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Abstract—Cross-platform recommendation aims to improve
recommendation accuracy by gathering heterogeneous features
from different platforms. However, such cross-silo collabora-
tions between platforms are restricted by increasingly stringent
privacy protection regulations, thus data cannot be aggregated
for training. Federated learning (FL) is a practical solution to
deal with the data silo problem in recommendation scenarios.
Existing cross-silo FL methods transmit model information to
collaboratively build a global model by leveraging the data of
overlapped users. However, in reality, the number of overlapped
users is often very small, thus largely limiting the performance
of such approaches. Moreover, transmitting model information
during training requires high communication costs and may
cause serious privacy leakage. In this paper, we propose a
novel privacy-preserving double distillation framework named
FedPDD for cross-silo federated recommendation, which effi-
ciently transfers knowledge when overlapped users are limited.
Specifically, our double distillation strategy enables local models
to learn not only explicit knowledge from the other party but
also implicit knowledge from its past predictions. Moreover, to
ensure privacy and high efficiency, we employ an offline training
scheme to reduce communication needs and privacy leakage risk.
In addition, we adopt differential privacy to further protect
the transmitted information. The experiments on two real-
world recommendation datasets, HetRec-MovieLens and Criteo,
demonstrate the effectiveness of FedPDD compared to the state-
of-the-art approaches.

I. INTRODUCTION

Benefiting from the explosion of data, deep learning-based
recommendation systems have gained significant attention by
overcoming obstacles of conventional models and achieving
high recommendation quality [1]. Unfortunately, in reality,
this wealth of data is often separated into different platforms
and owned by different entities. For example, people can chat
with friends on WhatsApp, watch favorite videos on TikTok or
Youtube, and buy wanted stuff on Amazon. Collecting these
features from different platforms can help to build a more
accurate user profile and provide a better recommendation.
However, cross-silo collaborations among different platforms
are restricted by data protection regulations such as General
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Fig. 1. In cross-device FL setting, participants are a large number of individual
customers (2C) that have the same feature space. In cross-silo FL setting,
participants are a small number of business partners (2B) that have partially
overlapped user spaces and different feature spaces. Here we assume that there
is no feature overlapping in our cross-silo FL setting. Data in the red box are
used for training.

Data Protection Regulation (GDPR) and data cannot be cen-
tralized for training.

To tackle the privacy issue for cross-silo recommendation,
a practical solution is Federated Learning (FL) [2], [3]. FL
enables multiple parties to collaboratively train a global model
while private data resides locally on the data owners and
therefore can largely reduce systemic privacy risks. Existing
cross-silo FL methods [4]–[6] try to fix this problem by using
the overlapped samples across participants and viewing it
as a multi-view learning problem. The performance of such
approaches highly relies on the number of overlapped users
between parties. However, in reality, such overlapped data
is often limited and thereby may cause the performance to
be even worse than the locally trained models. Moreover,
these approaches transmit feature or model information during
training, which requires high communication costs and has
serious privacy weaknesses. Recent studies [7]–[9] show that
sharing model or feature information could still lead to private
data leakage.

To address these challenges, we propose a novel privacy-
preserving double distillation framework named FedPDD for
cross-silo federated recommendation. We design a double
distillation strategy, which enables local models to learn both
implicit knowledge from themselves and explicit knowledge
from the other party. Specifically, we distill implicit knowledge
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from the past predictions of local models and distill explicit
knowledge from the ensemble predictions of current local
models. The key idea is that we provide multiple informative
sources for local model training. Therefore, by learning from
these sources, FedPDD is able to enhance model performance
and generalization ability. Moreover, we employ an offline
distillation strategy and only transmit model output during
training. Parties only communicate with the server during
the federated ensemble stage and the size of the model
output is much smaller than the model itself. Accordingly,
our training strategy largely reduces communication needs
and limits the exposure of private information to the server.
In addition, we adopt differential privacy [10] to further
protect the communication process. We experiment on two
real-world recommendation datasets showing that FedPDD
significantly boosts local model performance by up to 3.94%
and outperforms the state-of-the-arts by up to 3.98%.

Overall, our main contributions are as follows:
• We propose a novel privacy-preserving double distillation

method named FedPDD for cross-silo federated recom-
mendation. Our method enables local models to learn
from not only private labels and the other party but also
itself, which enhances model performance and general-
ization ability when overlapped samples are limited.

• We employ an offline training strategy to reduce commu-
nication needs and privacy leakage risk. Moreover, we
adopt differential privacy to further protect the commu-
nication process and provide a theoretical privacy analysis
of FedPDD.

• We conduct experiments on two public real-world
datasets and the results demonstrate the effectiveness of
FedPDD by up to 3.98% further improvements compared
to the state-of-the-art approaches.

II. BACKGROUND AND RELATED WORK

A. Federated Learning

Federated Learning [2], [3] allows multiple participants to
collaboratively train a global model while keeping training
data in local. The data resides locally on the data owners
and therefore largely reduces systemic privacy risks. Based
on scenarios, FL can be divided into two kinds of settings:
cross-device FL and cross-silo FL [3]. As shown in Figure
1, in the cross-device setting, participants are a large number
of individual customers (2C) that have the same feature space,
while participants are a small number of business partners (2B)
that have partially overlapped user spaces and different feature
spaces in the cross-silo setting. In this work, we focus on the
cross-silo setting that features are not overlapped.

Liu et al. [4] first proposed a transfer learning method
named federated transfer learning (FTL) to transfer knowledge
through the overlapped user data between parties. They as-
sumed that only one party owns the labels and aims to improve
the model performance by leveraging the knowledge (i.e.,
features) from other parties. Under such an assumption, their
approach merely leveraged the overlapped users across parties.

TABLE I
DEFINITION OF NOTATIONS

Notation Description

Dk local dataset on party k
Dc overlapped data shared between two parties
α ratio of overlapped data to the training set
fk local model on party k

fk
b(n)

best local model on party k in round n

zk logit output of local model fk

zt ensemble logit
z′t perturbed ensemble logit
pk soft target output of local model fk

pt ensemble teacher knowledge
ptb self teacher knowledge
σT general softmax function
T distillation temperature

Existing cross-silo FL methods [5], [6] mostly follow this
direction which views the distributed features of overlapped
users in different parties as different views of these data and
regards it as a multi-view learning problem. Specifically, Feng
et al. [5] established a Multi-participant Multi-class Verti-
cal Federated Learning (MMVFL) framework. They utilized
multi-view learning methods to securely share label informa-
tion between participants. Kang et al. [6] proposed a self-
supervised multi-view learning method called FedMVT under
the cross-silo FL setting. They built a model based on the
overlapped data to predict the missing features. However, these
studies build models on the overlapped user data across parties
and prediction accuracy of the global model highly relies on
the amount of overlapped data. When such data is limited, the
performance of these approaches may be even worse than the
local fine-tuned models. In contrast, FedPDD leverages both
the overlapped data and the non-overlapped data to enhance
model performance through knowledge distillation and can
achieve superior performance compared to the state-of-the-arts
when overlapped data is limited.

B. Federated Recommendation System

Inspired by the success of federated learning [11], federated
recommendation system is proposed to address the privacy and
data silo problems in the recommendation system [2]. Existing
federated recommendation works such as federated matrix
factorization methods [12]–[16] and federated collaborative fil-
tering methods [17], [18] mainly focus on the cross-device FL
setting. They adopt the idea of the typical federated learning
algorithm FedAvg [11] and average the updates of gradient
information from participants. However, this line of methods
has serious privacy issues. Sharing gradient information could
lead to private data leakage as proofed by [14].

We notice that there is a contemporary work [19] similar
to our approach. The authors propose a cross-silo federated
recommendation framework using split knowledge distillation.
However, they assume that there are massive unlabeled over-
lapped data between parties and ignore privacy issues, which is
a key concern in cross-silo FedRec. Exposing more overlapped
data during training will inevitability lead to a higher risk of
privacy leakage and largely increase the privacy budget.
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Fig. 2. The overview of our proposed FedPDD. During training, each party trains its local model via three kinds of knowledge from the ground truth labels,
ensemble of local models and past predictions of local models.

C. Federated Knowledge Distillation

Knowledge distillation [20] distills knowledge from a
teacher model to a student model through the soft target of the
teacher model. More precisely, the student model learns from
the teacher model by imitating the soft target distribution of
the teacher model as model output through a Kullback-Leibler
(KL) divergence loss defined as:

LKD(p, q) = T 2KL(p||q), (1)

where p and q are the soften output of the student model
and teacher model. T is the temperature parameter. Denote
the student logit as zs and teacher logit as zt. Then p =
softmax(zs/T ) and q = softmax(zt/T ).

Ensemble distillation [21] ensembles knowledge from mul-
tiple teacher networks to yield better teacher knowledge.
Current federated knowledge distillation methods [22]–[26]
adopts this idea to fuse heterogeneous local models into a
global model and share model outputs instead of gradients.
FedMD [22] first trained student models through averaged
logits of each sample on a public labeled dataset to reduce
communication costs during training. Along this direction, Lin
et al. [23] designed a more robust model distillation framework
named FedDF, which allows for heterogeneous client models
and data. Chang et al. [24] used group knowledge transfer
to reduce the communication and computation overload for
edge devices. Gong et al. [25] proposed to use cross-domain
unlabelled public data to protect private data privacy. These
studies are designed for the cross-device setting and transfer
knowledge through labeled public datasets [22], [27], or unla-
beled public datasets [23], [25], [26]. The improvement of their
model performance unavoidably benefits from the extra public
data. Li et al. [26] proposed a practical one-shot federated
learning algorithm for cross-silo FL setting. However, they still
leverage an unlabeled public dataset to transfer knowledge.

Along with these studies, FedPDD is designed to transfer
knowledge through limited overlapped user data for cross-
silo FedRec. Unlike the above methods that only explore
explicit knowledge from the other party, we propose a double
distillation strategy that enables local models to fully exploit

both explicit knowledge from the other party and implicit
knowledge from itself.

III. METHODOLOGY

A. Problem Statement

Consider two parties A, B and a central server. Each party
has a private labeled dataset Dk := {xk

i , yi}
|Dk|
i=1 and can

independently design its model fk, k = {A,B}. There
exists limited overlapped users shared between two parties
Dc := {xi

A,xi
B , yi}|D

c|
i=1 . Let α = |Dc|

|DA|+|DB | denotes the
overlapped data ratio. Our target is to improve the performance
of the local models in both parties as well as the global model
in the central server without exchanging raw data. Moreover,
due to privacy concerns, the private information exposed to
the server or the other party should be as less as possible. We
summarize the notations used in this paper in table I.

B. Overview of FedPDD

The overall pipeline of FedPDD consists of three steps:
pretraining, federated ensemble and local training. In the
first stage, local models are pretrained on the local private
datasets from scratch. In the federated ensemble stage, each
party makes predictions on the overlapped user data using
its pretrained local model. Then the central server aggre-
gates the local predictions from two parties to obtain the
ensemble teacher knowledge and distributes it to parties. The
aggregation is protected by differential privacy as illustrated
in section III-E. In the local training stage, we propose a
double knowledge distillation strategy to fully explore both
implicit knowledge from itself and explicit knowledge from
the other party. That is to say, local models have two teachers
and learn from multiple informative sources simultaneously
during training. Therefore, by providing more teachers, our
double distillation strategy enhances model performance and
generalization ability. The details are illustrated in section
III-C and III-D.

We denote one local training and one federated ensemble
as a round and repeat these two steps until models achieve
convergence. Note that all training is performed offline and



communications are only required in the federated ensem-
ble stage. This offline learning strategy largely decreases
communication needs and privacy leakage risk. Algorithm 1
summarizes the whole training process of FedPDD.

C. Distilling Implicit Knowledge

In order to fully explore the implicit knowledge of local
models, we propose a self-distillation strategy to enable the
local model to distill knowledge from itself. That is to say,
the teacher is the student model itself. Specifically, the student
in the previous rounds becomes the teacher of itself in the
current round. The key idea is that we regard the previous
student model outputs as different views of the features, which
provides more information for the training [28].

We design a simple but effective method to obtain the self-
teacher model. We compare all intermediate local models in
previous rounds as the candidates and select the one with the
best performance as the teacher model for the current round.
Considering deep learning models usually have a large model
size, we only maintain one historical best model for each party
and replace it whenever there is an improved one.

Denote the best local model on party k in previous n − 1
round as fk

b(n−1)
. To learn from the implicit knowledge, we let

the output of local model fk approximate the output of the
teacher fk

b(n−1)
in round n through the self-distillation (SD)

loss Lk
SD. It is given by the KL divergence between local

model output pk and the teacher model output pk
b :

Lk
SD(pk,pk

b ) = T 2
SDKL(pk||pk

b ), (2)

where TSD is the self-distillation temperature.

D. Distilling Explicit Knowledge

We adopt ensemble distillation [21] to leverage explicit
knowledge from the other party through the overlapped user
data. The key idea is that the ensemble of student models
often yields improvements in system performance compared
to the performance of individual models. To distill the explicit
knowledge, we regard the ensemble results of local model
predictions on the overlapped data as the ensemble teacher
knowledge. By imitating this teacher knowledge, local models
are able to learn from the other party.

Denote the ensemble teacher knowledge as pt
c. The ensem-

ble distillation loss is given by the KL divergence between
local model output pk and the ensemble teacher knowledge:

Lk
KD(pk,pt

c) = T 2
EDKL(pk||pt

c), (3)

where TED is the ensemble distillation temperature.

E. Federated Ensemble

During federated ensemble stage, communication is pro-
tected by two levels of privacy. First, we only send model
outputs instead of sending model parameters or gradients.
Second, if the central server is curious, directly updating local
logits may have the risk of privacy leakage. Inspired by PATE
[29], we perturb the local output logits with a Gaussian noise
to ensure a higher privacy guarantee.

Algorithm 1 Proposed FedPDD algorithm
Input: Local dataset DA, DB , overlapped dataset Dc, round

number n, temperature T , trade-off weights β, γ, w.
Output: Best local models fA

b(n)
, fB

b(n)

1: Let i = 1.
2: while i ≤ n do
3: // Perform local training
4: for k ∈ {A,B} do
5: while not converge do
6: fk

b(i)
= fk

b(i−1)

7: Compute Loss based on equation 10
8: Compute gradients and update fk

9: if fk is better than fk
b(i)

then
10: Update fk

b(i)
= fk

11: end if
12: end while
13: end for
14: // Perform federated ensemble
15: for k ∈ {A,B} do
16: for each overlapped data xc in Dc do
17: Compute zk

c and perturb with Gaussian noise
18: Send the perturbed logit z′k

c to the server
19: Server computes the ensemble soft target distribu-

tion pt
c and send it back to parties

20: end for
21: end for
22: end while
23: return best local models fA

b(n)
, fB

b(n)

Consider an overlapped sample xc ∈ Dc. In round n, party
k first presents local prediction through local best model fk

b(n)

obtained from local training. Denote the output logit of fk
b(n)

as zk
c :

zk
c = fk

b(n)
(xc). (4)

The perturbed ensemble logit z′t
c is a linear combination of

the perturbed local output logits of fk
b(n−1)

. It can be expressed
as:

z′k
c = fk

b(n)
(xc) +N (0, σ2) (5)

z′t
c = wz′A

c + (1− w)z′B
c , (6)

where w is the ensemble weight and σ is the variance of
Gaussian noise. Then the soft target distribution pt

c of xc can
be defined as

p′t
c = σT (z

′t
c ) (7)

σT (z
′t
c ) =

exp(z′t
c /TED)∑n

i=1 exp(z
′t
ci/TED)

, (8)

where σT is the general softmax function tuned by the
ensemble temperature TED. The standard softmax function
can be viewed as a special case of the general softmax function
with T = 1.



F. Local Training

We use an offline training scheme due to efficiency and
privacy concerns. Offline training can largely reduce com-
munication needs and therefore limit the exposure of private
information to the server. During the local training, each
party trains its local model fk parameterized by fk(θ). θ∗

is optimized by minimizing the training objective function
Ltrain:

θ∗ = argminθ Ltrain. (9)

In this stage, we leverage three kinds of knowledge to en-
hance the model performance: direct knowledge from private
labeled data, implicit knowledge from the best local model
in the previous round and explicit knowledge from the other
party. The direct knowledge is learned through the cross-
entropy loss LCE computed by the local model outputs pk

and the ground truth labels y. Our overall training objective
function Ltrain is a weighted combination of three loss terms.
Combining equation 2 and 3, Ltrain can be written as:

Ltrain = LSD + βLKD + γLCE , (10)

where γ and β are the corresponding trade-off weights. We
simply remain these weights to be unchanged during training.
More experimental details are introduced in section IV-C.

Note that local models have converged on their private data
during the pretraining stage, which means that the initial best
local models already contain valuable information. Therefore,
both the self teacher knowledge and ensemble teacher knowl-
edge are informative from the first round.

G. Inference

In the inference phase, given a sample x, a party first checks
whether the test sample x is aligned with the other party. If
the sample is aligned between both parties, two parties first
infer locally through their obtained best local models and then
ensemble the local predictions to give a joint prediction as the
final result. Otherwise, the party directly returns the prediction
of its local model as the final result.

H. Communication Analysis of FedPDD

We analyze the communication cost of FedPDD in this
section. Assume that the communication cost of updating or
downloading a record (i.e. logit of the local prediction for
m class classification) from the server once is m. The total
number of communication rounds until local models converge
is n. Then the overall communication cost is 2mn|Dc|. We can
see that overall communication cost relates to three factors: the
number of communication rounds, the amount of overlapped
data involved in training and the size of updates. Our offline
training strategy only has O(1) communication rounds as
shown in section IV-E1 and the size of model output m is also
O(1) for each record. Therefore, the communication cost of
FedPDD is O(|Dc|). In contrast, the online training strategy re-
quires O(100) communication rounds and transmitting model
information which usually involves thousands of parameters
will cost more communication overload.

I. Privacy Analysis of FedPDD

In this section, we follow the prior works [30], [31] and
give the privacy analysis of FedPDD.

Definition 1: (Differential Privacy [31]). A randomized
mechanism M : X → Y is (ϵ, δ)-DP if for every pair of
datasets X,X ′ ∈ X that only differ in one sample, and every
possible output T ∈ Y . The following inequality holds:

P[M(x) ∈ E] ≤ eεP [M (x′) ∈ E] + δ, (11)

where ϵ, δ ≥ 0 are privacy loss parameters.
Definition 2: (l2−sensitivity). The l2-sensitivity of a func-

tion f : X → Rd is

∆2(f) = max
X,X′∈X

∥f(X)− f (X ′)∥2 . (12)

Definition 3: (Analytic Gaussian Mechanism [30]). Let f :
X → Rd be a function with global L2 sensitivity ∆. For
any ϵ ≥ 0 and δ ∈ [0, 1], the Gaussian output perturbation
mechanism M(x) = f(x)+Z with Z ∼ N (0, σ2I) is (ϵ, δ)−
DP if and only if

Φ(
∆

2σ
− ϵσ

∆
)− eϵΦ(− ∆

2σ
− ϵσ

∆
) ≤ δ, (13)

where Φ is the CDF function of N (0, 1).
Definition 4: (Composition of DP Algorithms [32], [33]).

Suppose M = (M1,M2, ...,Mk) is a sequence of algorithms,
where Mi is (ϵi, δi)-DP, and the Mi’s are potentially chosen
sequentially and adaptively. Then M is (

∑k
i=1 ϵ,

∑k
i=1 δ)-DP.

For a meaningful privacy guarantee, we have δ = o( 1n ),
where n is the size of the dataset. By fixing privacy budget
ϵ, we calibrate the noise with proper σ given by definition 3.
Therefore, our method preserves (ϵ, δ)−DP .

IV. EXPERIMENTS

In this section, we evaluate our proposed FedPDD on two
public real-world datasets. We aim to answer the following
two questions through our experiments:

• Q1: How well does FedPDD perform compared to the
SOTA baselines on the benchmark datasets?

• Q2: How does differential privacy influence the perfor-
mance of FedPDD?

A. Datasets

The statistics of two benchmark public datasets are summa-
rized in Table III.

HetRec-MovieLens Dataset This dataset 1 is a heteroge-
neous dataset for movie recommendation with 86W ratings. It
is an extension of the MovieLens10M dataset, which contains
personal ratings and tags about movies. The movies are linked
to Internet Movie Database (IMDb) and RottenTomatoes
movie review systems, greatly extending the feature space. The
dataset is converted as a classification task by taking instances
with a rating lower than 3 as negative instances, otherwise
positive. In our setting, party A holds 21 features mainly
coming from MovieLens, including user ID, movie ID, tags

1https://grouplens.org/datasets/hetrec-2011/



TABLE II
MAIN RESULT (OVERLAPPED DATA RATIO α = 0.1)

HetRec-MovieLens Criteo
Model settings Local A Local B Joint Prediction Local A Local B Joint Prediction

DeepFM [34] 79.65% 80.36% - 72.74% 72.93% -
Ensemble [35] - - 80.53% - - 73.08%

FTL [4] - - 78.94% - - 73.90%
PFML [36] 80.26% 80.62% 81.32% 74.28% 74.26% 75.53%
FedKD [25] 81.70% 81.60% 81.71% 74.17% 74.28% 75.41%

FedPDD (ours) 82.91% 82.88% 82.92% 75.36% 75.07% 76.68%

TABLE III
STATISTICS OF BENCHMARK DATASETS

Name #users #movies #feat. fields #ratings

HetRec-MovieLens 2,113 10,197 33 855,598
Criteo - - 39 1000,000

and etc., while party B holds 13 features from RottenTomatoes,
including movie information, critics score, Rotten data and etc.

Criteo The Criteo dataset 2 is generated from the original
criteo dataset by randomly sampling 1 million instances. The
task is to predict the ad click-through rate (CTR). It consists of
13 numerical features as well as 26 categorical features. We
randomly split both numerical and categorical features into
two parts with 19, 20 features respectively for two parties.

B. Baselines

We compare FedPDD with the following baselines:
Locally trained DeepFM: DeepFM [34] can handle high-

order feature interaction of user embeddings and item em-
beddings in a centralized manner. Each party locally trains a
DeepFM model on its own private dataset, and can not make
use of the private features from the other party.

Ensemble of DeepFM: Each party first locally trains a
DeepFM model, then the local model outputs are aggregated
to obtain the final joint prediction. We average the predictions
from local models for model aggregation.

FTL baseline: The FTL [4] approach maps the samples
from heterogeneous feature spaces from two parties into a
common latent space. Then, the two feature representations are
concatenated and input to a classifier for prediction. We train
a unique feature extractor for feature extraction in each party
and then collaboratively train a classifier for label prediction.

PFML baseline: The PFML [36] approach integrates deep
mutual learning [37] into the local update process in each party
to improve the performance of both the global model and the
personalized local models.

FedKD baseline: The FedKD [25] algorithm uses ensemble
distillation for robust model fusion on heterogeneous local
models. To transfer knowledge, an unlabeled dataset is used
to sample data for all participants to compute logits and
distill knowledge. We adopt this approach to our setting.
In each communication round, all parties perform ensemble
distillation, in which the local model parameters are evaluated
on the aligned samples to generate logit outputs that are used
to train each student model.

2https://labs.criteo.com/category/dataset/

C. Experiment Settings

For experiments, we randomly sample 80% data as a
training dataset and the rest for testing. Then we randomly split
the dataset into two local datasets according to the overlapped
data ratio. For the test dataset, we assume that all the data is
aligned and shared by two parties.

We adopt DeepFM [34] as the backbone, which is pro-
posed to handle sophisticated feature interactions behind user
behaviors for recommendation tasks. For training, we follow
our two-stage training process as described in section III. The
model is optimized by Adam [38]. We set the learning rate for
both local models to 0.001, the weight decay to 0.0001, the
number of communication rounds to 5, and the batch size to
1024. The training process stops when the training achieves
the maximum communication round. For experiments on the
HetRec-MovieLens dataset, we set the temperature T to 30,
the trade-off loss weights β, γ to 10, and the ensemble weight
w to 0.5. For experiments on the Criteo dataset, we set the
temperature T to 30, the trade-off loss weights β, γ to 3, and
the ensemble weight w to 0.5. For all the ablation settings, we
conduct experiments three times and report the average.

We use accuracy as the metric to evaluate our experiment
results. The closer the value of accuracy to 1, the better the
performance of prediction is.

D. Main Results

Comparison with local training. To demonstrate the
effectiveness of our proposed method, we first compare it
with the local fine-tuned baselines (i.e. Local A and Local
B in Table II). From Table II, it is observed that 1) both
local models benefit significantly from our approach, with
an increment of 3.26%/2.44% on the HetRec-MovieLens and
2.62%/2.14% on Criteo. 2) The joint prediction further brings
extra performance gain to the local models by around 0.04%
and 1.61%, respectively. These results show that our approach
successfully transfers knowledge between two parties and
therefore improves the performance of their local models.

Comparison with SOTAs. FTL-based methods [4] leverage
the overlapped data to make a joint prediction. Therefore, we
only compare it with the joint prediction of FedPDD. From
Table II, we can see that the joint prediction of FedPDD is
better than FTL by 3.98% on HetRec-MovieLens and 2.78%
on Criteo. These results show that our proposed framework
outperforms the FTL-based methods in the situation where
overlapped data is limited.



(a) HetRec-MovieLens (b) Criteo

Fig. 3. The relationship between communication round r and performance
of FedPDD during training

(a) HetRec-MovieLens (b) Criteo

Fig. 4. The comparison between FedPDD and FTL baseline when the
overlapped data ratio α decreases

We also compare FedPDD with two knowledge distillation-
based federated learning strategies PFML [36] and
FedKD [25]. From Table II, we can find that the local
model performance of FedPDD outperforms the PFML
baseline by 2.46% and 1.92% on two datasets on average.
Besides, our FedPDD outperforms FedKD by an additional
1.25% and 0.99% on two datasets on average. This indicates
that our double distillation method can generate better teacher
logits from not only the ensemble of cross-party local models
but also the previous local models of the same party, thereby
effectively enhancing the local model performance.

For joint prediction on aligned test samples, the predictions
of both local models are averaged as the final result. Therefore,
the performance of federated joint prediction mainly depends
on the performance of local models. From Table II, we can
observe that FedPDD outperforms FedKD by 1.21% and
1.27% on two datasets, respectively, and outperforms PFML
by 1.60% and 1.15% on two datasets, respectively. This is
reasonable as the local models trained by FedPDD achieve
higher accuracy than FedKD and PFML on both datasets.
Meanwhile, more accurate joint predictions can in turn transfer
more knowledge to both local models.

E. Hyper-parameter Tuning

1) Effect of communication round r: From Figure 3, we
can find that FedPDD converges after 5 rounds on the HetRec-
MovieLens dataset and 7 rounds on the Criteo dataset, which
demonstrates that FedPDD only requires a few times of
communication need between two parties during training.

2) Effect of overlapped data ratio α: As we mentioned
previously, the major challenge of the multi-view federated
learning problem is that the overlapped data is often limited.
We adjust the overlapped data ratio α from 0.1 to 0.01 to
test the effectiveness of FedPDD. The experimental results are
shown in Figure 4. We can observe that when α decreases to

Fig. 5. The impact of DP parameter ϵ on model performance on HetRec-
MovieLens dataset.

TABLE IV
SENSITIVITY TO T ON HETERREC-MOVIELENS2K

T 1 10 20 30 40 50

FedPDD 0.8258 0.8260 0.8270 0.8291 0.8270 0.8267
Local A 0.8254 0.8252 0.8260 0.8288 0.8259 0.8256
Local B 0.8268 0.8261 0.8270 0.8292 0.8270 0.8267

0.01, the performance of the FTL approach drops significantly
by 13.42% while FedPDD still remains above 0.8 on the
HetRec-MovieLens dataset. On the Criteo dataset, FedPDD
almost remains the same while the FTL baseline drops around
5.20% when α decreases. These results demonstrate the effec-
tiveness of FedPDD in our setting.

3) Effect of temperature T : In knowledge distillation, the
temperature is used to soften the probability output, leading
the students to pay more attention to the small number of logits
[20]. In this section, we conduct experiments to find out the
influence of temperature on our model. We let T = TSD =
TED. In Table II, we set the temperature to 30 to highlight
the best performance of FedPDD on two benchmark datasets.
Here we fine-tune the temperature T over a large range from
1 to 50 in the online scheme. The results in Table IV and V
show that the careful selection of temperature can bring a little
performance enhancement on local models.

4) Effect of differential privacy budget ϵ: In Figure 5, we
demonstrate the effect of differential privacy on the HetRec-
MovieLens dataset. We change the ϵ from 0.05 to 10 to explore
the change in local model performance and federated model
performance. It can be observed that the accuracy drops only
by 1.53% for local models in FedPDD and 1.30% for joint
prediction of FedPDD, respectively. The performance of local
models outperforms locally trained baselines when ϵ > 0.05.

V. CONCLUSION

In this paper, we propose a novel cross-silo federated
recommendation framework FedPDD. We design a double
distillation strategy that leverages knowledge not only from
the ensemble of local models but also from previous local
models to efficiently improve the model performance. Besides,
FedPDD largely reduces communication needs and privacy
leakage risk by utilizing an offline training strategy and
only transmitting model output during training. Additionally,
differential privacy is introduced to protect the communication
process with a higher level of privacy protection. Experimental



TABLE V
SENSITIVITY TO T ON CRITEO

T 1 10 20 30 40 50

FedPDD 0.7520 0.7508 0.7521 0.7522 0.7514 0.7507
Local A 0.7473 0.7487 0.7489 0.7482 0.7481 0.7480
Local B 0.7657 0.7664 0.7664 0.7668 0.7660 0.7663

results demonstrate that our approach can effectively exploit
both implicit knowledge and explicit knowledge and thereby
enhance the performances of both local and overall joint
prediction tasks. Moreover, our framework can also be adopted
to learn and predict financial risks associated with various
internet finance platforms with heterogeneous information
features and strong privacy-preserving needs.
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