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Abstract

We propose a method for improving adversarial robustness
by addition of a new bounded function just before softmax.
Recent studies hypothesize that small logits (inputs of soft-
max) by logit regularization can improve adversarial robust-
ness of deep learning. Following this hypothesis, we ana-
lyze norms of logit vectors at the optimal point under the as-
sumption of universal approximation and explore new meth-
ods for constraining logits by addition of a bounded func-
tion before softmax. We theoretically and empirically reveal
that small logits by addition of a common activation func-
tion, e.g., hyperbolic tangent, do not improve adversarial ro-
bustness since input vectors of the function (pre-logit vectors)
can have large norms. From the theoretical findings, we de-
velop the new bounded function. The addition of our function
improves adversarial robustness because it makes logit and
pre-logit vectors have small norms. Since our method only
adds one activation function before softmax, it is easy to com-
bine our method with adversarial training. Our experiments
demonstrate that our method is comparable to logit regular-
ization methods in terms of accuracies on adversarially per-
turbed datasets without adversarial training. Furthermore, it
is superior or comparable to logit regularization methods and
a recent defense method (TRADES) when using adversarial
training.

1 Introduction
Deep neural networks (DNNs) are used in many applica-
tions, e.g., image recognition (He et al. 2016) and ma-
chine translation (Vaswani et al. 2017), and have achieved
great success. Although DNNs can handle data accurately,
they are vulnerable to adversarial examples, which are im-
perceptibly perturbed data to make DNNs misclassify data
(Szegedy et al. 2013). To investigate vulnerabilities of DNNs
and improve adversarial robustness, many adversarial at-
tack and defense methods have been presented and evalu-
ated (Carmon et al. 2019; Kurakin, Goodfellow, and Ben-
gio 2016; Madry et al. 2018; Papernot et al. 2017; Yin
et al. 2019; Zhang et al. 2019a; Ross and Doshi-Velez 2018;
Kanai et al. 2020; Yang et al. 2020; Zhao et al. 2019; Ghosh,
Losalka, and Black 2019).

Among defense methods, adversarial training is regarded
as a promising method (Kurakin, Goodfellow, and Bengio
2016; Madry et al. 2018). Adversarial training generates
adversarial examples of training data and trains DNNs on

these adversarial examples. On the other hand, since the
generation of adversarial examples requires high computa-
tion cost, several studies introduced defense methods not
using adversarial examples (Kannan, Kurakin, and Goodfel-
low 2018; Pang et al. 2020; Warde-Farley and Goodfellow
2016). Warde-Farley and Goodfellow (2016) showed that la-
bel smoothing can be used as the efficient defense methods.
Similarly, Kannan, Kurakin, and Goodfellow (2018) pre-
sented logit squeezing that imposes a penalty of norms of
logit vectors, which are input vectors of softmax. Since re-
cent studies have shown that label smoothing also induces
small logits, they regard label smoothing and logit squeez-
ing as logit regularization methods and experimentally in-
vestigate the relation between robustness and logit norms
(Mosbach et al. 2018; Shafahi et al. 2019a,b; Summers and
Dinneen 2019). Shafahi et al. (2019a) showed that adversar-
ial training actually reduces the norms of logits along with
the increase in the strength of the attacks in training. Accord-
ing to these studies, constraining of logit norms to be small
values is one approach to improve adversarial examples.

In this paper, we propose a method of constraining the
logit norms that uses a bounded activation function just be-
fore softmax on the basis of our theoretical findings about
logit regularization. To understand the effect of logit reg-
ularization, we analyze the optimal logits for training of
a neural network that has universal approximation. In this
analysis, we first prove that (i) norms of the optimal logit
vectors of cross-entropy are infinitely large values, and (ii)
logit squeezing and label smoothing make norms of the opti-
mal logit vectors be finite values. Infinitely large logits mean
that the function from data points to logits does not have fi-
nite Lipschitz constants of which constraints are used for
adversarial robustness (Cisse et al. 2017; Farnia, Zhang, and
Tse 2019; Fazlyab et al. 2019; Tsuzuku, Sato, and Sugiyama
2018). Next, to verify the effect of small logit norms, we
evaluate robustness of models the logit vectors of which
have various norms. From the experiments, we confirm that
models can be robust against adversarial attacks if norms of
logits are below a certain value. This observation suggests
that the addition of a bounded function just before softmax
can improve adversarial robustness. However, we also reveal
that adding common bounded activation functions, e.g., hy-
perbolic tangent, does not improve adversarial robustness.
This is because these functions are monotonically increas-
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ing, and the optimal inputs (hereinafter, we call pre-logits)
of these functions become infinitely large values; i.e., mod-
els from data points to pre-logits do not have finite Lips-
chitz constants. To overcome this drawback, we develop a
new function called bounded logit function (BLF). BLF is
bounded by finite values, and pre-logits at the maximum
and minimum points are also finite values. As a result, the
addition of BLF just before softmax makes the optimal log-
its and pre-logits have finite values. Since our method only
adds one activation function before softmax, it is easy to
combine BLF with adversarial training. We experimentally
confirmed that BLF can improve robustness more than logit
squeezing without using adversarial examples. Moreover,
BLF with adversarial training is superior or comparable to
adversarial training with logit squeezing, label smoothing,
and TRADES, which is a recent strong defense method us-
ing adversarial examples in training (Zhang et al. 2019b),
in terms of accuracy on MNIST and CIFAR10 attacked by
gradient-based white-box attack (PGD (Kurakin, Goodfel-
low, and Bengio 2016; Madry et al. 2018)) and gradient-free
attacks (SPSA (Uesato et al. 2018) and Square Attack (An-
driushchenko et al. 2020)).

2 Preliminaries
2.1 Softmax cross-entropy and logit regularization
To classify the i-th data point x(i) ∈ X where X is a data
space, neural networks learn a probability distribution over
M classes conditioned on the data point x as Pθ(k|x(i)) for
k=1, . . . ,M where θ is a parameter vector. Let zθ(x(i)) =
[zθ,1(x(i)), zθ,2(x(i)), . . . , zθ,M (x(i))]T be a logit vector
composed of a logit zθ,k(x(i)), which is an input vector of
softmax fs(·), corresponding to the data point x(i). The k-th
element of softmax [fs(·)]k represents the conditional prob-
ability of the k-th class

Pθ(k|x(i))=
[
fs(zθ(x(i)))

]
k

=
exp(zθ,k(x(i)))∑M

m=1 exp(zθ,m(x(i)))
. (1)

To train the model fs(zθ(x)), cross-entropy loss LCE is
used as loss functions in classification tasks. Cross-entropy
loss LCE(zθ(x(i)),p(i)) is

LCE(zθ(x(i)),p(i))=−∑M
k=1 p

(i)
k log[fs(zθ(x(i)))]k, (2)

where p(i) is a target vector for x(i). Target vectors are gen-
erally one-hot vectors as pk = 1 for k = t and pk = 0 for
k 6= t when the label of x(i) is t. For a training dataset
{(x(i),p(i))}Ni=1, an objective function J of training is J =
1
N

∑N
i=1 LCE(zθ(x(i)),p(i)).

Since softmax cross-entropy, which is a combination of
softmax and cross-entropy, for one-hot vectors can make
models over-confident, label smoothing assigns small prob-
abilities to the target values as pt = 1−α and pk = α

M−1 for
k 6= t where α is a hyper-parameter (Szegedy et al. 2016).
Label smoothing can alleviate over-confidence and improve
generalization performance (Szegedy et al. 2016). Recent
studies have shown that label smoothing can be used as a
defense method against adversarial attacks (Shafahi et al.

2019a,b; Summers and Dinneen 2019; Warde-Farley and
Goodfellow 2016).

Kannan, Kurakin, and Goodfellow (2018) presented logit
squeezing as another way for improving adversarial robust-
ness. The objective function of logit squeezing is

J = 1
N

∑N
i=1

(
LCE(x(i),p(i)) + λ

2 ||zθ(x(i))||22
)
, (3)

where λ>0 is a regularization constant. This objective func-
tion keeps logit norms having small values, and it is experi-
mentally confirmed that logit squeezing can improve the ad-
versarial robustness.

2.2 Related work
Since many studies have been conducted on adversarial
attacks and defenses, we mainly review studies that han-
dle defense methods based on logits. First, we discuss de-
fense methods using adversarial examples. Kannan, Ku-
rakin, and Goodfellow (2018) presented adversarial logit
pairing, which makes logits of adversarial examples be sim-
ilar to logits of clean examples by an additional regulariza-
tion term penalizing the L2 norm distance between them.
Similarly to adversarial logit pairing, TRADES (Zhang et al.
2019b) uses a regularization term that evaluates the differ-
ence between softmax outputs of neural networks for clean
examples and for adversarial examples instead of logits.
Since TRADES outperforms adversarial logit pairing, we
compared our method with TRADES rather than adversarial
logit pairing (Zhang et al. 2019b).

Next, we discuss defense methods without using adver-
sarial examples. As mentioned above, Kannan, Kurakin, and
Goodfellow (2018) also presented logit squeezing inspired
by logit pairing, and several studies were conducted on
the effectiveness of logit squeezing (Shafahi et al. 2019a,b;
Summers and Dinneen 2019). Shafahi et al. (2019a) inves-
tigated the effects of logit squeezing and label smoothing
and presented a combination of logit regularization (label
smoothing or logit squeezing) and random Gaussian noise.
In our study, we evaluated the combination of each logit reg-
ularization method and adversarial training instead of Gaus-
sian noise because adversarial perturbations are the worst
noise for models, i.e., training with them can improve ro-
bustness more than that with Gaussian noise. Summers and
Dinneen (2019) experimentally showed that label smooth-
ing also makes logits have a small range like logit squeez-
ing. They evaluated a crafted logit regularization method,
which combines label smoothing, mixup, and logit pairing.
Our method can be one component of the crafted logit reg-
ularization method because our method is simple and only
adds an activation function before softmax.

Mosbach et al. (2018) investigated the loss surface of
logit squeezing and showed that logit squeezing seems
to just mask or obfuscate gradient (Athalye, Carlini, and
Wagner 2018) rather than improving robustness. However,
logit squeezing can still slightly improve robustness against
gradient-free attacks, which does not depend on a gradient.
Note that the effectiveness of the combination logit squeez-
ing and adversarial training is still unclear. In Section 5,
we evaluate logit regularization methods by using gradient-
based and two gradient-free attacks, and reveal that logit reg-



ularization can improve robustness of adversarial training. In
addition, we investigate the limitation of logit regularization
methods by using various attacks, e.g., targeted attacks, in
appendix C.

3 Analysis of logit regularization methods for
adversarial robustness

In this section, we first investigate logits obtained by soft-
max cross-entropy and logit regularization methods. Next,
we experimentally show the relation between logit norms
and robustness. All the proofs are provided in appendix A.

3.1 Optimal logits for minimization of training loss
To clarify the background of our results, we first show the
assumption of our analysis inspired by the universal approx-
imation properties of neural networks.

Assumption. We assume that (a) if data points have the
same values as x(i) = x(j), they have the same labels
as p(i) = p(j), (b) the logit vector zθ(x) can be an
arbitrary vector for each data point, and (c) the opti-
mal point θ∗ = argminθ

1
N

∑N
i=1L(zθ(x(i)),p(i)) achieves

L(zθ∗(x
(i)),p(i))= minθ L(zθ(x(i)),p(i)) for all i.

This assumption ignores generalization performance and
takes into account deterministic labels. This assumption is
satisfied if we use the models that can be arbitrary functions
and minimize softmax cross-entropy on the dataset where
the same data points have the same labels. Though it is a
strong assumption,1 our analysis is valuable for understand-
ing the behavior of the logits since DNNs have large repre-
sentation capacity and we assign a label for each data point
with no duplication.

From the assumption, we can regard the optimal log-
its zθ∗(x(i)) = argminzθ(x(i))L(zθ(x(i)),p(i)) for the i-
th data point as the logits obtained by minimization of the
training objective functions. Next, we show the property of
the optimal logits for softmax cross-entropy.

Theorem 1. If we use softmax cross-entropy and one-hot
vectors as target values, at least one element of the optimal
logits zθ∗(x(i)) = arg minzθ LCE(zθ(x(i)),p(i)) does not
have a finite value.

This theorem indicates that softmax cross-entropy en-
larges logit norms. Though this result has been mentioned
in several studies (Szegedy et al. 2016; Warde-Farley and
Goodfellow 2016), we show this theorem to clarify our mo-
tivation and claims. From this theorem, we can derive the
following corollary:

Corollary 1. If all elements of inputs x(i)
k are normalized as

0 ≤ x
(i)
k ≤ 1 and training dataset has at least two different

labels, the optimal logit function zθ∗(x) for softmax cross-
entropy is not globally Lipschitz continuous function, i.e.,

1Since several papers have shown that over-parameterized net-
work with least squares loss can achieve zero training loss (Du et al.
2019, 2018), it might not be a very strong assumption.

there is not a finite constant C ≥ 0 as

||zθ∗(x(i))− zθ∗(x(j))||∞ ≤ C||x(i) − x(j)||∞, (4)

∀x(i),x(j) ∈ X .
This corollary indicates that the optimal logit function for

softmax cross-entropy does not have a Lipschitz constant;
logit vectors can be drastically changed by small perturba-
tions. This fact does not immediately mean that the models
are vulnerable since the logit gaps between the correct la-
bel and other labels on given data are also infinite in this
case. Even so, since adversarial examples are outside of the
training data, it is difficult to expect the outputs for adversar-
ial examples. In fact, constraints of Lipschitz constants are
used for improving adversarial robustness (Cisse et al. 2017;
Farnia, Zhang, and Tse 2019; Fazlyab et al. 2019; Tsuzuku,
Sato, and Sugiyama 2018). This corollary also indicates that
finite logit values are necessary conditions for a Lipschitz
constant. Thus, robust models have finite logit values, which
is in agreement with the empirical observation that adversar-
ial training reduces the norms of logits along with robustness
(Shafahi et al. 2019a).

Next, we consider the optimal logits when using logit reg-
ularization methods. In the same way as Theorem 1, we can
show the following propositions:
Proposition 1. The optimal logits for label smoothing
zθ∗(x

(i))=arg minzθ LCE(zθ(x(i)),p(i)) satisfy

zθ∗,k(x(i))=

{
log( 1−α

α

∑
m 6=texp((zθ∗,m(x(i))))) k = t

log( α
M−1−α

∑
m 6=k exp(zθ∗,m(x(i)))) k 6= t.

If an element of exp(zθ∗(x(i))) has a finite value, all ele-
ments of zθ∗(x(i)) have finite values.
Proposition 2. The optimal logits for logit squeezing
zθ∗(x

(i)) = argminzθ LCE(zθ(x(i)),p(i))+ λ
2||zθ(x(i))||2

satisfy

zθ∗,k(x(i))=

{
(−[fs(zθ∗(x

(i)))]t + 1)/λ k = t

=−[fs(zθ∗(x
(i)))]k/λ k 6= t.

Namely, all elements of the optimal logit vector zθ∗(x(i))
have finite values.

These propositions indicate that logit regularization meth-
ods enable the optimal logit values to have finite values;
i.e., these methods satisfy the necessary condition of Lip-
schitz continuous. This property might improve robustness
since the logit functions do not tend to change drastically by
small perturbation on input data points. If logit regulariza-
tion methods induce small Lipschitz constants, the models
can be robust against adversarial examples.

From the hypothesis that small logits can improve adver-
sarial robustness, we consider approaches to bound logits
other than logit regularization methods. As an alternative to
logit regularization, we can constrain logits by addition of
a bounded activation function just before softmax. As such
functions, hyperbolic tangent (tanh) and sigmoid functions
are common functions in neural networks. If we use these
monotonically increasing functions just before softmax, we
have the following theorem:
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Figure 1: L2 (top) and L∞ (bottom) norms of z or γg(z) vs
robust accuracies. Pre-logits of BLF and tanh denote accura-
cies against norms of z instead of norms of γg(z). We omit
γ on Inputs of tanh to increase visibility.

Theorem 2. Let g(z) be tanh or sigmoid function and γ be
a hyper-parameter satisfying 0 < γ < ∞. If we use tanh
or sigmoid function before softmax as fs(γg(zθ(x(i)))),
all elements of the optimal pre-logit vector zθ∗(x(i)) =
arg minzθ LCE(γg(zθ(x(i))),p(i)) do not have finite val-
ues while all elements of the optimal logit vector γg(zθ∗)
has finite values.

This theorem indicates that though optimal logits become
finite values by addition of tanh or sigmoid, the pre-logit
functions zθ∗(x) do not have finite Lipschitz constants.
Therefore, the pre-logit can be changed by small perturba-
tion. Thus, this theorem indicates that bounded logits might
not be sufficient for adversarial robustness.

3.2 Empirical evaluation of logit regularization
As shown above, logit regularization can induce the finite
logit values, and tanh and sigmoid functions cannot keep
pre-logits small. In this section, we empirically investigate
the relation between logit norms and adversarial robustness.
We evaluated the average norms of logits on clean data of
CIFAR10 and accuracies on adversarial examples of CI-
FAR10 (PGD ε = 4/255 and 100 iterations) for various
logit regularization methods. Note that we normalized CI-
FAR10 such that their pixel values are in [0,1]. We used logit
squeezing (LSQ), label smoothing (LSM), and bounded log-
its by tanh with various α, λ, and γ. The detailed experimen-
tal conditions are provided in appendix B.

Figure 1 shows adversarial robustness against the average
norms of logit vectors. Note that results of BLF in Fig. 1
are discussed in the next section. In this figure, each point
corresponds to each hyper-parameter. For tanh, we also plot
adversarial robustness against average norms of pre-logit
vectors z as well as logit vectors γg(z). In Fig. 1, mod-
els learned using logit regularization methods have various
norms and robustness depending on α and λ, and the robust
accuracies become almost zero when norms exceed about
seven. The results of tanh indicate that even if models have

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
z

−1

0

1

g
(z

)

BLF

tanh

Figure 2: Comparison of BLF and tanh

small logits by adding bounded functions, they are vulner-
able when their pre-logit norms are large. In addition, the
results of tanh imply that just scaling logits γz does not im-
prove the robustness. From the observation, we need a new
function that has bounded outputs and inputs.

4 Proposed method
We propose constraining logits by the addition of a new ac-
tivation function called bounded logit function (BLF) just
before softmax. BLF is defined as follows:
Definition 1. Bounded logit function (BLF) is defined as

g(z) = 2
{
zσ(z) + σ(z)− zσ2(z)

}
− 1, (5)

where σ is sigmoid function. When z is a vector, BLF be-
comes element-wise operation.

BLF is similar to tanh as shown in Fig. 2. In fact, BLF has
some of the same properties of tanh, e.g., limz→+∞ g(z) =
1, limz→−∞ g(z) = −1, and ∂g(z)/∂z|z=0 = z. How-
ever, this function has the maximum and minimum points
in −
√

5−1<z<−2 and 2<z<
√

5+1 while tanh does not
have the finite maximum and minimum points. Therefore,
we have the following theorem:
Theorem 3. Let g(z) be BLF and γ be a hyper-parameter
satisfying 0 < γ < ∞. If we use g(z) before softmax as
fs(γg(zθ(x))), all elements of the optimal pre-logit vector
zθ∗(x

(i)) = argminzθ LCE(γg(zθ(x(i))),p(i)) have finite
values, and all elements of the optimal logit vector γg(zθ∗)
also have finite values. Specifically, we have the following
equalities and inequalities:

γg(zθ∗,k(x(i))) =

{
γmaxz g(z) k = t

γminz g(z) otherwise,
(6)

γ <|γg(zθ∗,k(x(i)))| < γ
√

5+1
2 ,

zθ∗,k(x(i)) =

{
argmaxz g(z) k = t

argminz g(z) otherwise,
(7)

2 <|zθ∗,k(x(i))| <
√

5 + 1.

Theorem 3 indicates that this function gives finite log-
its and pre-logits2 unlike tanh. Therefore, we can keep both
logits and pre-logits as small values when we add BLF be-
fore softmax. We can control the scale of logits by using the
hyper-parameter γ. We conducted experiments using various

2If we need more specific values of the optimal logits and in-
puts, they can be solved numerically.



γ in the same manner as mentioned in the previous section,
and evaluated adversarial robustness against norms of log-
its and pre-logits (Fig. 1). From this figure, BLF keeps the
logits and pre-logits small, and its robust accuracy is higher
than that of logit squeezing. Furthermore, since the optimal
pre-logits zθ∗,j(x(i)) do not depend on γ, pre-logits of BLF
on some γ can have almost the same norms; the L∞ norms
are vertically aligned on about 2.4 despite the difference in
γ. The result indicates that the empirical optimal pre-logits
follow Theorem 3, though our theoretical results are based
on the Assumption in Section 3.1.
γ can be used as a learnable parameter. However, the op-

timal γ becomes infinitely large by minimization of softmax
cross-entropy, and the logit norms become infinite values.
Thus, the learnable γ does not improve adversarial robust-
ness. We also evaluated a learnable version of BLF (L-BLF)
in the next section. In this setting, we used γ = softplus(γ̃)
and optimized γ̃ to keep γ non-negative.

Note that one of the reasons why we use BLF is that BLF
is similar to tanh, so it is easy to verify the effect of the
finite optimal points. We can use other bounded functions,
which are not monotonically increasing, instead of BLF. We
evaluate some such functions in appendix D.

5 Experiments
In this section, we conducted experiments to evaluate the
proposed method in terms of (a) robustness against gradient-
based attacks, (b) robustness against gradient-free attacks,
and (c) operator norms of models. In the experiments, we
evaluated the models using only clean training data (stan-
dard training) and using adversarially perturbed training data
(adversarial training), respectively.

5.1 Experimental Conditions
This section gives an outline of the experimental conditions
and the details are provided in appendix B. Datasets of the
experiments were MNIST (LeCun et al. 1998) and CIFAR10
(Krizhevsky and Hinton 2009). Our method was compared
with a model trained without any logit regularization meth-
ods (Baseline), logit squeezing (LSQ), and label smoothing
(LSM). In our method, we evaluated BLF with fixed γ (BLF)
and BLF with learnable γ (L-BLF). We also compared them
with TRADES, which is a strong defense method using ad-
versarial examples (Zhang et al. 2019b), in the adversarial
training setting.

For MNIST, we used a convolutional neural network
(CNN) composed of two convolutional layers and two fully
connected layers (2C2F) and one that is composed of four
convolutional layers and three fully connected layers (4C3F)
following (Zhang et al. 2019b). For CIFAR10, we used
ResNet-18 (RN18) (He et al. 2016) and WideResNet-34-
10 (WRN) (Zagoruyko and Komodakis 2016) also following
(Zhang et al. 2019b).

We used untargeted projected gradient descent (PGD),
which is the most popular white box attack, as a gradient-
based attack and used SPSA and Square Attacks as gradient-
free attacks. The hyper-parameters for PGD were based on
(Madry et al. 2018). The L∞ norm of the perturbation ε was

set to ε = 0.3 for MNIST and ε = 8/255 for CIFAR10 at
training time. For PGD, we randomly initialized the pertur-
bation and updated it for 40 iterations with a step size of
0.01 on MNIST at training and evaluation times, and on CI-
FAR10 for 7 iterations with a step size of 2/255 at training
time and 100 iterations with the same step size at evalua-
tion time. At evaluation time, we use ε = [0, 0.05, . . . , 0.3]
on MNIST and ε = [0, 2/255, . . . , 20/255] on CIFAR10.
ε=0 corresponds to clean data. For TRADES, we set hyper-
parameters of adversarial examples based on the code pro-
vided by the authors.3 On MNIST, step size was set to 0.01,
and the number of steps was set to 40, and ε was set to 0.3.
On CIFAR10, step size was set to 2/255, and the number of
steps was set to 10, and ε was set to 8/255. We selected the
best hyper-parameters of our method γ, logit squeezing λ,
label smoothing α, and TRADES β among five parameters.
The selected hyper-parameters are shown in Figs. 3 and 4 for
MNIST and CIFAR10, respectively. For WRN, we used the
same hyper-parameters as those of RN18. We trained mod-
els for five times for MNIST and three times for CIFAR10
and show the average and standard deviation of test accura-
cies. To generate adversarial examples, we used advertorch
(Ding, Wang, and Jin 2019).

5.2 Robustness against gradient-based methods
Accuracy against PGD Figures 3 (a)-(d) show accuracies
on MNIST attacked by PGD. In these figures, results of ε=0
correspond to clean accuracy. For 2C2F (Fig. 3(a)) in the
standard training setting, label smoothing is the most robust
against PGD until ε is smaller than 0.2. For 2C2F and 4C3F
(Figs. 3(a) and (c)) with ε > 0.15, BLF is the most robust
in standard training. When we use the learnable γ̃, L-BLF
does not improve the robustness. This is because γ̃ becomes
large to minimize the loss function, and norms of logits have
large values. In the adversarial training setting, our proposed
function improves robustness the most for 2C2F and is com-
parable to TRADES for 4C3F. Note that TRADES of 2C2F
(Fig. 3(b)) is not more robust than Baseline in our experi-
ments. This might be because we train models on training
data attacked by PGD with ε = 0.3 following (Madry et al.
2018) while Zhang et al. (2019b) train them on training data
attacked by PGD with ε = 0.1 in Table 4 of (Zhang et al.
2019b).

Figure 4 shows the results on CIFAR10. In the standard
training setting, label smoothing improves robustness the
most for RN18, and our proposed method improves robust-
ness the most for WRN. In the adversarial training setting,
our method improves the robustness the most. It is more ro-
bust than TRADES even though the number of iteration for
TRADES is larger than that of our method.

The reason label smoothing and logit squeezing are not so
effective in the adversarial training might be due to the com-
plexity of the objective function: regularization terms might
disturb the mini-max problem for adversarial robustness. On
the other hand, our method does not change the objective
function. Thus, it is more suitable for adversarial training.

3https://github.com/yaodongyu/TRADES
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Figure 3: Accuracy of 2C2F (top) and 4C3F (bottom) on
MNIST attacked by PGD (40 iterations). Error bars corre-
spond to standard deviations.
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Figure 4: Accuracy of RN18 (top) and WRN (bottom) on
CIFAR10 attacked by PGD (100 iterations). Error bars cor-
respond to standard deviations.

Evaluation of misleading gradients of BLF As shown
in Fig. 2, the absolute values of BLF |g(z)| does not be-
come smaller than one in intervals of z < argminz g(z)
and z>argmaxz g(z). In the intervals, the gradient of BLF
might mislead the gradient-based attacks because the abso-
lute values of outputs of BLF only change in 1 < |g(z)| <
maxz |g(z)|. This might be a cause of robustness of BLF,
which is not expected. To investigate the effect of the inter-
vals, we replaced a BLF with tanh to generate PGD attacks.
We conducted this experiment by the following procedure:
(i) we trained BLF models in standard and adversarial set-
tings, (ii) we replaced BLF with tanh in models trained at
the previous step, (iii) we generated PGD attacks by using
replaced models, (iv) we replaced tanh with BLF again and
evaluated robust accuracies of BLF models against PGD at-
tacks generated at the previous step. Since tanh is similar to
BLF and is a monotonically increasing function, gradient-
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Figure 5: Robust accuracy against PGD by using models
replaced tanh. We compare robust accuracies against PGD
naively generated by using BLF models and against PGD
generated by using tanh.

based attacks can effectively avoid the misleading gradients
in the above mentioned intervals. In fact, we observed that
replaced models achieved almost the same clean accuracy
as BLF models even though their parameters are optimized
for BLF: Clean accuracies of BLF (standard training), re-
placed models (standard training)), BLF (adversarial train-
ing), and replaced models (adversarial training) are 94.58,
94.58, 82.42, and 83.38, respectively.

Robust accuracies of RN18 on CIFAR10 is shown in
Fig. 5. In this figure, we show robust accuracies of BLF
models against PGD by using replaced models and using the
BLF models. Though PGD for replaced models succeeded
in attacking BLF models more than PGD for BLF models
when ε is set to be greater than 10 in standard training set-
tings, it could not attack BLF models well in the adversar-
ial training setting and in the standard training setting when
ε < 10. Therefore, BLF does not only employ the mislead-
ing gradients in z<argminz g(z) and z>argmaxz g(z) for
improving adversarial robustness.

5.3 Robustness against gradient-free attacks
Since Mosbach et al. (2018) pointed out that logit regular-
ization only masks or obfuscates gradient to improve ro-
bustness, we evaluated the robustness against gradient-free
attacks. In the experiments, we tuned hyperparameters (λ,
α, γ, β) for each attack and train the model for one time for
each hyper-parameter.

Accuracy against SPSA attacks We used SPSA as a
gradient-free attack because it can operate when the loss sur-
face is difficult to optimize (Carlini et al. 2019; Uesato et al.
2018). We set the hyper-parameters of SPSA as epsilons of
0.15 for MNIST and 8/255 for CIFAR10, perturbation size
of 0.01, Adam learning rate of 0.01, maximum iterations of
40 for MNIST and 10 for CIFAR10, and batchsize of 2048.4

Table 1 lists the accuracies of 2C2F and 4C3F with each
method on MNIST attacked by SPSA and RN18 and WRN
with each method on CIFAR10 attacked by SPSA. We can
see that in the standard training setting, BLF improves ro-
bustness against SPSA the most on MNIST even though

4We could not use the original hyper-parameters (Uesato et al.
2018) since SPSA requires high computation costs (Shafahi et al.
2019b). Even so, we could evaluate the robustness of our method
relatively.



Table 1: Robust accuracies against SPSA on MNIST (ε =
0.15) and CIFAR10 (ε= 8/255). ST and AT represent stan-
dard training and adversarial training, respectively.

Baseline LSQ LSM BLF TRADES

2C2F ST 53.5 60.8 67.4 68.4 N/A
2C2F AT 90.2 92.3 90.0 92.7 86.4

4C3F ST 51.3 69.2 73.8 82.4 N/A
4C3F AT 98.3 98.3 98.2 98.2 98.1

RN18 ST 0.3 23.5 24.9 23.4 N/A
RN18 AT 56.6 56.8 56.6 58.7 57.4

WRN ST 0.1 42.1 16.3 13.9 N/A
WRN AT 60.6 61.5 60.0 62.3 61.3

Table 2: Robust accuracies against Square Attack on MNIST
(ε= 0.15) and CIFAR10 (ε= 8/255). ST and AT represent
standard training and adversarial training, respectively.

Baseline LSQ LSM BLF TRADES

2C2F ST 51.5 53.0 64.0 59.4 N/A
2C2F AT 91.4 90.3 91.0 92.1 85.3

4C3F ST 35.6 46.2 51.5 56.1 N/A
4C3F AT 97.9 98.0 97.9 98.0 98.0

RN18 ST 0.3 20.1 27.6 31.7 N/A
RN18 AT 54.5 55.4 55.6 53.8 55.3

WRN ST 0.2 30.2 38.4 30.8 N/A
WRN AT 59.7 59.7 60.0 60.9 59.4

robustness against PGD of BLF is lower than those of la-
bel smoothing and logit squeezing in Fig. 3 (a). On CI-
FAR10, label smoothing and logit squeezing improve ro-
bustness more than BLF. In adversarial training settings,
however, our method improves robustness the most in a ma-
jority of settings. These results are in agreement with the
results of gradient-based attacks.

Accuracy against Square Attacks Although the SPSA
attack does not use exact gradients, it still approximates
gradients to generate attacks. Thus, obfuscating gradients
might be still effective for the SPSA attack. To investigate
whether logit regularization methods just obfuscate gradi-
ents, we evaluate the robustness against Square Attack (An-
driushchenko et al. 2020), which is a query-based black box
attack. Since the Square Attack uses random search to gen-
erate attacks, obfuscating gradients are ineffective for the
Square Attack. To generate Square Attacks, we set the num-
ber of queries to 5000 and use the code in (Croce and Hein
2020). Note that untargeted Square Attacks use a margin loss
instead of cross entropy loss.

Robust accuracies against Square Attacks are listed in
Tab. 2. In this table, BLF achieves the highest or the sec-
ond highest accuracies on almost all settings. In addition, all
logit regularization methods without adversarial training can
improve the robust accuracies though Square Attacks do not
use gradients. Therefore, logit constraints does not only just

Table 3: Averages of L∞ operator norms of convolution lay-
ers of RN18.

Baseline LSQ LSM BLF L-BLF TRADES

ST 19.6 17.1 10.1 11.2 20.1 N/A
AT 17.1 16.5 11.4 4.4 16.8 13.3

obfuscate gradients for improving robustness.

5.4 Evaluation of operator norms

As discussed in Section 3, softmax cross-entropy can cause
large Lipschitz constants, and it might be a cause of vulner-
abilities. To investigate Lipschitz constants of models, we
computed averages of L∞ operator norms of convolution
layers of RN18 (Tab. 3) by following (Gouk et al. 2018).
The L∞ operator norms of convolution layers can be a crite-
rion of Lipschitz constants since one of Lipschitz constants
of composite functions is the product of Lipschitz constants
of composing functions and L∞ operator norm is a Lips-
chitz constant for a linear function. Table 3 shows that logit
regularization methods induce small L∞ operator norms of
convolution layers compared with Baseline even though they
do not explicitly impose the penalty of parameter values.
This table indicates that BLF can outperform other meth-
ods when using adversarial training because it effectively in-
duces small Lipschitz constants. On the other hand, the L∞
norm of L-BLF is almost the same as that of Baseline. Thus,
BLF with learnable γ does not improve the robustness. Note
that the L∞ norm of Baseline does not become extremely
large because we applied some regularization methods, e.g.,
weight decay and early stopping, into all methods to obtain
good generalization performance.

6 Conclusion
We proposed a method of constraining the logits by adding
a bounded activation function just before softmax follow-
ing the hypothesis that small logits improve the adversarial
robustness. We developed a new bounded function that has
the finite maximum and minimum points so that logits and
pre-logits have small values. Compared with other logit reg-
ularization methods, our method can effectively improve the
robustness in adversarial training despite its simplicity.

Though we provided insights into the vulnerabilities of
softmax cross-entropy and empirical evidence of the effec-
tiveness of logit regularization methods, it is still an open
question why small logits can improve robustness. Our ex-
periments of tanh indicate that small logits are not suffi-
cient for adversarial robustness. Even so, our experiments
showed that our method is comparable to the recent de-
fense method in terms of adversarial robustness against both
gradient-based and gradient-free attacks in adversarial train-
ing. Thus, our results indicate that the investigation into the
relation between logit regularization and robustness is still
an important research direction to reveal the cause of vul-
nerabilities of DNNs.
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A Proofs
In this section, we show proofs of theoretical results in the
paper following the assumption.
Assumption. We assume that (a) if data points have the
same values as x(i) = x(j), they have the same labels
as p(i) = p(j), (b) the logit vector zθ(x) can be an
arbitrary vector for each data point, and (c) the opti-
mal point θ∗ = argminθ

1
N

∑N
i=1L(zθ(x(i)),p(i)) achieves

L(zθ∗(x
(i)),p(i))= minθ L(zθ(x(i)),p(i)) for all i.

Theorem 1. If we use softmax cross-entropy and one-hot
vectors as target values, at least one element of the optimal
logits zθ∗(x(i)) = arg minzθ LCE(zθ(x(i)),p(i)) does not
have a finite value.

Proof. Let t be a target label for x(i). The objective function
of softmax cross-entropy loss for x(i) is

J = LCE(zθ(x(i)),p(i)) = −log[fs(zθ(x(i)))]t.

At the minimum point, we have ∂J
∂zθ(x(i))

∣∣∣
zθ∗

= 0 since we

assume zθ(x(i)) can be an arbitrary vector in Assumption.
By differentiating softmax cross-entropy, we obtain

∂J
∂zθ,k(x(i))

=

{−1 + [fs(zθ(x(i)))]k k = t,

[fs(zθ(x(i)))]k otherwise.
(8)

Thus, ∂J
∂zθ(x(i))

∣∣∣
zθ∗

= 0 means that a softmax output vector

fs(zθ∗(x
(i))) is a one hot-vector; [fs(zθ∗(x

(i)))]t = 1 and
[fs(zθ∗(x

(i)))]k = 0 for k 6= t. Since [fs(zθ(x(i)))]t 6= 0,
we have 0 <

∑M
m=1 exp(zθ,m(x(i))). The t-th output of

softmax becomes
exp(zθ,t(x

(i)))∑M
m=1 exp(zθ,m(x(i)))

= 1,

exp(zθ,t(x
(i))) =

∑M
m=1 exp(zθ,m(x(i))),∑

m6=t exp(zθ,m(x(i))) = 0.

Since exp(z) ≥ 0, we have exp(zθ,m(x(i))) = 0 for m 6=
t. Since limz→−∞ exp(z) = 0, the element of the optimal
logits zθ∗,m(x(i)) does not have a finite value for m 6= t.
Therefore, at least one element of the optimal logits has an
infinite value.

Corollary 1. If all elements of inputs x(i)
k are normalized as

0 ≤ x
(i)
k ≤ 1 and training dataset has at least two different

labels, the optimal logit function zθ∗(x) for softmax cross-
entropy is not globally Lipschitz continuous function, i.e.,
there is not a finite constant C ≥ 0 as

||zθ∗(x(i))− zθ∗(x(j))||∞ ≤ C||x(i) − x(j)||∞,
∀x(i),x(j) ∈ X .

Proof. If Corollary 1 does not hold, there is a finite constant
C satisfying

||zθ∗(x(i))− zθ∗(x(j))||∞ ≤ C||x(i) − x(j)||∞ (9)

∀x(i),x(j) ∈ X ,
and 0 ≤ C < ∞. We assume that t and t′ are labels of x(i)

and x(j), respectively, and t 6= t′. As shown in the proof of
Theorem 1, zθ,m(x(i)) form 6= t does not have finite values
and −∞ < zθ,t(x

(i)) ≤ ∞. On the other hand zθ,m(x(j))

for m 6= t′ does not have finite values. Thus, [zθ∗(x
(i)) −

zθ∗(x
(j))]t = zθ,t(x

(i)) − zθ,t(x
(j)) does not have finite

values. Thus, the left-hand side of eq. (9) is not finite values.
On the other hand, we have ||x(i)−x(j)||∞ ≤ 1 because we
assume 0 ≤ xk ≤ 1. As a result,∞ ≤ C||x(i) − x(j)||∞ ≤
C, and it contradicts the statement 0 ≤ C < ∞, which
completes the proof.

Proposition 1. The optimal logits for label smoothing
zθ∗(x

(i))=arg minzθ LCE(zθ(x(i)),p(i)) satisfy

zθ∗,k(x(i))=

{
log( 1−α

α

∑
m 6=texp((zθ∗,m(x(i))))) k = t

log( α
M−1−α

∑
m6=k exp(zθ∗,m(x(i)))) k 6= t.

If an element of exp(zθ∗(x(i))) has a finite value, all ele-
ments of zθ∗(x(i)) have finite values.

Proof. Let t be a label of data point x(i). The objective func-
tion of label smoothing for x(i) is

J = −∑m pmlog[fs(zθ(x(i)))]m

= −(1− α)log[fs(zθ(x(i)))]t

− α
M−1

∑
m 6=t log[fs(zθ(x(i)))]m



since pt = 1− α and pm = α
M−1 for m 6= t. By differenti-

ating softmax cross-entropy, we obtain

∂J
∂zθ,k

=

{
[fs(zθ∗(x

(i)))]k + α− 1 k = t,

[fs(zθ∗(x
(i)))]k − α

M−1 otherwise.
(10)

Since we assume that one of the elements of zθ∗ has a finite
value, we have

∑
m expzθ∗,m > 0. Thus, eq. (10) for k = t

becomes

[fs(zθ∗(x
(i)))]t = 1− α, (11)

expzθ∗,t∑
m expzθ∗,m

= 1− α,
expzθ∗,t = (1− α)(

∑
m expzθ∗,m),

αexpzθ∗,t = (1− α)(
∑
m 6=t expzθ∗,m),

zθ∗,t = log(1−α
α (
∑
m 6=t expzθ∗,m)). (12)

In the same manner, we have

[fs(zθ∗(x
(i)))]k = α

M−1 , (13)

zθ∗,k = log( α
M−1−α

∑
m 6=k exp(zθ∗,m(x(i)))), (14)

for k 6= t. It is difficult to obtain the solutions of eqs. (12)
and (14) in closed form, but we can show they have finite
values as follows. If zθ∗,k′(x(i))) → −∞ where k′ 6= t,
eq. (13) does not hold because the left side of eq. (13) be-
comes 0 and 0 < α < M − 1. If zθ∗,t(x(i)))→∞, eq. (11)
does not hold because the left side of eq. (11) becomes 1.
Therefore, all elements of the logits have finite values.

Proposition 2. The optimal logits for logit squeezing
zθ∗(x

(i)) = argminzθ LCE(zθ(x(i)),p(i))+ λ
2||zθ(x(i))||2

satisfy

zθ∗,k(x(i))=

{
(−[fs(zθ∗(x

(i)))]t + 1)/λ k = t

=−[fs(zθ∗(x
(i)))]k/λ k 6= t.

Namely, all elements of the optimal logit vector zθ∗(x(i))
have finite values.

Proof. Let t be a label of data point x(i). The ob-
jective function of logit squeezing for x(i) is J =
−log[fs(zθ(x(i)))]t + λ

2 ||zθ(x(i))||2. Since we assume

zθ(x(i)) can be an arbitrary vector, ∂J
∂zθ

∣∣∣
zθ=zθ∗

= 0 at the

minimum points. By differentiating J , we obtain

∂J
∂zθ,k

=

{−1 + [fs(zθ(x(i)))]k + λzθ,k k = t,

[fs(zθ(x(i)))]k + λzθ,k otherwise,

thus have

−1 + [fs(zθ∗(x
(i)))]t + λzθ∗,t = 0,

zθ∗,t =
1− [fs(zθ∗(x

(i)))]t
λ

.

Since each element of softmax functions is bounded as 0 ≤
[fs(zθ∗(x

(i)))]k ≤ 1, we have 0 ≤ zθ∗,t ≤ 1
λ . In the same

manner, we have − 1
λ ≤ zθ∗,k ≤ 0 for k 6= t. Therefore, all

elements of the optimal logits have finite values.

Theorem 2. Let g(z) be tanh or sigmoid function and γ be
a hyper-parameter satisfying 0 < γ < ∞. If we use tanh
or sigmoid function before softmax as fs(γg(zθ(x(i)))),
all elements of the optimal pre-logit vector zθ∗(x(i)) =
arg minzθ LCE(γg(zθ(x(i))),p(i)) do not have finite val-
ues while all elements of the optimal logit vector γg(zθ∗)
has finite values.

Proof. First, we show the case using tanh as g(z) =
tanh(z). Let t be a target label for x(i). The objective func-
tion of softmax cross-entropy loss for x(i) is

J = LCE(γg(zθ(x(i))),p(i)) = −log[fs(γtanh(zθ(x(i))))]t.

Since we assume that zθ(x(i)) can be an arbitrary vector,
∂J
∂zθ

∣∣∣
z∗θ(x(i))

= 0 at the minimum point. Since tanh is an

element-wise function, ∂J
∂zθ∗,k

is written as

∂J
∂zθ,k

= γ ∂J
∂γtanh(zθ,k)

∂tanh(zθ,k)
∂zθ,k

.

γ ∂J
∂γtanh(zθ,k) is obtained as in eq. (8) and does not be-

come 0 since −1 ≤ tanh(zθ,k) ≤ 1 and 0 <

γ < ∞. Thus, ∂J
∂zθ,k

∣∣∣
zθ∗,k(x(i))

= 0 corresponds to

∂tanh(zθ,k)
∂zθ,k

∣∣∣
zθ∗,k(x(i))

= 0. We have

∂tanh(zθ,k)
∂zθ,k

= 1− tanh2(zθ,k).

Only if zθ∗,k(x(i)) → ±∞, the following equation holds:
∂tanh(zθ,k)

∂zθ,k

∣∣∣
zθ∗,k(x(i))

= 0. Therefore, all elements of the

optimal input vector zθ∗ do not have finite values. The case
using sigmoid function σ(z) can be shown in the same man-
ner. Since the derivative of sigmoid becomes ∂σ(zθ,k)

∂zθ,k
=

σ(zθ,k)(1 − σ(zθ,k)), the equation ∂σ(zθ,k)
∂zθ,k

∣∣∣
zθ∗,k(x(i))

= 0

holds when zθ∗,k(x(i))→ ±∞.

Theorem 3. Let g(z) be BLF and γ be a hyper-parameter
satisfying 0 < γ < ∞. If we use g(z) before softmax as
fs(γg(zθ(x))), all elements of the optimal pre-logit vector
zθ∗(x

(i)) = argminzθ LCE(γg(zθ(x(i))),p(i)) have finite
values, and all elements of the optimal logit vector γg(zθ∗)
also have finite values. Specifically, we have the following
equalities and inequalities:

γg(zθ∗,k(x(i))) =

{
γmaxz g(z) k = t

γminz g(z) otherwise,
(15)

γ <|γg(zθ∗,k(x(i)))| < γ

√
5 + 1

2
,

zθ∗,k(x(i)) =

{
argmaxz g(z) k = t

argminz g(z) otherwise,
(16)

2 <|zθ∗,k(x(i))| <
√

5 + 1.



Proof. Let t be a target label for x(i). The objective function
of softmax cross-entropy loss for x(i) is
J = LCE(γg(zθ(x(i))),p(i)) = −log[fs(γg(zθ(x(i))))]t,

where g(z) = 2
{
zσ(z) + σ(z)− zσ2(z)

}
− 1. Since

we assume that zθ(x(i)) can be an arbitrary vector,
∂J
∂zθ

∣∣∣
zθ∗ (x(i))

= 0 at the minimum point. Similary to tanh,

BLF g(z) is an element-wise function and bounded by finite
values. Therefore, γ ∂J

∂γg(zθ,k) does not become 0. As a re-

sult, ∂J
∂zθ

∣∣∣
z∗θ(x(i))

= 0 holds when ∂g(zθ,k)
∂zθ,k

∣∣∣
z∗θ,k(x(i))

= 0

for all k. We have
∂g(zθ,k)
∂zθ,k

= 2σ(zθ,k)(1− σ(zθ,k))(2 + zθ,k − 2zθ,kσ(zθ,k)),

thus, candidates of the optimal points satisfy one of the
following conditions: σ(z) = 0, σ(z) = 1, and 2 +
z − 2zσ(z) = 0. Inputs that satisfy σ(z) = 0 and
σ(z) = 1 correspond to z → −∞ and z → ∞, respec-
tively. Their outputs g(z) become limz→−∞ g(z) = −1 and
limz→∞ g(z) = 1, respectively. To investigate points satis-
fying 2+z−2zσ(z) = 0, we define f(z) = 2+z−2zσ(z),
which is a continuous function. This function can be written
as

f(z) = 2 + z − 2zσ(z),

= 2 + z − 2z 1
1+e−z ,

= 2 + z(1+e−z)−2z
1+e−z ,

= 2− z 1−e−z

1+e−z , (17)

= 2− ztanh( z2 ).

Since tanh(z) < z for z > 0 and tanh(z) > z for z < 0,
we have

f(z) = 2− ztanh(z/2) > 2− z2

2 for z 6= 0.

By using this equation, we have f(z) > 0 for −2 < z < 2.
In addition, since z

1+z < 1 − e−z for z > −1, we have the
following inequality from eq. (17):

f(z) = 2− z 1−e−z

1+e−z ,

= 2(1+e−z)−z(1−e−z)
1+e−z , (18)

= −(2+z)(1−e−z)+4
1+e−z ,

< −(2+z)z+4(z+1)
(1+e−z)(z+1) ,

= −(z−1)2+5
(1+e−z)(z+1) .

Thus, we have f(z) < 0 for z >
√

5 + 1. On the other hand,
since we have ez < 1

1−z for z < 1, we have the following
inequality from eq. (18):

f(z) = 2(1+e−z)−z(1−e−z)
1+e−z ,

= 2(ez+1)−z(ez−1)
ez+1 ,

= ez(2−z)+2+z
ez+1 ,

< 2−z+(2+z)(1−z)
(ez+1)(1−z) ,

= −(z+1)2+5
(1+e−z)(1−z) .

Thus, we have f(z) < 0 for z < −
√

5 − 1. Therefore, the
points satisfying ∂g(z)

∂z = 0 are included in −
√

5− 1 < z <

−2 and 2 < z <
√

5 + 1 from intermediate value theorem.
The g(z) can be written using f(z) as

g(z) = 2
{
zσ(z) + σ(z)− zσ2(z)

}
− 1,

= 2σ(z)

{
z

2
+
f(z)

2

}
− 1.

Let z∗ be inputs satisfying f(z∗) = 0 and
√

5 − 1 < z∗ <
−2, and z̄∗ be inputs satisfying f(z̄∗) = 0 and 2 < z̄∗ <√

5 + 1. We have

g(z∗) = σ(z∗)z∗ − 1 = 1 + z∗

2 − 1 = z∗

2 ,

g(z̄∗) = σ(z̄∗)z̄∗ − 1 = 1 + z̄∗

2 − 1 = z̄∗

2 ,

where we use f(z∗) = f(z̄∗) = 2 + z∗ − 2z∗σ(z∗) =

0. Thus, we have −
√

5+1
2 < g(z∗) < −1 and 1 <

g(z̄∗) <
√

5+1
2 . Since g(z∗) is lesser than limz→−∞ g(z) =

−1 and g(z̄∗) is greater than limz→+∞ g(z) = 1, z∗ is
the minimum point z∗ = arg minz g(z) and z̄∗ is the
maximum point z̄∗ = arg maxz g(z). Therefore, the op-
timal inputs zθ∗,k(x(i)) and logits g(zθ∗,k(x(i))) are fi-
nite values for BLF, and each element of the optimal in-
puts zθ∗,k(x(i)) is z∗ or z̄∗. The objective function J =

−log[fs(γg(zθ(x(i))))]t = −log
exp(γg(zθ,t(x

(i))))∑M
m=1 exp(γg(zθ,m(x(i))))

becomes the smallest when

g(zθ,k(x(i))) =

{
g(z̄∗) k = t,

g(z∗) otherwise.

Therefore, the optimal logits are

γg(zθ∗,k(x(i))) =

{
γmaxz g(z) k = t,

γminz g(z) otherwise,

and the optimal inputs are

zθ∗,k(x(i)) =

{
arg maxz g(z) k = t,

arg minz g(z) otherwise,

Thus, we have

γ < |γg(zθ∗,k(x(i)))| < γ
√

5+1
2 ,

2 < |zθ∗,k(x(i))| <
√

5 + 1.

We developed BLF inspired by the derivative of swish
(Ramachandran, Zoph, and Le 2017) since it has finite max-
imum and minimum points and is a continuous function.

B Detailed experimental conditions
To generate PGD and SPSA attacks, we used advertorch
(Ding, Wang, and Jin 2019). Since previous studies did not
split the training datasets of MNIST and CIFAR10 into vali-
dation sets and training sets (Zhang et al. 2019b; Madry et al.
2018), we did not split them. Our codes for experiments are
based on the open-source code (Kuang 2017)



B.1 Conditions for empirical evaluation of logit
regularization in Section 3.2

In this experiment, the model architecture was ResNet-18
(RN18). For tanh and BLF, we added these activation func-
tion before softmax. We trained all models by using SGD
with momentum of 0.9 for 350 epochs and used weight de-
cay of 0.0005. The initial learning rate was set to 0.1. After
the 150-th epoch and the 250-th epoch, we divided the learn-
ing rate by 10. The minibatch size was set to 128. We used
models at the epoch when they achieved the largest clean ac-
curacy. To make average logit norms obtain various values,
we use various hyperparameters for each logit regularization
method. For label smoothing, we set α to [0.005, 0.01, 0.05,
0.1, 0.3, 0.5, 0.75, 0.85]; for logit squeezing, we set λ to
[0.005, 0.01, 0.05, 0.1, 0.3, 0.5, 0.75, 0.9]; for tanh, we set
γ to [0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 1.0, 1.2]; and for BLF, we
set γ to [0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 1.0, 1.2]. After standard
training of the models, we evaluate their accuracies on the
test data of CIFAR-10 attacked by PGD. We set the step size
of PGD to 2/255 and the number of iteration to 100. The L∞
norm of perturbations was set to 4/255.

B.2 Experimental conditions for experiments
discussed in Section 5

Our experimental conditions depend on the model architec-
tures.

Experimental conditions for small CNNs For MNIST,
we used a CNN composed of two convolutional layers and
two fully connected layers (2C2F) and one composed of
four convolutional layers and three fully connected layers
(4C3F). The details of these model architectures are as fol-
lows:

2C2F The first convolutional layer had the 10 output
channels and the second convolutional layer had 20 out-
put channels. The kernel sizes of the convolutional layers
were set to 5, and their strides were set to 1. We did not use
zero-padding in these layers. We added max pooling with
the stride of 2 and ReLU activation after each convolu-
tional layer. The size of the first fully connected layer was
set to 320×50, and we used the ReLU activation after this
layer. The size of the second fully connected layer was set
to 50 × 10, and we used softmax as the output function.
Between the first and the second convolution layer and
between the first and the second fully connected layer, we
applied 50 % dropout. We used the default initialization
of PyTorch 1.0.0 to initialize all parameters.

4C3F We used an implementation of this model architec-
ture released by the authors of (Zhang et al. 2019b). The
first and second convolutional layers had 32 output chan-
nels, and the third and fourth convolutional layer had 64
output channels. The kernel sizes of the convolutional lay-
ers were set to 3, and their strides were set to 1. We did not
use zero-padding in these layers. We used the ReLU acti-
vation after each convolution layer and added max pool-
ing with the stride of 2 after the second and fourth ReLU
activation. Three fully connected layers followed these
convolution layers. The size of the first fully connected

layer was set to 1024 × 200, and that of the size of the
second fully connected layer was set to 200 × 200. The
size of the last fully connected layer was set to 200× 10.
After the first and the second fully connected layers, we
added ReLU activation and applied 50 % dropout into the
output of the first fully connected layers. We used soft-
max as the output function. We used the default initial-
ization of PyTorch 1.0.0 to initialize all parameters except
for biases and weights of the last fully connected layer.
All these biases and weights were initialized as zero.

We trained models by using SGD with momentum of 0.5
and learning rate of 0.01 for 100 epochs. For 2C2F, we used
weight decay of 0.01 in both the standard training and adver-
sarial training settings. For 4C3F, the learning rate SGD was
divided by 10 after the 55-th, 75-th, and 90-th epoch. We did
not use weight decay for training of 4C3F in both the stan-
dard training and adversarial training settings . The mini-
batch size was set to 64. We used the models at the epoch
when they achieved the largest clean accuracy. We evalu-
ate the following hyper-parameter sets: λ of [0.01, 0.05, 0.1,
0.3, 0.5] for logit squeezing, α of [0.05, 0.1, 0.3, 0.5, 0.7] for
label smoothing, γ of [0.5, 0.8, 1.0, 1.5, 3.5] for BLF , and
β of [3, 6, 9, 12, 15] for TRADES, and we select hyperpa-
rameters that achieve the largest clean accuracy for standard
training, and those that achieve the largest adversarial ac-
curacy against PGD (ε = 0.3) for adversarial training. We
initialized γ̃ as -1 in L-BLF.

Experimental conditions for RN18 We trained models
by using SGD with momentum of 0.9 for 350 epochs in
the standard training setting and for 120 epochs in the ad-
versarial training setting. In both standard and adversarial
training settings, we used weight decay of 0.0005. The ini-
tial learning rate was set to 0.1. After the 150-th epoch and
the 250-th epoch, we divided the learning rate by 10 in the
standard training setting. In the adversarial training setting,
we divided the learning rate by 10 after the 50-th epoch and
100-th epoch. The minibatch size was set to 128. We used
the default initialization of PyTorch 1.0.0 to initialize all pa-
rameters except for γ̃. We initialized γ̃ as -1 in L-BLF. We
used the models at the epoch when they achieved the largest
clean accuracy. We evaluate the following hyper-parameter
sets: λ of [0.01, 0.05, 0.1, 0.3, 0.5] for logit squeezing, α
of [0.05, 0.1, 0.3, 0.5, 0.7] for label smoothing, γ of [0.1,
0.5, 0.8, 1.0, 1.2] for BLF, and β of [3, 6, 9, 12, 15] for
TRADES, and we selected hyperparameters that achieve the
largest clean accuracy for the standard training setting and
those that achieves the largest adversarial accuracy against
PGD (ε = 8/255) for the adversarial training setting.

Experimental conditions for WRN We used an imple-
mentation of WRN released by the authors of (Zhang et al.
2019b). We trained models by using SGD with momentum
of 0.9 for 350 epochs in the standard training setting and
for 120 epochs in the adversarial training setting. In both
standard and adversarial training settings, we used weight
decay of 0.0005. The initial learning rate was set to 0.1. Af-
ter the 150-th epoch and the 250-th epoch, we divided the
learning rate by 10 in the standard training setting. In the
adversarial training setting, we divided learning rate by 10



after the 75-th epoch and 100-th epoch following (Zhang
et al. 2019b)5. We used the default initialization of PyTorch
1.0.0 to initialize all parameters except γ̃. We initialized γ̃
as -1 in L-BLF. We used models at the epoch when mod-
els achieved the largest clean accuracy. We used the same
hyper-parameters α, λ, γ, and β used in the experiments of
RN18.

C Limitation of logit regularization methods
Engstrom, Ilyas, and Athalye (2018) have shown that adver-
sarial logit pairing, which is similar to logit regularization, is
sensitive to targeted attacks, and Mosbach et al. (2018) have
shown that logit squeezing is sensitive to PGD attacks with
multi-restart. In this section, we evaluate logit regularization
methods with strong untargeted and targeted PGD attacks
with multi-start. As strong PGD attacks, we used AutoPGD
(APGD) with cross-entropy and targeted AutoPGD with dif-
ference of logits Ratio Loss (TAPGD) in (Croce and Hein
2020). APGD is more sophisticated than PGD; APGD uses
momentum and adaptively selects the step size. We restarted
APGD and TAPGD five times. In the experiments, we tuned
hyperparameters (λ, α, γ, β) for each attack and train the
model for one time for each hyper-parameter.

Results are listed in Tab. 4. In this table, logit regulariza-
tion methods are superior or comparable to Baseline. In par-
ticular, logit regularization methods outperform TRADES
on MNIST. On CIFAR10, robust accuracies against TAPGD
become zero when standard training. However, when us-
ing adversarial training, logit regularization methods can
outperform Baseline; i.e., logit regularization contributes to
general adversarial robustness. Robust accuracies against
APGD of BLF become the highest on a majority of set-
tings. Thus, BLF is effective in defending against untargeted
strong attacks.

Indeed, logit regularization methods without adversarial
training are not robust enough for strong attacks. However,
they are still effective against practical threat models, e.g.,
untargeted attacks or black box attacks. Furthermore, when
combining adversarial training with these methods, they can
be comparable to strong defense methods.

D Comparison with other bounded functions
In this section, we compare BLF with other bounded func-
tions. As bounded functions, we evaluated sine wave z =
sin(z) (Fig. 6 (a)) and single wave z = sin(z)/(exp(z) +
exp(−z))2 (Fig. 6 (b)). We used 2C2F on MNIST and RN18
on CIFAR10 and the same experimental conditions in Sec-
tion 5.2. Robust accuracies against PGD attacks are shown in
Fig. 7. This figure shows that single wave is inferior to BLF,
and sine wave is comparable to BLF. Note that our proposal
is using bounded functions, which have finite maximum and
minimum points, and not limited to using BLF. We use BLF
because BLF is similar to tanh and we can evaluate the ef-
fect of finite optimal points. Even so, BLF can achieve better
performance than single wave and as good performance as
sine wave.

5This learning rate schedule is based on the code of (Zhang
et al. 2019b): https://github.com/yaodongyu/TRADES

Table 4: Robust accuracies against APGD attacks on MNIST
(ε = 0.15) and CIFAR10 (ε = 8/255). Logit regularization
methods are weak to targeted attacks in the standard training
setting, especially on CIFAR10.

Baseline LSQ LSM BLF TRADES

APGD (2C2F, ST) 43.8 58.9 69.2 60.5 N/A
APGD (2C2F, AT) 91.8 90.9 91.4 92.3 86.8
TAPGD (2C2F,ST) 44.2 49.7 61.70 57.0 N/A
TAPGD (2C2F,AT) 91.9 90.7 91.2 92.4 85.2

APGD (4C3F, ST) 31.6 41.8 48.5 75.8 N/A
APGD (4C3F,AT) 98.0 98.2 98.0 98.1 98.0
TAPGD (4C3F,ST) 27.7 39.8 37.9 38.6 N/A
TAPGD (4C3F,AT) 98.1 98.3 98.1 98.2 98.1

APGD (RN18, ST) 0.0 0.3 1.4 3.8 N/A
APGD (RN18, AT) 48.6 50.8 50.5 51.5 52.6
TAPGD (RN18, ST) 0.0 0.0 0.0 0.0 N/A
TAPGD (RN18, AT) 46.1 47.4 47.6 46.2 49.9

APGD (WRN, ST) 0.0 0.0 0.8 6.0 N/A
APGD (WRN, AT) 53.1 53.0 54.0 55.9 55.9
TAPGD (WRN, ST) 0.0 0.0 0.0 0.0 N/A
TAPGD (WRN, AT) 51.6 51.4 52.0 51.0 53.8
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Figure 6: Other bounded functions

E Evaluation of input loss surface
Since Mosbach et al. (2018) have pointed out that logit reg-
ularization methods cause distorted input loss surfaces, we
visualized input loss surface of each method. In this exper-
iment, we randomly selected eight data points {x(i)}8i=1
from the training dataset of CIFAR10 and generated two
noise vectors v1,v2 whose elements are randomly selected
from {-1, +1}. Then, we evaluatedLCE(x+ε1v1+ε2v2) for
each dat point. ε1 and ε2 are noise levels, and we changed ε1

and ε2 from -16/255 to 16/255, in 0.5/255 increments. Note
that we used the same data points and noise vectors among
Baseline, logit regularization methods and TRADES. In this
experiment, we used RN18 trained on CIFAR10 in the stan-
dard training and adversarial training settings.

Figures 8-11 are input loss surfaces of models trained in
the standard setting, and Figures 12-16 are input loss sur-
faces of models trained in the adversarial setting. In the stan-
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Figure 7: Robust accuracy of 2C2F on MNIST and RN18 on
CIFAR10.

Table 5: The difference between the maximum loss and min-
imum loss for random noise in the input loss surface experi-
ment: maxε1,ε2 LCE(x+ε1v1+ε2v2)−minε1,ε2 LCE(x+
ε1v1 + ε2v2) where −16/255 ≤ ε∗ ≤ 16/255. Results are
averaged over eight data points.

Baseline LSQ LSM BLF TRADES

ST 9.38 2.89 2.21 1.28 N/A
AT 0.269 0.160 0.168 0.00680 0.263

dard training setting, when we compare Baseline (Fig. 8)
with logit regularization methods (Figs. 9-11), logit regu-
larization methods seem to make the flat input space small
(e.g., Data No.2, No.5, and No.6). However, we should pay
attention to the scale of loss surfaces. Scales of loss surfaces
for logit regularization methods are smaller than those for
Baseline. For example, losses of Data No.2, No.5, and No.6
for Baseline can exceed ten by noise injection while losses
for logit regularization methods are smaller than three. Thus,
logit regularization methods improve the robustness against
random noise. This is because logit regularization methods
induce the small Lipschitz constants. Similarly, in the ad-
versarial training settings, logit regularization methods make
the amount of loss changes small, e.g., the amount of change
of the loss of No.2 in Fig. 15 is smaller than the loss scale of
No.2 in Fig. 12. We list the difference between the maximum
loss and minimum loss (maxε1,ε2 LCE(x+ ε1v1 + ε2v2)−
minε1,ε2 LCE(x+ ε1v1 + ε2v2)) in Tab. 5. We can see that
BLF can make the difference of losses by noise injection the
smallest, and thus, BLF can improve the robustness of cross
entropy loss against the random noise injection. These re-
sults support that logit regularization methods can improve
the robustness against untargeted attack using cross entropy.
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Figure 8: Loss Surface over input spaces of Baseline (standard training) on CIFAR10.

ε1(×1/255)

−10
0

10 ε 2(
×1/

25
5)

−10
0

10

L(
x

)

1

2

3

Data No. 0

1.5 3.0

ε1(×1/255)

−10
0

10 ε 2(
×1/

25
5)

−10
0

10

L(
x

)

0.5

1.0

1.5

Data No. 1

0.5 1.0 1.5

ε1(×1/255)

−10
0

10 ε 2(
×1/

25
5)

−10
0

10

L(
x

)

1

2

3

Data No. 2

1.5 3.0

ε1(×1/255)

−10
0

10 ε 2(
×1/

25
5)

−10
0

10

L(
x

)

1

2

3

Data No. 3

1.5 3.0

ε1(×1/255)

−10
0

10 ε 2(
×1/

25
5)

−10
0

10

L(
x

)

0.5
1.0
1.5
2.0
2.5
3.0

Data No. 4

1 2 3

ε1(×1/255)

−10
0

10 ε 2(
×1/

25
5)

−10
0

10

L(
x

)

1

2

3

Data No. 5

1.5 3.0

ε1(×1/255)

−10
0

10 ε 2(
×1/

25
5)

−10
0

10

L(
x

)

1

2

3

Data No. 6

1.5 3.0

ε1(×1/255)

−10
0

10 ε 2(
×1/

25
5)

−10
0

10

L(
x

)

0.5
1.0
1.5
2.0
2.5
3.0

Data No. 7

1 2 3

Figure 9: Loss Surface over input spaces of LSQ (standard training) on CIFAR10.
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Figure 10: Loss Surface over input spaces of LSM (standard training) on CIFAR10.

ε1(×1/255)

−10
0

10 ε 2(
×1/

25
5)

−10
0

10

L(
x

)

1.4
1.6
1.8
2.0
2.2
2.4

Data No. 0

1.6 2.0 2.4

ε1(×1/255)

−10
0

10 ε 2(
×1/

25
5)

−10
0

10

L(
x

)

1.4
1.6
1.8
2.0
2.2
2.4

Data No. 1

1.6 2.0 2.4

ε1(×1/255)

−10
0

10 ε 2(
×1/

25
5)

−10
0

10

L(
x

)

1.50
1.75
2.00
2.25
2.50

Data No. 2

1.5 2.0 2.5

ε1(×1/255)

−10
0

10 ε 2(
×1/

25
5)

−10
0

10

L(
x

)

1.50
1.75
2.00
2.25
2.50

Data No. 3

1.5 2.0 2.5

ε1(×1/255)

−10
0

10 ε 2(
×1/

25
5)

−10
0

10

L(
x

)

1.50
1.75
2.00

2.25

2.50

Data No. 4

1.5 2.0 2.5

ε1(×1/255)

−10
0

10 ε 2(
×1/

25
5)

−10
0

10

L(
x

)

1.50
1.75
2.00
2.25
2.50

Data No. 5

1.5 2.0 2.5

ε1(×1/255)

−10
0

10 ε 2(
×1/

25
5)

−10
0

10

L(
x

)

1.50
1.75
2.00
2.25
2.50

Data No. 6

1.5 2.0 2.5

ε1(×1/255)

−10
0

10 ε 2(
×1/

25
5)

−10
0

10

L(
x

)

1.50
1.75
2.00
2.25
2.50

Data No. 7

1.5 2.0 2.5

Figure 11: Loss Surface over input spaces of BLF (standard training) on CIFAR10.
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Figure 12: Loss Surface over input spaces of Baseline (adversarial training) on CIFAR10.
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Figure 13: Loss Surface over input spaces of LSQ (adversarial training) on CIFAR10.
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Figure 14: Loss Surface over input spaces of LSM (adversarial training) on CIFAR10.
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Figure 15: Loss Surface over input spaces of BLF (adversarial training) on CIFAR10.
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Figure 16: Loss Surface over input spaces of TRADES (adversarial training) on CIFAR10.
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