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Abstract— To improve the generalization of the representa-
tions for natural language processing tasks, words are com-
monly represented using vectors, where distances among the
vectors are related to the similarity of the words. While
word2vec, the state-of-the-art implementation of the skip-gram
model, is widely used and improves the performance of many
natural language processing tasks, its mechanism is not yet well
understood.

In this work, we derive the learning rules for the skip-
gram model and establish their close relationship to competitive
learning. In addition, we provide the global optimal solution
constraints for the skip-gram model and validate them by
experimental results.

I. INTRODUCTION

IN the last few years, performance on natural language
processing tasks has improved significantly due to the

application of deep learning architectures and better repre-
sentations of words [1] [3] [13]. To improve generalization
and reduce the complexity of language models, words are
commonly represented using dense vectors, where simi-
lar vectors represent similar words [7] [8]. Among many
such representations, word2vec (short for Word-to-Vector)
is widely used due to its computational efficiency and its
ability to capture interesting analogue relationships [6] [9].
In addition, systems built on word2vec representations often
lead to significant performance improvements.

However, it is not well understood why word2vec ex-
hibits these desirable properties. Although many researchers
intended to find the source of efficiency of the word2vec,
many works did not provide strict mathematical analysis on
the formulas of the skip-gram model. The main contribution
of this work is three-fold: First, we examine the gradient for-
mulas of the skip-gram model and then derive the underlying
learning rules for both the input and output vectors. Second,
we establish that word2vec leads to a competitive learning
rule [17] for word representations. Third, given the training
corpus, we provide the global optimal solution constraints on
both the input and output vectors in the skip-gram model.

The paper is organized as follows: In Section II, we
present the skip-gram model as well as word2vec for
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learning vector representations of words. The learning
rules of the skip-gram model as well as its connections to
competitive learning are shown in section III. In Section IV,
the global optimal solution constraints on the vectors of the
skip-gram model are proved first; then, experimental results
obtained on both a toy dataset and a big training corpus are
provided to support our results. After that, the connections
between the learning rules and the global optimal solution
constraints are discussed. Finally, Section V concludes the
paper with a brief summary and discussions on our future
work.

II. THE SKIP-GRAM MODEL FOR VECTOR
REPRESENTATIONS OF WORDS

The skip-gram model implemented by word2vec [6] can
be described like this:

Suppose we are given a length-T text training corpus
{w1, · · · ,wT}. Based on this corpus, we can build a dictionary
including W words: D = {w1, · · · ,wW}, where the words in
dictionary D are descended according to their frequencies in
the training corpus.

Then, for each word w in dictionary D , two vector
representations are provided: the input vector (or word
embedding) vw and the output vector (or context
embedding) v′w, both of which are initialized via random
normal distribution [4]. Based on the embedding vectors, the
conditional probability p(wO|wI) between any two words
wI and wO in D are estimated using the Softmax function:

p̂(wO|wI) =
exp(v′wO

T vwI )

∑
W
w=1 exp(v′w

T vwI )
, (1)

where v′T means the transformation of vector v′, and v′T v
means the inner product between the two vectors v′ and v.

Therefore, the goal of the skip-gram model is to maximize:

E =
1
T

T

∑
t=1

∑
−c≤ j≤c, j 6=0

log p̂(wt+ j|wt). (2)

where c is the radius of the center-removed context window
at wt .

Note that we use p̂ rather than p to represent the prob-
ability estimation given by the vectors, which differs from
the typical notification in the papers on skip-gram model.
In the following sections, we will do analysis on both the
estimated probability p̂ given by the vectors and the ground-
truth probability p based on the training corpus. Hence, we
differ these two concepts ahead.

Since the calculation of formula (1) requires O(W ) inner
products and exponentials, researchers usually do not directly
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use it in practice. Instead, many simplified versions of
formula (1) are applied [11] [12]. But, Mikolov et al. [6]
came up with an efficient and effective method to approx-
imate p̂(wO|wI): Instead of calculating ∑

V
w=1 exp(v′w

T vwI )

throught the words in the vocabulary, ∑
K
k=1 exp(v′wk

T vwI )
is used as an approximation with randomly chosen words
{w1,w2, · · · ,wK} from the distribution P(w), where K is
around 2-5 for big datasets and 5-20 for small ones. The best
specific distribution P(w) is the unigram distribution U(w)
raised to the 3/4rd power, i.e., P(w) =U(w)3/4/Z.

Then, in order to maximize log p̂(wO|wI), one only needs
to maximize v′wO

T vwI and minimize ∑
K
k=1 exp(v′wk

T vwI ),
which is why the words w1,w2, · · · ,wK are called negative
samples. Moreover, the exponential function is usually re-
placed by the sigmoid function σ(x) = 1

1+exp(−x) in practice
to avoid underflow. That is, Mikolov et al. aim at maximizing

logσ(v′wO

T vwI )+
K

∑
k=1

Ewk∼P(w) logσ(−v′wk

T vwI ), (3)

for wI = wt and wO = wt+ j in formula (2).
Formula (3) applying on word embeddings is the first effi-

cient language model for neural network training. This skip-
gram model implemented with negative sampling (SGNS)
provides surprisingly meaningful results. Models using the
SGNS pre-trained word embeddings provide not only good
performance on many NLP tasks, but also a series of inter-
esting analogue relationships [10].

On the other hand, according to formula (3), it is not hard
to see that the method of negative sampling itself “involves
no magic”: it only provides a simple and efficient way
to approximate the conditional probability p̂(wt+ j|wt). We
claim that the efficiency of the SGNS model lies in the skip-
gram algorithm and the usage of dense vector embeddings of
words instead of one-hot vectors. By implementing formula
(3), the skip-gram model makes the embedding vectors of
words with similar contexts converge to each other in the
vector space. Hence, semantic information and analogue
relationships are captured by the vector distribution. Detailed
explanations are provided in the following two sections.

III. THE LEARNING RULES FOR THE SKIP-GRAM MODEL

In this section, we shall provide a systematic understand-
ing on the learning rules of the skip-gram model. We shall
first find the gradient formula for each input and output
vector, based on which the connections between the skip-
gram model and the competitive learning will be addressed.

We reform the average log probability E as:

E =
1
T

T

∑
t=1

∑
−c≤ j ≤ c, j 6= 0

log p̂(wt+ j|wt)

=
1
T

T

∑
t=1

∑
−c≤ j ≤ c, j 6= 0

(
v′Twt+ j

vwt − log

(
W

∑
w=1

exp(v′Tw vwt )

))

=
1
T

T

∑
t=1

 ∑
−c≤ j ≤ c, j 6= 0

v′Twt+ j
vwt

−2c log

(
W

∑
w=1

exp(v′Tw vwt )

)

Given a fixed word ws in the dictionary, the gradient of
its input vector vws will be:

∂E
∂vws,i

=
1
T

T

∑
t = 1,

wt = ws

∑
−c≤ j ≤ c,

j 6= 0

(
v′wt+ j,i

−
∑

W
w=1 exp(v′Tw vwt )v

′
wi

∑
W
w=1 exp(v′Tw vwt )

)

=
1
T

T

∑
t = 1,

wt = ws

∑
−c≤ j ≤ c,

j 6= 0

(
v′wt+ j,i

−
W

∑
w=1

exp(v′Tw vws)

∑
W
w̃=1 exp(v′Tw̃ vws)

v′wi

)

=
1
T

T

∑
t = 1,

wt = ws

∑
−c≤ j ≤ c,

j 6= 0

(
v′wt+ j,i

−
W

∑
w=1

p̂(w|ws)v′wi

)
.

Hence, the gradient formula for the entire input vector vws

will be:

∂E
∂vws

=
1
T

T

∑
t = 1,

wt = ws

∑
−c≤ j ≤ c,

j 6= 0

(
v′wt+ j

−
W

∑
w=1

p̂(w|ws)v′w

)

=
1
T

T

∑
t = 1,

wt = ws

∑
−c≤ j ≤ c,

j 6= 0,wt+ j = w

(
v′w−

W

∑
w̃=1

p̂(w̃|ws)v′w̃

)

=
1
T

T

∑
t = 1,

wt = ws

∑
−c≤ j ≤ c,

j 6= 0,wt+ j = w

(1− p̂(w|ws)
)

v′w−
W

∑
w̃ = 1, w̃ 6= w

p̂(w̃|ws)v′w̃


where wt+ j =w means that the word appearing at the position
t + j in the training corpus is the word w in the dictionary.

Note that the training purpose of the skip-gram model is
to maximize the average log probability E. Yet in practice,
researchers always apply gradient descent to minimize −E
due to programming facts. However, in order to provide a
clear theoretical analysis, we directly apply gradient ascent
with respect to ∂E/∂vws to maximize E in our learning rule.
Hence, the learning rule for updating the input vector vws

will be:

vnew
ws = vold

ws +
η

T

T

∑
t = 1,

wt = ws

∑
−c≤ j ≤ c,

j 6= 0,
wt+ j = w

(1− p̂(w|ws)
)
v′w−

W

∑
w̃ = 1,
w̃ 6= w

p̂(w̃|ws)v′w̃


(4)

where η is the learning rate.
Intuitively speaking, adding a vector~b to the vector ~a will

make ~a move towards the direction of ~b, or make the angle
between ~a and~b smaller. On the contrast, subtracting vector
~b from the vector ~a (i.e. ~a−~b) will make ~a move away from
~b, or make the angle between the two vectors larger.

By analyzing terms in the large bracket of formula (4), one
can see that the term (1− p̂(w|ws)) as well as each p̂(w̃|ws)
is always positive since 0 < p̂(w|ws) < 1 for any word w.
Hence, intuitively speaking, the vector (1− p̂(w|ws))v′w is
added to vws , while vectors p̂(w̃|ws)v′w̃ for all the w̃ 6= w are
subtracted from vws . This means that the gradient ascent will
make the input vector vws move towards the output vector v′w



of word w that appears in the context window of word ws.
Meanwhile, the gradient ascent will make vws move away
from all the output vectors v′w̃ other than v′w.

This process is a form of competitive learning: If a word
w appears in the context of the word ws, it shall compete
against all the other words to “pull” the input vector vws

closer to its own output vector v′w. But we need to indicate
that there is a major difference between the gradient ascent of
the skip-gram model and the typical winner-takes-all (WTA)
algorithm of competitive learning: In the back propagation of
WTA, the gradients to all the loser neurons are zero, which
means that “the winner takes all while the losers stand still”
[17]. In the gradient ascent of the skip-gram model, however,
the losers (which are all the words w̃ other than w) will be
even worse: They have to “push” the input vector vws away
from their own output vectors v′w̃. That is, the competitive
learning rule for updating an input vector in the skip-gram
model is “the winner takes its winning while the losers even
lose more”.

The implementation of SGNS is also compatible with our
analysis here: Maximizing formula (3) leads to maximizing
the inner product v′TwO

vwI while minimizing the inner products
v′Twk

vwI for all the words wk. This means that the input
vector vwI of the word wI will be pulled closer towards the
output vector v′wO

, if word wO is in the context of word wI ;
And meanwhile, vwI will be pushed away from the output
vectors v′wk

, where wk are randomly chosen words (negative
samples). That is, the negative samples play the role of
simulating all the “loser” words w̃ 6= wO: Since computing
p̂(w̃|wI) for all the words w̃ other than wO is not feasible,
SGNS randomly pick a few words to act as the “loser” words,
so that the winner word wO is differentiated [15].

As a result, by the gradient ascent updating, the input
vector vws will gradually match with the output vectors v′w
of words w that appear in the context of ws, while differ
from output vectors v′w̃ of all the words w̃ that are not in
the context of ws. In this way, the semantic information is
therefore captured by the distribution of embedding vectors
in the vector space [21] [22].

Similarly, for an output vector v′ws , the gradient of E on
each of its dimension is given as:

∂E
∂v′ws,i

=
1
T

T

∑
t=1


 ∑

−c≤ j ≤ c,
j 6= 0,wt+ j = ws

vwt,i

−2c
exp(v′Tws vwt )vwt,i

∑
W
w̃=1 exp(v′Tw̃ vwt )


=

1
T

T

∑
t=1

(
nt,c,ws · vwt,i −2c · p̂(ws|wt) · vwt,i

)
=

1
T

T

∑
t=1

(
nt,c,ws −2c · p̂(ws|wt)

)
vwt,i

where nt,c,ws means the number of times the word ws appears
in the radius-c, center-removed window at the word wt . And
similar to the gradient of the input vector vws , p̂(ws|wt) is
the estimation of the conditional probability p(ws|wt) given
by the current vector set {vw,v′w}Ww=1.

Then, the gradient formula of the entire output vector v′ws
is:

∂E
∂v′ws

=
1
T

T

∑
t=1

(
nt,c,ws −2c · p̂(ws|wt)

)
vwt .

And therefore, the gradient ascent updating rule for the
output vector v′ws will be:

v′ new
ws = v′ old

ws +
η

T

T

∑
t=1

(
nt,c,ws −2c · p̂(ws|wt)

)
vwt . (5)

By looking at formula (5), it is easy to see that the softmax
definition p̂(ws|wt) = exp(v′Twsvwt )/

(
∑

W
w̃=1 exp(v′Tw̃ vwt )

)
shall

make p̂(ws|wt) small (less than 10−3) for most word pair
(ws,wt). And the window size c is usually around 3 to 5,
which means that multiplying 2c will not significantly en-
large 2c · p̂(ws|wt). As a result, the term nt,c,ws−2c · p̂(ws|wt)
will almost always be positive when the word ws appears in
the context window of wt , since in that case nt,c,ws will be
at least one. But if ws is not in the context window of wt ,
nt,c,ws will be zero and hence nt,c,ws − 2c · p̂(ws|wt) will be
negative.

That is, if the word wt = w at position t in the training
corpus has ws in its context window, it shall “pull” the
output vector v′ws of the word ws towards its own input vector
vwt = vw. However, if ws is not in the context window of wt ,
then the word wt = w has to “push” v′ws away from its own
input vector vw. Once again, this is a process of competitive
learning: Each word wt = w in the training corpus shall
compete against each other to make the output vector v′ws
move towards its own input vector vwt = vw, otherwise the
word wt = w at position t will be competed out such that v′ws
will move away from vw. Under this mechanism, those words
with the word ws in their context window will win, and those
without ws in their context window will lose. The competitive
learning rule here is still “winners take their winnings while
losers even lose”.

However, analyzing formula (3) again, we can see that
in each training step the there is only one unique input
vector vwI . So, the role played by wI need to be regarded
as “multiple”: It is the “winner” to the truly appeared word
wO, but it is the “loser” to all the negative sampling words
[14]. Hence, we have to admit that the competitive learning
rule on updating the output vector of the skip-gram model is
not fully reflected in the SGNS. In other words, the SGNS
put a bias on the input vectors, while theoretically the status
of input and output vectors in the skip-gram model should
be equivalent [18].

In summation, the gradient updating formulas of the input
and output vectors in the skip-gram model are connected to
the competitive learning rules, which are inherited by the
SGNS.

Based on the discussion in this section, we shall do
analysis on the global optimal solution constraints of the
skip-gram model in Section IV.



IV. OPTIMAL SOLUTIONS FOR THE SKIP-GRAM MODEL

In this section, we shall first provide the global optimal
solution constraints on the skip-gram model. Then, we shall
use experimental results to support our analysis. Then, we
will do analysis to show how the gradient ascent formulas
of the skip-gram model make the word embedding vectors
converge to the global optimal solution.

A. The Global Optimal Solution Constraints

While the gradient ascent formulas in the previous section
result in the learning rule for one-step updating, it is desirable
to know the properties of the global optimal solutions for
quantitative analysis and reasoning: We concern about not
only the rules to update input and output vectors, but also
the final results of them.

To do this, we will first reorder the terms by putting
together all the context words for each word. That is, we
will reform E as:

E =
1
T

T

∑
t=1

∑
−c≤ j≤c, j 6=0

log p̂(wt+ j|wt)

=
1
T

W

∑
ws=1

W

∑
w=1

nws,w · log p̂(w|ws)

=
1
T

W

∑
ws=1

log

(
W

∏
w=1

p̂(w|ws)
nws ,w

)
Here, nws,w is the number of times word w appears in the

radius-c, center-removed window of word ws throughout the
training corpus (the counting is overlapping: if at time step
t, wt = w appears in two overlapping windows of two nearby
words, then wt = w will be counted twice). Then, the global
optimal problem of the skip-gram model can be defined as:

Given the word training corpus {w1, · · · ,wT} and its cor-
responding dictionary D = {w1, · · · ,wW}, we want to find an
input and output vector set {vw,v′w}Ww=1 with respect to each
word w in the dictionary D , such that under the definition

p̂(w|ws) =
exp(v′w

T vws)

∑
W
w̃=1 exp(v′w̃

T vws)

for any two words w,ws ∈D , the average log probability

E =
1
T

W

∑
ws=1

log

(
W

∏
w=1

p̂(w|ws)
nws ,w

)
(6)

is maximized.
Maximizing formula (6) directly is difficult. So, we are

seeking for maximizing each term in it. That is, given a fixed
training corpus {w1, · · · ,wT} (and hence a fixed dictionary
D = {w1, · · · ,wW} and fixed nws,w for w = 1, · · · ,W ), we
want to maximize ∏

W
w=1 p̂(w|ws)

nws ,w for each word ws ∈D .
By the definition of p̂(w|ws), we can see that no matter

what the vector set is, 0 ≤ p̂(w|ws) ≤ 1 is always true for
any two words w, ws; and ∑

W
w=1 p̂(w|ws) = 1 is always true

for any word ws.
Therefore, the problem to maximizing ∏

W
w=1 p̂(w|ws)

nws ,w

for each specific word ws is equivalent to a constrained

optimization problem that can be directly solved by the
method of Lagrange Multiplier: Given a set of integers
{n1,n2, · · · ,nW} (nw = nws,w for w = 1, · · · ,W ), we want to
find W non-negative real numbers {p1, p2, · · · , pW} with the
constraint g(p1, p2, · · · , pW ) = 1−∑

W
w=1 pw = 0, so that the

product
f (p1, p2, · · · , pW ) = pn1

1 pn2
2 · · · p

nW
W

is maximized.
Now, define the Lagrange function to be:

L (p1, p2, · · · , pW ,λ )= f (p1, p2, · · · , pW )+λg(p1, p2, · · · , pW ).

According to the method of Lagrange Multiplier, if
{p̂1, p̂2, · · · , p̂W} is a solution to the initial optimization
problem with constraint, then there exists a λ̂ such that

∇p1,··· ,pW ,λ L (p1, p2, · · · , pW ,λ ) = 0

at (p̂1, p̂2, · · · , p̂W , λ̂ ).
Solving the above formula, we obtain a system of equa-

tions with W +1 equations and W +1 variables:

(
n1 pn1−1

1

)
pn2

2 · · · p
nW
W −λ = 0

pn1
1

(
n2 pn2−1

2

)
· · · pnW

W −λ = 0
...

pn1
1 pn2

2 · · ·
(

nW pnW−1
W

)
−λ = 0

1−∑
W
w=1 pw = 0

Taking the first two equations, we can get that(
n1 pn1−1

1

)
pn2

2 · · · p
nW
W = pn1

1

(
n2 pn2−1

2

)
· · · pnW

W = λ .

Dividing by the common factors, we can obtain that(
n1 pn1−1

1

)
pn2

2 = pn1
1

(
n2 pn2−1

2

)
, which indicate that n1 p2 =

n2 p1. That is, p1 : p2 = n1 : n2, which can be directly
generalized as pw : pu = nw : nu for any w,u = 1, · · · ,W .
Therefore, we can obtain that p1 : p2 : · · · : pW = n1 : n2 :
· · · : nW . Finally, taking the last equation 1−∑

W
w=1 pw = 0,

we can get that

pw =
nw(

∑
W
w̃=1 nw̃

) for w = 1, · · · ,W.

But taking each nw back to nws,w, we can easily see that

nw(
∑

W
w̃=1 nw̃

) = nws,w(
∑

W
w̃=1 nws,w̃

) = nws,w

2c ·nws

,

where nws is the number of times the word ws appears in the
training corpus. Now, notice that the term nws,w/

(
2c · nws

)
means: the number of times word w appears in the context
window of the word ws over the total amount of context the
word ws has. That is, the probability of the word w appears
in the radius-c context window of the word ws, which can be
regarded as a ground-truth probability decided by the training
corpus. We use pc(w|ws) to represent this probability.



As a result, we obtained the solution on maximizing
∏

W
w=1 p̂(w|ws)

nws ,w for each word ws ∈ D . That is, we want
the vector set satisfices:

p̂(w|ws) =
exp(v′w

T vws)

∑
W
w̃=1 exp(v′w̃

T vws)
=

nws,w

2c ·nws

= pc(w|ws).

This means that: In order to maximize ∏
W
w=1 p̂(w|ws)

nws,w

for each word ws, the input and output vectors should make
the estimated probability p̂(w|ws) coincide with the ground
true probability pc(w|ws) for all the word w in the dictionary.

As a result, here we provide our conclusion on the global
optimal solution of the skip-gram model with word2vec:

Given the word training corpus {w1, · · · ,wT} and its
corresponding dictionary D = {w1, · · · ,wW}, the average log
probability

E =
1
T

T

∑
t=1

∑
−c≤ j≤c, j 6=0

log p̂(wt+ j|wt)

of the skip-gram model is maximized, when the input and
output vector set {vw,v′w}Ww=1 makes the estimated probability
p̂(wO|wI) equal to the ground-truth probability pc(wO|wI) for
any two words wI , wO in the dictionary. That is,

p̂(wO|wI) =
exp(v′wO

T vwI )

∑
W
w=1 exp(v′w

T vwI )
=

nwI ,wO

2c ·nwI

= pc(wO|wI) (7)

for any wI ,wO ∈D , where nwI ,wO is the number of times the
word wO appears in the radius-c, center-removed window of
the word wI throughout the training corpus, and nwI is the
number of times the word wI appears in the training corpus.

However, note that formula (7) is only a constraint based
on the inner products between input and output vectors. It
does not specify the exact positions in the vector space,
which is somehow typical in many optimization projects
[20] [16]. Actually, there are infinite number of vector sets
satisfying formula (7): If V = {vw,v′w}Ww=1 satisfies formula
(7), then any rotation of V also does. The specific vector set
V obtained after training depends on the initial condition of
vectors.

B. Experimental Results

In this subsection, we shall first provide the experimental
results obtained on a toy training corpus, the words of the
song little star, to support our analysis on the global optimal
solution constraints.

This song goes like: “Every person had a star, every
star had a friend, and for every person carrying a star there
was someone else who reflected it, and everyone carried this
reflection like a secret confidante in the heart.” Based on this
toy corpus, we will strictly implement formula (1) to compute
p̂(wO|wI) in the skip-gram model. We set c = 2 and then go
over the song for 500 times to maximize formula (2).

After that, taking the word “every” as an example, we
look at both the ground-truth probability p(w|“every”) and
the estimated one p̂(w|“every”) for all the word w appeared
in the corpus: We can see that the word “every” appears three
times in the corpus. Hence, nevery = 3 and 2c · nevery = 12.

Then, we just count nevery,w for each word w in order to get
p(w|“every”) = nevery,w/(2c · nevery). After that, we read out
all the trained vectors vw, v′w for each word w to compute
p̂(w|“every”) based on formula (1). The result is in Table I:

TABLE I
THE GROUND-TRUTH PROBABILITY AND ESTIMATED PROBABILITY FOR

THE SKIP-GRAM MODEL TRAINED ON THE TOY CORPUS LIT T LE STAR.

Word w p(w|every) p̂(w|every) Word w p(w|every) p̂(w|every)
star 0.1667 0.1718 friend 0.0000 0.0095
had 0.1667 0.1713 reflection 0.0000 0.0092

person 0.1667 0.1644 it 0.0000 0.0068
and 0.0833 0.0917 secret 0.0000 0.0062

a 0.0833 0.0893 was 0.0000 0.0061
for 0.0833 0.0886 like 0.0000 0.0052

carrying 0.0833 0.0865 everyone 0.0000 0.0046
every 0.0000 0.0137 confidance 0.0000 0.0046
this 0.0000 0.0109 heart 0.0000 0.0046
the 0.0000 0.0105 who 0.0000 0.0043

there 0.0000 0.0103 someone 0.0000 0.0043
else 0.0000 0.0100 carried 0.0000 0.0040
in 0.0000 0.0096 reflected 0.0000 0.0018

And we provide the graph of p(w|“every”) and
p̂(w|“every”) with respect to words w ordered as in above:

Fig. 1
THE GROUND-TRUTH AND ESTIMATED PROBABILITIES BASED ON THE

WORD “EVERY”.

Based on the table and the graph, we can see that after
training, the input and output vectors indeed converge to a
stage satisfying the constraints of global optimal solution.

Then, we shall provide our experimental results obtained
from a big training corpus. We use an optimized word2vec
code provided online by the TensorFlow group [19]. Our
training corpus is dataset Text8, which consists of articles in
English Wikipedia [5].

After the vector set {vw,v′w}Ww=1 is trained, we shall choose
a specific word ws to compute p(w|ws) and p̂(w|ws) for
the first 10,000 most frequent words w in the dictionary.
We use Sws : {pu|ws = p(wu|ws)}10000

u=1 and Ŝws : {p̂u|ws =
p̂(wu|ws)}10000

u=1 to represent the value set we obtained.
Then, regarding Sws and Ŝws as two sample sets, we shall

compute the correlation coefficient between the samples in



them. That is:

corrws =
∑

10000
u=1 (pu|ws − p̄ws)(p̂u|ws − ¯̂pws)√

∑
10000
u=1 (pu|ws − p̄ws)

2 ·∑10000
u=1 (p̂u|ws − ¯̂pws)

2
, (8)

where p̄ws =
∑

10000
u=1 pu|ws

10000 and ¯̂pws =
∑

10000
u=1 p̂u|ws

10000 are the means
of the samples in Sws and Ŝws respectively.

The reason for us to calculate the correlation in such a
way is that, the difference between p(wO|wI) and p̂(wO|wI)
for each pair of word (wI ,wO) appears to be chaotic in our
experiments. We believe that the complexity of the big-data
and the stochastic ambiguity caused by negative sampling
shall generate noise upon the mathematical regularities,
which makes the magnitude of p(wO|wI), p̂(wO|wI) and
p(wO|wI)− p̂(wO|wI) move out of their initial ratio. Hence,
statistical methods are required to capture the relationship
between p(wO|wI) and p̂(wO|wI). We fix the input word wI =
ws since we can then make all the estimated probabilities
p̂(wu|ws) share the same denominator ∑

W
w=1 exp(v′Tw vws).

We choose 18 specific words as ws, including 6 nouns,
6 verbs and 6 adjectives. The results on their correlation
coefficients are shown in Table II:

TABLE II
THE CORRELATION COEFFICIENTS BETWEEN THE GROUND-TRUTH

PROBABILITY AND THE ESTIMATED PROBABILITY OF EACH WORD ws

Word ws corrws Word ws corrws Word ws corrws
water 0.3558 run 0.3433 smart 0.3327
man 0.3230 play 0.3125 pretty 0.4039
king 0.3169 eat 0.3879 beautiful 0.3074
car 0.3300 drink 0.3507 dark 0.3209
bird 0.2700 fly 0.2886 high 0.3859
war 0.3990 draw 0.2730 low 0.3707

Since there are 10000 wu participating in the computation
of corrws for each ws, a correlation coefficient around 0.3 to
0.4 is significant. That is, for a fixed word ws, there exists
a linear relationship between the ground-truth probability
p(wu|ws) and the estimated probability p̂(wu|ws). And hence,
the linear correlation: p(wO|wI) = a · p̂(wO|wI) + b can be
seen from the ambiguity of ws, which is a strong support to
our stated formula (7) in subsection A.

Based on the results from both the toy corpus and the
big dataset, we can see that our global optimal solution
constraints on the vectors in word2vec is correct.1

C. Connections to the Gradient Ascent Formulas

Based on our results so far, researchers may ask whether
the vectors would truly converge to the optimal solution
under the gradient ascent formulas. The answer is yes and
we shall show it in this subsection.

According to the gradient formula of the input vector vws

in Section III, we can furthermore obtain that:

1Our work are open-source. Researchers can find our codes and datasets
on our website: https://github.com/canlinzhang/IJCNN-2019-paper.

∂E
∂vws

=
1
T

T

∑
t = 1,wt = ws

∑
−c≤ j ≤ c, j 6= 0

(
v′wt+ j
−

W

∑
w=1

p̂(w|ws)v′w

)

=
1
T

T

∑
t = 1,wt = ws

 ∑
−c≤ j ≤ c, j 6= 0

v′wt+ j

−2c

(
W

∑
w=1

p̂(w|ws)v′w

)
=

1
T

 T

∑
t = 1,wt = ws

∑
−c≤ j ≤ c, j 6= 0

v′wt+ j

−2cnws

(
W

∑
w=1

p̂(w|ws)v′w

)
Setting nws,w and nws to have the same meaning as in
subsection A, we can get that:

∂E
∂vws

=
1
T

((
W

∑
w=1

nws,w · v′w

)
−

(
W

∑
w=1

2c ·nws · p̂(w|ws)v′w

))

=
1
T

W

∑
w=1

(nws,w−2c ·nws · p̂(w|ws))v′w

= 2c · nws

T
·

W

∑
w=1

(
nws,w

2c ·nws

− p̂(w|ws)

)
v′w

Note that nws
T is actually the ground-truth occurring prob-

ability of the word ws based on the training corpus, which
we denote as p(ws). Also, taking nws,w

2c·nws
= p(w|ws) as in

subsection A, we have that:

∂E
∂vws

= 2c · p(ws) ·
W

∑
w=1

(
p(w|ws)− p̂(w|ws)

)
v′w

Therefore, the updating rule of the input vector vws under
this gradient ascent formula will be:

vnew
ws = vold

ws +η ·2cp(ws)·

(
W

∑
w=1

(
p(w|ws)− p̂(w|ws)

)
v′w

)
(9)

Intuitively speaking, this formula shows that in the skip-
gram model, the wider the context window is, the faster
all the input vectors will change. And the more frequent
a word is, the fast its input vector may change. How-
ever, the essential part of formula (9) is the summation
∑

W
w=1

(
p(w|ws)− p̂(w|ws)

)
v′w, in which lies the connection

between the gradient ascent rule of the input vector and the
global optimal solution constraints.

For any two fixed words w and ws, we have that

v′Tw vnew
ws =v′Tw

[
vold

ws +η ·2cp(ws) ·
( W

∑
w̃=1

(
p(w̃|ws)− p̂(w̃|ws)

)
v′w̃
)]

=v′Tw ·
[
vold

ws +2cη p(ws) ·
(

p(w|ws)− p̂(w|ws)
)

v′w

+2cη p(ws) ·
W

∑
w̃ = 1, w̃ 6= w

(
p(w̃|ws)− p̂(w̃|ws)

)
v′w̃
]

=v′Tw vold
ws +2cη p(ws) ·

(
p(w|ws)− p̂(w|ws)

)
||v′w||22

+2cη p(ws) ·
W

∑
w̃ = 1, w̃ 6= w

(
p(w̃|ws)− p̂(w̃|ws)

)
v′Tw v′w̃.



It is easy to see that |v′Tw v′w̃|=
∣∣∣∑K

i=1 v′wi
v′w̃i

∣∣∣�||v′w||22 is true
for almost all words w̃. This is because the two output vectors
v′w and v′w̃ can hardly be in the same direction of the vector
space. As a result, terms in the summation ∑

K
i=1 v′wi

v′w̃i
may

largely cancel each other. Besides, we claim that the sign of
(p(w̃|ws)− p̂(w̃|ws)), the magnitude of (p(w̃|ws)− p̂(w̃|ws))
and the sign of v′Tw v′w̃ should be independent with respect
to each other due to the complexity of words’ contexts and
the random initialization of vectors. This means that terms
in the summation ∑

W
w̃=1,w̃6=w

(
p(w̃|ws)− p̂(w̃|ws)

)
v′Tw v′w̃ will

not accumulate towards positive (or negative). Instead, these
terms will largely cancel each other through the summation.

As a result, when the vector set {vw,v′w}Ww=1 signifi-
cantly under-estimates the conditional probability p(w|ws)
(say, p(w|ws)− p̂(w|ws) > 0.5p(w|ws)), we can infer that
the term

(
p(w|ws)− p̂(w|ws)

)
||v′w||22 is significantly larger

than ∑
W

w̃ = 1,
w̃ 6= w

(
p(w̃|ws) − p̂(w̃|ws)

)
v′Tw v′w̃. This means that

v′Tw vnew
ws > v′Tw vold

ws , and hence exp(v′Tw vnew
ws ) > exp(v′Tw vold

ws ).
That is, the numerator of p̂(w|ws) will increase after the
gradient ascent updating of vws .

On the other hand, looking at the denominator
∑

W
w̃=1 exp(v′Tw̃ vws) of the term p̂(w|ws), one can see that

due to the complexity of words’ contexts and the random
initialization of vectors, we can get two statements: First, the
number of words w̃ with exp(v′Tw̃ vnew

ws ) > exp(v′Tw̃ vold
ws ) shall

mostly equals to that with exp(v′Tw̃ vnew
ws )< exp(v′Tw̃ vold

ws ). Sec-
ond, the magnitude of

(
exp(v′Tw̃ vnew

ws )− exp(v′Tw̃ vold
ws )
)

should
be independent to the its sign. That is, the difference in each
term exp(v′Tw̃ vws) caused by updating vws should largely be
cancelled by the summation ∑

W
w̃=1 exp(v′Tw̃ vws). Hence, we

can see that the denominator of p̂(w|ws) will usually not
have an obvious change by one step updating on vws .

Based on the above analysis, we may conclude that
when p̂(w|ws) is significantly smaller than p(w|ws), the
new p̂(w|ws) shall increase after one step updating on vws ,
assuming all other vectors are invariant. Similarly, when
p̂(w|ws) is significantly larger than p(w|ws), the new p̂(w|ws)
shall decrease after updating the input vector vws . That is,
the gradient ascent rule of the input vector vws provides an
auto-adjusting mechanism to make sure that the estimation
probability p̂(w|ws) shall gradually converge to the ground-
truth probability p(w|ws) in the training, which also makes
the input vector vws converge to a stage satisfying the global
optimal solution constraints [2].

For an output vector v′ws , the gradient is given as:

∂E
∂vw′s,i

=
1
T

T

∑
t=1


 ∑

−c≤ j ≤ c,
j 6= 0,wt+ j = ws

vwt,i

−2c
exp(v′Twsvwt )vwt,i

∑
W
ŵ=1 exp(v′Tŵ vwt )



=
1
T


T

∑
t=1

∑
−c≤ j ≤ c,

j 6= 0,wt+ j = ws

vwt,i

−2c
T

∑
t=1

exp(v′Tws vwt )vwt,i

∑
W
ŵ=1 exp(v′Tŵ vwt )

 .

Looking at the summations on the first vwt,i , it means that
if the word ws appears in the radius-c window of wt in the
training corpus, the i’th dimension of the vector vwt of wt
will be picked out for the summation. This explanation may
be difficult to accept intuitively. But if we pay attention to
each wt̃ = ws in the training corpus, we can figure out that
all the words wt within the radius-c window of wt̃ will be
picked out for the summation. As a result, this is exactly
the same as the summation on v′t+ j,i with respect to the two
conditions t = 1,wt = ws and −c ≤ j ≤ c, j 6= 0 (Only here
the summation is on the input vectors). That is:

T

∑
t=1

∑
−c≤ j ≤ c,

j 6= 0,wt+ j = ws

vwt,i =
T

∑
t = 1,

wt = ws

∑
−c≤ j ≤ c,

j 6= 0

vwt+ j,i =
W

∑
w=1

nws,w ·vwi ,

where nws,w is defined the same to be the number of times
word w appears in the window of ws throughout the corpus.

Now look at the second summation: Although it is a
summation from t = 1 to T , we shall figure out that each
term in the summation actually does not depend on time
step t. It only depends on the vector vw of the word w at
time step t. That is:

T

∑
t=1

exp(v′Twsvwt )vwt,i

∑
W
ŵ=1 exp(v′Tŵ vwt )

=
T

∑
t = 1,wt = w

exp(v′Twsvw)vwi

∑
W
ŵ=1 exp(v′Tŵ vw)

=
T

∑
t = 1,wt = w

p̂(ws|w)vwi =
W

∑
w=1

nw · p̂(ws|w)vwi ,

where nw is the number of times the word w appears in the
training corpus.

Therefore, taking the above formulas into the gradient of
the output vector v′ws and applying similar concepts and tricks
as computing the gradient of input vector vws , we have that:

∂E
∂vw′s,i

=
1
T

((
W

∑
w=1

nws,w · vwi

)
−2c

(
W

∑
w=1

nw · p̂(ws|w)vwi

))

=
1
T

W

∑
w=1

(
nws,w−2c·nw·p̂(ws|w)

)
vwi=

W

∑
w=1

2c·nw

T

( nws,w

2c ·nw
− p̂(ws|w)

)
vwi

=
W

∑
w=1

2c · p(w)
(

p(ws|w)− p̂(ws|w)
)

vwi

Although it may appear to be straightforward if we multi-
ply the term p(w) into the conditional probabilities p(ws|w)
and p̂(ws|w), this multiplication will lead to p(w) · p̂(ws|w),
which is a multiplication between the ground-truth proba-
bility and the estimated conditional probability, making no
sense intuitively. As a result, we just keep the ground-truth
probability p(w) and obtain another gradient formula for the
entire output vector v′ws :

∂E
∂vw′s

=
W

∑
w=1

2c · p(w)
(

p(ws|w)− p̂(ws|w)
)

vw.

Therefore, the gradient ascent updating rule of the output



vector v′ws will be:

v′new
ws = v′old

ws +η

W

∑
w=1

2c · p(w)
(

p(ws|w)− p̂(ws|w)
)

vw. (10)

Similarly to the analysis on the gradient ascent formula of
the input vector vws in this subsection, we have that:

v′new
ws

T vw=
[
v′old

ws +η

W

∑
w̃=1

2c · p(w̃)
(

p(ws|w̃)− p̂(ws|w̃)
)

vw̃

]T
vw

= v′old
ws

T
vw +2cη p(w)

(
p(ws|w)− p̂(ws|w)

)
||vw||22

+
W

∑
w̃=1,w̃6=w

2cη p(w̃)
(

p(ws|w̃)− p̂(ws|w̃)
)

vT
w̃vw

Once again, we can see that: |vT
w̃vw| � ||vw||22 due to

the complexity of the words’ context as well as the ran-
dom initialization of the embedding vectors; And terms
in the summation ∑

W
w̃=12cη p(w̃)

(
p(ws|w̃)− p̂(ws|w̃)

)
vT

w̃vw

will largely cancel each other due to the independencies
among the sign of

(
p(ws|w̃)− p̂(ws|w̃)

)
, the magnitude of

p(w̃)
(

p(ws|w̃)− p̂(ws|w̃)
)

and the sign of vT
w̃vw. However,

note that the term p(w̃) is the ground-truth probability of
each word w̃, which varies significantly from frequent to
rare words. Hence, we can see that 2cη p(w)

(
p(ws|w)−

p̂(ws|w)
)
||vw||22 > ∑

W
w̃=12cη p(w̃)

(
p(ws|w̃) − p̂(ws|w̃)

)
vT

w̃vw

is more likely to be true when p(w) is big and p̂(ws|w)
is significantly smaller than p(ws|w). For rare words w with
small p(w), they have a chance to satisfy this claim after
enough many steps of updating on the output vector v′ws . And
our claim is equivalent to exp(v′new

ws
T vw)> exp(v′old

ws

T vw).
Also, we can easily see that the denominator ∑

W
w̃=1 v′w̃vw

of p̂(ws|w) will have no change after the updating on v′ws
since it is irrelative to v′ws at all. As a result, we conclude
that for any word w and the fixed word ws, after enough
many steps of updating on the output vector v′ws , p̂(ws|w)
will increase if p̂(ws|w) is significantly smaller than p(ws|w)
at beginning. Similarly, p̂(ws|w) will decrease after enough
many steps of updating on the output vector v′ws , if p̂(ws|w)
is significantly larger than p(ws|w) at beginning. Again, this
is an auto-adjusting mechanism making v′ws converge to a
stage satisfying the global optimal solution constraints.

After all, combining the adjusting mechanisms of the
gradient ascent rules on input and output vectors, we can see
that the vectors will dynamically works together to make the
estimation probability p̂(wO|wI) converge to the ground-truth
probability p(wO|wI) for any word wI , wO in the dictionary,
which also means to converge to the global optimal solution
of the skip-gram model.

V. CONCLUSION AND FUTURE WORK

In this work, we have provided a comprehensive mathe-
matical analysis on the skip-gram model. We have derived
the gradient ascent formulas for the input and output vectors,
then connected these formulas to the competitive learning
and the SGNS model. After that, we have provided the global

optimal solution constraints on the vectors of the skip-gram
model, with the support from experimental results. Finally,
we have done analysis showing that under the gradient ascent
formulas, the word embedding vectors of the skip-gram
model will indeed converge to a stage satisfying the global
optimal solution constraints.

In the future, we want to provide even deeper analysis
showing quantitatively why the analogue relationships
such as vman − vwoman ≈ vking − vqueen are satisfied by the
word2vec vectors. Finally, based on the understanding of
the state-of-the-art language model for deep learning, we
hope to come up with a composite language model applying
phrase embeddings, which can capture the meanings of
phrases and semantic units [15].
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