This mode collapse is even more severe when either
validity or novelty is used for RL, although the model achieves
perfect score for validity or novelty, respectively. We remark
that MolGAN uses three hidden layers of the same dimensions
and we thus believe that the mode collapse is not due to a low-
complex structure of the generator.

V. CONCLUSION

We proposed the graph generative scattering network as a
generative model for graphs and graph signals. The network
applies a prescribed encoder which does not require training
and is robust to signal perturbation and graph deformations.
Numerical experiments show competitive results for the tasks
of link prediction in citation data and molecule generation.
Although scattering usually takes time, it is still more efficient
to train scattering-based models due to the smaller number
of parameters to update in training. We believe the graph
generative scattering network has the potential to be used in
a wider range of applications on graphs.

We experimented with two possible choices for the scatter-
ing transform and two choices for Gaussianization. Overall,
the scattering described in [1] achieves better performance than
the scattering described in [2] for link prediction and molecule
generation. We remark that for molecule generation the scat-
tering of [2] achieves slightly better scores of uniqueness
and novelty, however, its validity score is significantly worse.
There is no significant difference in the results for the two
methods of Gaussianization. However, the spherization-based
methods (SCAT-SN and SCAT-DN) converge much faster for
graph signal generation.

We used the Fashion-MNIST dataset as a sanity check for
the graph signal generation, since we are unaware of a more
convincing application for this specific task. In this application,
we do not expect graph-based methods to compete with
general methods, because graphs only retain partial spatial
relationships. Indeed, the resolution of the generated images
is not as good as that of the original images. Nevertheless,
since the results in the similar discrete tasks of link prediction
and molecule generation are competitive, we believe that
SCAT also bears promise for graph signal generation when
the signals are of low resolution.

ACKNOWLEDGMENT

We thank Radu Balan, Aurobrata Ghosh, and Maneesh
Singh for discussions on the link prediction problem and Alex
Gutierrez for helpful comments on the paper.

REFERENCES

[1] D. Zou and G. Lerman, “Graph convolutional neural networks via
scattering,” arXiv preprint arXiv:1804.00099, 2018.

[2] F. Gama, A. Ribeiro, and J. Bruna, “Diffusion scattering transforms on
graphs,” arXiv preprint arXiv:1806.08829, 2018.

[3] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on
graph-structured data,” arXiv preprint arXiv:1506.05163, 2015.

[4] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Advances
in Neural Information Processing Systems, pp. 3844–3852, 2016.



(a) Samples from a generator with three hidden layers. (b) Samples from a generator with one hidden layer.

Fig. 7: Samples of generated molecules via SCAT-SW. The number below each molecule is the Quantitative Estimate of
Drug-likeness (QED) score [32], which is automatically generated for the figures by RDKit. We are not trying to optimize it.

[5] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in International Conference on Learning Rep-
resentations, 2017.

[6] Z. Chen, X. Li, and J. Bruna, “Supervised community detection with
hierarchical graph neural networks,” arXiv preprint arXiv:1705.08415,
2017.

[7] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in neural information processing systems, pp. 2672–2680,
2014.

[8] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in
International Conference on Learning Representations, 2014.

[9] T. Angles and S. Mallat, “Generative networks as inverse problems
with scattering transforms,” in International Conference on Learning
Representations, 2018.

[10] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on
graphs via spectral graph theory,” Applied and Computational Harmonic
Analysis, vol. 30, no. 2, pp. 129–150, 2011.

[11] R. R. Coifman and M. Maggioni, “Diffusion wavelets,” Applied and
Computational Harmonic Analysis, vol. 21, no. 1, pp. 53–94, 2006.

[12] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-
Rad, “Collective classification in network data,” AI magazine, vol. 29,
no. 3, p. 93, 2008.

[13] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” in NIPS
Workshop on Bayesian Deep Learning (NIPS-16 BDL), 2016.

[14] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[15] R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. Von Lilienfeld,
“Quantum chemistry structures and properties of 134 kilo molecules,”
Scientific data, vol. 1, p. 140022, 2014.

[16] M. Olivecrona, T. Blaschke, O. Engkvist, and H. Chen, “Molecular de-
novo design through deep reinforcement learning,” Journal of chemin-
formatics, vol. 9, no. 1, p. 48, 2017.

[17] S. Mallat, “Group invariant scattering,” Communications on Pure and
Applied Mathematics, vol. 65, no. 10, pp. 1331–1398, 2012.

[18] J. Bruna and S. Mallat, “Invariant scattering convolution networks,”
IEEE transactions on pattern analysis and machine intelligence, vol. 35,
no. 8, pp. 1872–1886, 2013.

[19] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and
locally connected networks on graphs,” in International Conference on
Learning Representations, 2014.

[20] A. Bojchevski, O. Shchur, D. Zügner, and S. Günnemann, “NetGAN:
Generating graphs via random walks,” in Proceedings of the 35th
International Conference on Machine Learning, pp. 610–619, 2018.

[21] H. Wang, J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang, X. Xie, and
M. Guo, “GraphGAN: Graph representation learning with generative
adversarial nets,” in AAAI Conference on Artificial Intelligence, 2018.

[22] N. De Cao and T. Kipf, “MolGAN: An implicit generative model for
small molecular graphs,” arXiv preprint arXiv:1805.11973, 2018.

[23] M. Simonovsky and N. Komodakis, “GraphVAE: Towards genera-
tion of small graphs using variational autoencoders,” arXiv preprint
arXiv:1802.03480, 2018.

[24] W. Jin, R. Barzilay, and T. Jaakkola, “Junction tree variational au-
toencoder for molecular graph generation,” in Proceedings of the 35th
International Conference on Machine Learning, pp. 2323–2332, 2018.

[25] S. S. Chen and R. A. Gopinath, “Gaussianization,” in Advances in neural
information processing systems, pp. 423–429, 2001.

[26] V. Laparra, G. Camps-Valls, and J. Malo, “Iterative gaussianization: from
ica to random rotations,” IEEE transactions on neural networks, vol. 22,
no. 4, pp. 537–549, 2011.

[27] P. Bojanowski, A. Joulin, D. Lopez-Pas, and A. Szlam, “Optimizing
the latent space of generative networks,” in Proceedings of the 35th
International Conference on Machine Learning, pp. 600–609, 2018.

[28] A. Blum, J. Hopcroft, and R. Kannan, Foundations of Data Science.
June 2017.

[29] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[30] M. J. Kusner, B. Paige, and J. M. Hernández-Lobato, “Grammar varia-
tional autoencoder,” in Proceedings of the 34th International Conference
on Machine Learning, pp. 1945–1954, 2017.

[31] B. Samanta, A. De, N. Ganguly, and M. Gomez-Rodriguez, “Designing
random graph models using variational autoencoders with applications
to chemical design,” arXiv preprint arXiv:1802.05283, 2018.

[32] G. R. Bickerton, G. V. Paolini, J. Besnard, S. Muresan, and A. L.
Hopkins, “Quantifying the chemical beauty of drugs,” Nature chemistry,
vol. 4, no. 2, p. 90, 2012.


	I Introduction
	II Background
	II-A Scattering networks for generative models
	II-B Graph convolutional networks
	II-C Graph generative networks

	III Graph generative scattering network
	III-A Details of the Encoder
	III-B Details of the decoder
	III-B1 Link prediction
	III-B2 Signal generation on graphs
	III-B3 Graph and signal generation


	IV Experiments
	IV-A Link prediction for citation data
	IV-B Signal generation on graphs
	IV-C Graph generation for molecular data

	V Conclusion
	References

