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Abstract—Although stance detection has made great 

progress in the past few years, it is still facing the problem of 

unseen targets. In this study, we investigate the domain 

difference between targets and thus incorporate attention-based 

conditional encoding with adversarial domain generalization to 

perform unseen target stance detection. Experimental results 

show that our approach achieves new state-of-the-art 

performance on the SemEval-2016 dataset, demonstrating the 

importance of domain difference between targets in unseen 

target stance detection.  

Keywords—stance detection, adversarial domain 

generalization, transfer learning, attention 

I. INTRODUCTION  

Stance detection, also known as stance classification, or 

stance identification, aims to identify the stance of a given 

sentence or text towards a target. As shown in Fig.1, stance 

detection is actually a ternary classification task and typical 

types of stance include favor, against, and neutral. Since 

social media sites like Twitter and Weibo, contain many user 

comments with rich stances towards specific targets, stance 

detection is of great value to many social media processing 

applications such as public opinion analysis and user analysis. 

Previous work [1], [2], [3] mainly focuses on training and 
testing on the same targets. In open applications, however, it 

is impossible to build a labeled or even unlabeled dataset 

containing all possible targets. Hence, in this paper, we focus 

on unseen stance detection in which targets in the test dataset 

are unseen in the training dataset. For example, the test set 

may contain the target "Hillary", while the training set only 

contains "Atheism" and "Feminist Movement". 

To deeply exploit the relationship between the sentence 

and its target, Augenstein et al. [4] proposed a bi-directional 

conditional encoding model. It first uses Long Short Term 

Memory (LSTM) [5] to encode the target, and then encodes 

the sentence with another LSTM conditioned on the target 

encoding. Besides, this process is carried out in both 

directions. Its performance in unseen targets stance detection 

significantly exceeds the baseline model. 

We notice that, however, the distribution of data varies 
among different targets. For example, the word "god" is 

frequently used in sentences with the target “Atheism”, while 

"carbon" is frequently used in sentences with the target 

“Climate Change is a Real Concern”. Based on this 

observation, it is arguable that conditional encoding may 

generalize well to unseen targets for it may overuse target 

specific features. 

Naturally, we regard each target as a domain and our 

model learned labeled samples from multi-source domains 

during the training stage, but both samples from source 

domains and target domains themselves are unseen during 

training, which is commonly called the domain 
generalization problem [6]. 

If it cannot be distinguished which source domain 

representations belong to, it is supposed to generalize to 

unseen target domains. Hence, in this paper, we introduce 

adversarial domain generalization to encourage the model to 

learn representations that can generalize across multiple 

source domains. Specifically, we first obtain sentence 

representations through an attention-based bi-directional 

conditional encoding LSTM, and then implement sentence-

level adversarial training to keep the representations domain-

invariant. Experiments show that the proposed models with 
domain-invariant representations outperform their baselines. 

To sum up, our contributions are as follows: 

• To the best of our knowledge, this work may be the 

first attempt to investigate the domain difference 

Fig. 1. An example of stance detection 



problem for unseen target stance detection proposed 

by Augenstein et al. [4]. 

• Furthermore, we incorporate attention-based 

conditional encoding with adversarial domain 

generalization to perform unseen target stance 

detection. 

• Finally, we conduct experiments for unseen target 

stance detection over the twitter stance detection 

dataset [7]. The experimental results show that our 

model outperforms the corresponding strong baselines. 

II.  RELATED WORK 

A. Stance Detection 

Mohammad et al. [7] built a Twitter dataset for stance 

detection. This dataset has greatly promoted the research on 

stance detection. Some work focuses on task settings where 

targets are the same between the training and test datasets [1], 
[2], [3], while other research explores transfer learning from 

one domain to another [8], [9], [10]. In the present study, we 

focus on transfer learning from multiple source domains to 

unseen target domains, which is more challenging because 

the model cannot learn features directly from target domains 

during training. 

Augenstein et al. [4] proposed to deal with unseen target 

stance detection using conditional encoding. Following this 

study, we introduce adversarial domain generalization to 

improve the generalization capability of the conditional 

encoding model when classifying sentences with unseen 

targets. As far as we know, we are the first to follow this task. 

B. Adversarial Training 

Adversarial training for domain adaptation, first proposed 

by Ganin et al. [11], has been widely applied in NLP tasks, 

including sentence classification, sequence tagging, and text 

generation.  Li et al. [12] propose an Adversarial Memory 

Network (AMN) to offer direct visualization of models in 

cross-domain sentiment classification, which outperforms 

state-of-the-art methods at the time. Chen et al. [13] apply 

adversarial loss and domain discriminators to specific shared 

models using RNNs for Chinese word segmentation (CWS). 

Their experiments show that joint learning on multiple 

corpora yields a significant improvement compared to 

learning separately. Yang et al. [14] introduce adversarial 

training for Chinese named entity recognition with crowd 

annotations to make full use of the noisy sequence labels from 

multiple annotators. They show that their system achieves 

better performance than the baseline systems. Li et al. [15] 
propose a conditional sequence generative adversarial 

training for dialogue generation. 

Xu et al. [10] first introduce adversarial learning for 

stance detection to tackle the problem where there is limited 

labeled data in the target domain, but sufficient labeled data 

in the source domain, and experiment results show that their 

model outperforms their best baseline.  

Although the aforementioned as mentioned above 

methods can learn both domain invariant and specific 

features are required that target domains are available during 

the training stage. To remedy this shortcoming, in the present 
study we focus on unseen stance detection under the setting 

that multiple source domains labeled data are available, yet 

target domains remain unseen during the training stage. 

C. Domain Generalization 

While domain adaptation is widely explored in both CV 

and NLP fields [16], [17], [18], domain generalization is still 
at its early stage, especially in the NLP field. Early research 

mainly uses all information from the training domains or 

datasets to learn a shared invariant representation. Ghifary et 

al. [19] present a new feature learning algorithm, namely the 

Multi-Task Autoencoder (MTAE), that can provide good 

generalization performance for cross-domain object 

recognition. Muandet et al. [20] propose a kernel-based 

optimization algorithm named Domain-Invariant Component 

Analysis (DICA) that can learn an invariant transformation 

by minimizing the dissimilarity. However, these approaches 

fail to learn shared features among different source domains. 
Hence, recent research [21], [22] introduces adversarial 

learning to encourage shared parameters to obtain domain 

invariant features. In this paper, we follow the latter method 

to tackle the unseen stance detection problem. 

We consider domain generalization as an important 

problem in the NLP field, based on the observation that in a 

wide range of tasks, models trained in specific domains could 

be used to label corpora from unseen domains in downstream 

tasks. For example, the CoreNLP tools [23] are widely used 

to label corpora from various unseen domains that are 

inevitably different from source domains [24], [25]. However, 

only a handful of NLP work has been reported on domain 
generalization [22], [26], [27]. Fried et al. [27] incorporate 

word embeddings and BERT [28] to improve the 

performance of Neural Constituency Parsers in all source 

domains, and thus exploit structured output prediction of 

output trees to better generalize to out-of-domain corpora. 

Marzinotto et al. [22] apply adversarial training to make 

semantic parsing robust on both in-domain data and out-of-

domain data. Different from these studies [29], [30], [31], the 
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present study is focused on domain generalization on the 

sentence classification problem. 

III. THE BASELINE MODEL 

A. Conditional Encoding 

To deeply exploit the relationship between a sentence and 

its target, we employ conditional encoding to obtain hidden 

states. 

First, we use the LSTM to encode the target: 

[𝒉⃗⃗ 𝑖
target

𝒄⃗ 𝑖
target] = LSTM⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗

target(𝒙𝑖
target

, 𝒉⃗⃗ 𝑖−1
target

, 𝒄⃗ 𝑖−1
target) (1) 

where 𝒉⃗⃗ 𝑖
target

, 𝒄⃗ 𝑖
target

 are the hidden vector and the cell vector 

of the LSTM at the time i, respectively. 𝒙𝑖
target

 is the word 

vector of the target at the time i, and → means forward 

encoding. 

Then, we pass the last cell vector of LSTM⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
target to the 

sentence LSTM, obtaining the conditional encoding of the 

sentence.: 

[𝒉⃗⃗ 1
senten𝒄⃗ 1

senten] = LSTM⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗
senten(𝒙1

senten , 𝒉⃗⃗ 𝑀
target

, 𝒄⃗ 𝑀
target) (2) 

[𝒉⃗⃗ 𝑗
senten𝒄⃗ 𝑗

senten] = LSTM⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗
senten(𝒙𝑗

senten , 𝒉⃗⃗ 𝑗−1
senten, 𝒄⃗ 𝑗−1

senten)(3) 

Where M is the length of a target. 

Furthermore, to enable the model to capture both past and 

future contexts, we use BiLSTM [32]. Similarly, the reverse 

encoding process is as follows: 

[𝒉⃗⃗⃐𝑖
target

𝒄⃗⃐𝑖
target] = LSTM⃐⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

target(𝒙𝑖
target

, 𝒉⃗⃗⃐𝑖+1
target

, 𝒄⃗⃐𝑖+1
target) (4) 

[𝒉⃗⃗⃐𝑁
senten𝒄⃗⃐𝑁

senten] = LSTM⃐⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
senten(𝒙𝑁

senten , 𝒉⃗⃗⃐1
target

, 𝒄⃗⃐1
target) (5) 

[𝒉⃗⃗⃐𝑗
senten𝒄⃗⃐𝑗

senten] = LSTM⃐⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
senten(𝒙𝑗

senten , 𝒉⃗⃗⃐𝑗+1
senten, 𝒄⃗⃐𝑗+1

senten)(6) 

where N is the length of a sentence. 
Finally, we concatenate the hidden vectors of the sentence 

from both directions: 

𝒉𝑖
senten = [𝒉⃗⃗ 𝑖

senten; 𝒉⃗⃗⃐𝑖
senten] (7) 

where 𝒉𝑖
senten is the hidden vector of the LSTM at the time i, 

and ; means concatenation of two vectors.  

B. Domain-Related Attention 

Many sentences contain salient words to which the model 

should pay more attention. Hence, we apply the attention 

mechanism to extract salient words. Based on the observation 
that salient words vary among different domains, attention 

scores are computed based on the target representation and 

each hidden vector of the sentence. Specifically, we use 

additive attention [33] as follows: 

𝒂𝑖 = 𝒗𝑻 tanh(𝑾𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛[𝒉𝑖
target

; 𝒉𝑖
senten]) (8) 

𝛼𝑖 =
exp(𝒂𝑖)

∑ exp(𝒂𝑗)𝑗

(9) 

where 𝒉target  is the concatenation of 𝒉⃗⃗ 𝑀
target

 and 𝒉⃗⃗⃐1
target

, 

𝛼𝑖 ∈ (0, 1)  is the attention score for each word in the 

sentence, and 𝑾attention  , v are both trainable weight 

matrices. 

Finally, we can obtain the sentence representation by 

calculating the weighted sum of sentence hidden vectors: 

𝒔 = ∑𝛼𝑖

i

𝒉𝑖
senten (10) 

C. Stance Classifier 

The sentence representation 𝒔 is passed to a single-layer 

MLP with rectified linear units (ReLU) non-linearity and [34] 

the resulting vector is passed through a linear transformation 

followed by a softmax layer to obtain the stance category: 

𝒚 = ReLU(𝑾MLP𝒔) (11) 

𝒑stance = softmax(𝑾stance𝒚) (12) 

where 𝒑stance is the predicted probability of the stance, and 

𝑾MLP and 𝑾stance  are trainable weight matrices. 

IV. ADVERSARIAL DOMAIN GENERALIZATION 

We follow the setting of most domain generalization 

tasks that contain a large number of labeled samples from 

several source domains, but no labeled or unlabeled sample 

from the target domain during training [19], [20], [21]. Hence, 

the model cannot directly learn how to transfer knowledge 

from source domains to target domains. A common approach 

is to encourage the model to learn shared knowledge cross 

different source domains under the assumption that shared 
knowledge can be generalized to unseen target domains. To 

approach this, we apply adversarial neural networks as a 

regularization to the model. 

Yet there are two problems to investigate: (1) Should the 

adversarial part be placed over the conditional or independent 

encoding sentence representation? (2) Can the model benefit 

from target-specific representations when tested on target 

domains? To examine the above two problems, we propose 

three candidate models in the following sections. 

A. Target Classifiers over Conditional Encoding 

In the present study, conditional encoding is used to 

deeply incorporate target information into sentence 

representations, while target classifiers with adversarial 

learning are to reduce target-specific information. So it seems 

paradoxical to place the latter over the former. However, we 

argue that they will cooperate well together, as illustrated by 

a toy example of the sentence “I support abortion” with the 
target “Abortion”. We hope that once the model has learned 

that the sentence favors the target “Abortion”, it can also 

generalize to sentences with unseen targets (e.g., "I support 

Hillary" with the target "Hillary"). To achieve this 



generalization capability, the model should be sensitive to the 

target information when encoding sentences so that it could 

realize that “abortion” in the sentence actually refers to the 

target. Furthermore, such sentence representations should be 

highly abstract and domain-invariant. Specifically, in the 

above example, the stance classifier should pay attention to 

“support” rather than “Hillary”. Hence it makes sense to 

place the target classifier over conditional encoding. 

For each target, a corresponding binary classifier is set to 

predict whether the sentence belongs to the target. They are 

all placed over the sentence representation 𝒔 as Fig.2 shows, 

aiming to keep 𝒔  target-invariant. As such, each target 

classifier is a linear transformation of 𝒔 , followed by a 

softmax layer as follows: 

𝒑i
target

= softmax(𝑾i
target

𝒔 + 𝒃) (13) 

where 𝒑i
target

∈ ℝ2  is the predicted probability of whether 

the input vector 𝒔 belongs to target i, 𝑾i
target

 is a trainable 

matrix which is not shared among different targets, and 𝒃 ∈
ℝ2 is a trainable bias. 

B. Target Classifiers over Independent Encoding 

We also implement the model with target classifiers over 

independent encoding as a candidate model to check whether 

independent encoding models could also benefit from domain 

invariant representations. 

First, we make some modifications to the Concat model 

proposed by Augenstein et al. [4]. Different from the original 

Concat model, we employ BiLSTM to encode sentences and 
targets independently and further use max-pooling to produce 

two separate vectors for sentences and targets. Then we 

concatenate the two vectors. The detailed process is shown in 

formulae (14), (15), and (16). 

𝒔target = MaxPlooing(𝒉0
target

, 𝒉1
target

, . . . , 𝒉𝑀
target) (14) 

𝒔senten = MaxPlooing(𝒉0
senten , 𝒉1

senten , . . . , 𝒉𝑀
senten) (15) 

𝒔 = [𝒔target; 𝒔senten] (16) 

where 𝒉𝑖
target

, 𝒉𝑖
senten  are max-pooled vectors of the target 

and the sentence, respectively. 

Thus, we obtain the stance in the same way as formulae 
(11) and (12). For each target, s is transformed with a non-

linear transformation and softmax, as illustrated above. 

Finally, we place target classifiers over 𝒔. Here only the 

max-pooled vector of sentences needs to be domain-invariant, 

so the subsequent process of target classification is the same 

as formula (13). 

C. Domain Specific Representations 

The stance classifier in the above models only depends on 

domain-invariant representations. However, it remains 

unclear whether domain-specific representations work. To 

this end, we add an additional bi-directional conditional 

encoding LSTM with the attention mechanism as a parallel 

network, feeding with the same word embeddings, but 

without adversarial learning. Then we obtain the 

representation containing both domain-invariant and domain-

specific representations: 

𝒔 = [𝒔𝐼𝑛𝑣𝑎𝑟; 𝒔𝑆𝑝𝑒𝑐] (17) 

where 𝒔𝐼𝑛𝑣𝑎𝑟  and 𝒔𝑆𝑝𝑒𝑐  are sentence representations of 

domain-invariant and domain-specific models, respectively, 

which can be calculated using formulae (1-10). 

Finally, we place the target classifier over 𝒔 , and the 

subsequent process is the same as formulae (11) and (12). 

D. Training 

The loss function of our models consists of two parts 

namely the loss function of the stance classifier and the loss 

function of target classifiers. We use cross-entropy for both 

parts. In particular, we use binary cross-entropy for each 

target classifier: 

𝐿𝑖 = ∑[𝑑𝑖𝑗 log 𝑑𝑖𝑗̂ + (1 − 𝑑𝑖𝑗) log(1 − 𝑑𝑖𝑗̂)]

𝑁𝑖

𝑗=0

(18) 

 𝐿domain =
1

𝑇
∑𝐿𝑖

𝑇

𝑖=0

(19) 

where 𝑑𝑖𝑗 ∈ {0, 1}  denotes whether sample j belongs to 

domain i, 𝑁𝑖 is the number of samples from the i-th source 

domain, and T is the number of source domains. 
Finally, the loss function of the whole model is a linear 

combination of the stance loss and the domain loss: 

𝐿  =  𝐿stance − 𝜆 ∙ 𝐿domain (20) 

where 𝜆 is a positive hyperparameter, and 𝐿stance  is the loss 

of the stance classifier. 

To optimize L, we define 𝜃 as the set of model parameters 

related to the stance classifier, and 𝜃′ as the set of remaining 

parameters.  It's worth noting that the goal of optimization is 

for a saddle point where both 𝜃 and 𝜃′ satisfy the condition 
as follows:  

𝜃
ᨈ

  =  arg 
𝜃
min L(𝜃, 𝜃′) (21) 

𝜃′
ᨈ

 =  arg
𝜃′

max  𝐿(𝜃, 𝜃′) (22) 

where formula (21) aims to find the 𝜃 that minimizes L, while 

formula (22) aims to find the 𝜃′  that maximizes L. 

Specifically, formula (21) tries to minimize the stance 

classifier loss, and at the same time formula (22) maximizes 

the target classifier loss by shared parameters of BiLSTMs 

and attention layers. Thus, during training, the resulting 

representations of BiLSTMs and attention layers will confuse 

target classifiers, keeping learned representations domain-

invariant, and formula (22) tries to minimize the target 



 
TABLE I.  RESULTS FOR THE UNSEEN TARGET STANCE DETECTION 

Method Stance 
Dev Test 

P R F1 P R F1 

 

Concat 

FAVOR 0.325 0.2321 0.2708 0.5 0.4054 0.4478 

AGAINST 0.6075 0.7673 0.6781 0.4258 0.6622 0.5183 

Macro   0.4745   0.4831 

Concat-Invar 

FAVOR 0.3313 0.4732 0.3897 0.4866 0.6149 0.5433 

AGAINST 0.6222 0.5429 0.5799 0.4223 0.4816 0.45 

Macro   0.4848   0.4967 

Augenstein et al. (2016) - 

BiCond 

FAVOR 0.2588 0.3761 0.3066 0.3033 0.5470 0.3902 

AGAINST 0.7081 0.5802 0.6378 0.6788 0.5216 0.5899 

Macro   0.4722   0.4901 

 

BCA 

 

FAVOR 0.3356 0.4464 0.3831 0.4670 0.5743 0.5152 

AGAINST 0.6122 0.5817 0.5966 0.4181 0.4950 0.4533 

Macro   0.4899   0.4842 

 

BCA-Invar-Spec 

FAVOR 0.3537 0.4643 0.4015 0.5191 0.4595 0.4875 

AGAINST 0.6462 0.5817 0.6122 0.4496 0.5819 0.5073 

Macro   0.5069   0.4974 

 

BCA-Invar 

FAVOR 0.375 0.4286 0.4 0.5029 0.5811 0.5392 

AGAINST 0.6160 0.6621 0.6382 0.4388 0.5753 0.4978 

Macro   𝟎.𝟓𝟏𝟗𝟏∗   𝟎.𝟓𝟏𝟖𝟓∗ 

(Standard deviation in parentheses) 

∗ Improvements over BCA at 𝓅 < .05 on tweet dataset 

classifiers loss by its own parameters 𝜃′. 

We use the standard back-propagation method to train 

model parameters. To jointly implement formulae (21) and 

(22), we introduce a gradient reverse layer (GRL) between 

the sentence representation layer and the target classifier, in 

the same way as shown in the previous work on adversarial 

training [10]. 

The GRL layer forward performs an identity 

transformation as follows: 

GRL(𝒙) = 𝒙 (23) 

And during backward, the gradient is simply negated. 

V. EXPERIMENTS 

A. Dataset 

Our experiments are based on the twitter stance detection 

dataset proposed by Mohammad et al. [6], which contains a 

total of six targets, namely "Atheism", "Climate Change is a 

Real Concern", "Feminist Movement", "Legality of 

Abortion", "Trump" and "Hillary". Following Augenstein et 

al. [4], we set the first four targets as the training set, “Hillary” 

as the validation set, and “Trump” as the test set. Thus the 

training set does not include labeled or unlabeled samples 

from target domains and thereby target domains remain 

unseen in the training stage. Stance distributions of the three 

sets are shown in Table II. 

B. Setting 

For comparison, we use the same metric approach of F1 

macro-averaged over the stance FAVOR and AGAINST as 

in Augenstein et al. [4]. In addition, we use the same 

 
1 https://github.com/chncwang/N3LDG-plus 
2 https://github.com/Luoyufeichen/Dgnn-BiCond 

hyperparameters and settings for all candidate models as 

follows: (1) Word vector dimension is set to 100. (2) Hidden 

vector dimensions of bi-directional LSTMs are both set to 

200. (3) Glove vectors [35] trained under twitter data are used 

and remain fixed during the training stage. (4) Dropout [36] 

is used after the word embedding layer, after the BiLSTM 

layer, and between hidden vectors in LSTMs, and all dropout 

rates are set to 0.1. 

TABLE II.  SAMPLE DISTRIBUTION OF DATASET 

Dataset Favor Against None All 

Train 619 982 574 2175 

Dev 224 722 332 1278 

Test 148 299 260 707 

We use mini-batch stochastic gradient descent in the 

training stage, and the batch size is set to 32. To update model 

parameters, we use the ADAM optimizer [37], with a 

learning rate of 0.003 and L2 regularization of 0.01. The 
training process stops when the performance of the models 

on the validation set stops rising for 10 consecutive epochs. 

Then the best epoch is chosen according to the performances 

on the validation set. 

We use the deep learning library N3LDG++1, a powered 

version of N3LDG [38] to build and train our model, and our 

source code is available on Github2. 

C. Comparison Models 

To illustrate the performances of our proposed models, 

we introduce the following baseline models for comparison: 

• Augenstein–BiCond: Bi-directional conditional 

encoding LSTM with results reported by Augenstein 

et al. [4]. 



 

• BCA (BiCond with Attention): Attention-based Bi-

Directional conditional encoding LSTM with results 

reported by us. 

• Concat: Independent encoding Bi-LSTM proposed 
by Augenstein et al. [4] with results reported by us. 

For the unseen target stance detection task, the 

Augenstein-BiCond model achieved the best performance 

at the time, and to the best of our knowledge, it was still the 

state-of-the-art before our work, which means a strong 
baseline. Besides, to compare with our proposed models 

fairly, we also reimplemented the BCA and Concat model 

with results reported by us.  

Finally, our three versions of adversarial domain 

generalization models are marked as follows: 

• BCA-Invar: the model with the adversarial classifier 

placed over the sentence vector of the BCA model. 

• Concat-Invar: the model with the adversarial 

classifier placed over the concatenated sentence 

vectors of the Concat model. 

• BCA-Invar-Spec: the BCA-Invar model with extra 

domain-specific representations. 

D. Results and Discussion 

Table I lists results of candidate and baseline models. 

Main Results Experimental results show that our model, 
BCA-Invar yielded an F1-score 0.5191 in the validation set 

and an F1-score of 0.5185 in the test set, exceeding 

Augenstein et al. [4] by 0.0469 and 0.0284, respectively. As 

far as we know, our model achieves the best performance in 

this experimental setting. 

Domain Generalization for Conditional Encoding The 

adversarial domain generalization’s effect is illustrated 

more directly by comparing BCA-Invar with BCA since 

they use the same hyperparameters. Our BCA model 

reaches 0.4899 and 0.4842 in the validation set and test set, 

respectively, which is comparative to the Augenstein-
BiCond model (0.4722 and 0.4901). Thus, adversarial 

domain generalization improves the performance by F1 

scores of 0.0292 in the validation set, and 0.0343 in the test 

set. 

Domain Generalization for Independent Encoding The  

comparison between Concat and Concat-Invar shows that 

adversarial domain generalization can also improve the 

performance of the independent encoding model, though 

not as much as based on the conditional encoding model, 

with Concat-Invar exceeding Concat by F1 scores of 

0.0103 in the validation set, and 0.0136 in the test set. 
Is Domain-Specific Information Useful? After 

incorporating domain-specific information, BCA-Invar-

Spec reaches 0.5069 in the validation set and 0.4974 in the 

test set, both higher than BCA, but lower than BCA-Invar. 

This result may suggest that when the target domain is 

unseen in the training stage, the model can hardly benefit 

from domain-specific representations, for these 

representations can hardly generalize to unseen domains. 

E. Visualization of Attention 

   To demonstrate more intuitively why BCA-Invar can 

better generalize to unseen domains than BCA, we select 

several sentences from the test dataset whose labels are 

predicted correctly by BCA-Invar, and then visualize the 

attention layer in Fig.3, where red patches highlight the 

words that attract more attention, and the depth of the color 

indicates how much attention it attracts. Specifically, 

Target and ground truth stance labels are displayed at the 

Fig. 3.   Visualization of attention in the test set 

Fig. 4.   Error Analysis: Visualization of attention in the test set 



top of sentences, and stances detected by BCA and BCA-

Invar are displayed at the bottom of the two sentences, 

respectively.  

In this example, BCA-Invar predicts correctly, but 

BCA predicts incorrectly. It is noteworthy that BCA pays 

more attention to words that are more related to their 

targets in semantics, but the BCA-Invar prefers words 

related to the stance rather than target words. In detail, in 

the two cases, BCA highlights the words which contain 

“Donald” and “Trump”, but BCA-Invar concentrates on 
salient words such as “leader”, “President” and “dumb”, 

which are more related to the stance, suggesting stronger 

domain generalization ability.  

F. Error Analysis 

We also analyze some cases where our model predicts 
the stance incorrectly. We select two cases from the test set 

and visualize the attention layer in Fig.4. For the first 

sentence, the ground truth label is “FAVOR”, but our 

model predicts its stance as “NONE”.  Actually, the key 

point of this sentence is the relationship between “NBC” 

and “Trump”, which should be unknown knowledge to the 

model. Despite better salient words BCA-Invar pays 

attention to, it could hardly make a correct prediction 

without background knowledge. Therefore, background 

knowledge could be quite beneficial to predict the stance 

correctly, and we leave it for future work.   

VI. CONCLUSIONS 

To mitigate the problem that representations learned 

from source targets may not well generalize to unseen 

targets, we introduce adversarial domain generalization, 

achieving the best performance under the experimental 

setting proposed by Augenstein et al. [4]. For future work, 

we will explore how to exploit both labeled data from 

source domains and vast unlabeled data from target 
domains, and how to incorporate background knowledge. 
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