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Abstract—In this paper, we study how the achievable different ways of increasing the capacity. The first type of
throughput scales in a wireless network with randomly located methods uses mobility to increase the capacity. Specifically,
nodes as the number of nodes increases, under a communicationin 3 network where nodes move randomly on a unit-area
model where (i) each node has a maximum transmission pOwer s sych that their steady state distribution is uniform,
Wo and is capable of utilizing B Hz of bandwidth and (i) & ,qqglauser and Tse [16] show each source-destination pair

each link can obtain a channel throughput according to the hi tant thr hout. which is ind ndent of
Shannon capacity. Under the limiting case thatB tends to can achieve a consta oughput, chis ependent o

infinity, we show that each node can obtain a throughput € number of nodes. Several subsequent works [3], [23],
of ©(n(®=1/2) where n is the density of the nodes anda [13] study the delay introduced due to mobility, and show

is the path loss exponent. Both the upper bound and lower that in order to achieve constant per-node throughput, the
bound are derived through percolation theory. In order to delay has to be proportional to the inverse of the velocity of
derive the capacity bounds,. we have a]so deriyed an important node movement [3], [13]. In general, since node movement is
result on random geometric graphs: if the distance between mych slower than the radio propagation, the delay introduced
two points in a Poisson point process with densityn is non- ,qing node mobility is non-negligible, and to some extent,
diminishing, the minimum power route requires power rate at intolerable for most applications. In addition, the buffer

least Q(n(1=*)/2). Our results show that the most promising ed bi des t dat Lets 1o thei
approach to improving the capacity bound in wireless ad hoc required for mobile nodes fo carry dala packets to their

networks is to employ unlimited bandwidth resources, such as destinations is another issue.

UWB. The second type of methods use static infrastructures to
keywords— Stochastic processes/Queuing theory, Graph the-increase the capacity of wireless networks. In this case,
ory, Combinatorics, Information theory m base stations interconnected with wired lines are placed

within the ad hoc network witm nodes to help transport
packets. Liuet al. [20] consider the case wherme base
stations form a regular hexagonal pattern. They show that the
A wireless ad hoc network consists of nodes that communiimberm of base stations has to grow at a rate faster than
cate with each other over a shared wireless channel. WithQ/t, in order to effectively improve the throughput capacity.
the need for centralized infrastructure support, wireless Kdzat and Tassiulas [18] show that assuming the base stations
hoc networks have many salient features such as easearefalso randomly deployed, the per-node throughput capacity
deployment, low cost and low maintenance. However, wirean only be®(1/logn), even if the numbenn of base
less radio signal attenuation and interference on the shaseations grows at a rate proportional o Therefore, the
wireless medium impose new challenges in building largese of infrastructure support requires a large number of base
scale wireless ad hoc networks. A natural question is how thtations interconnected through wired line.
throughput scales with the numberof nodes in this type of The third type of methods use directional antennas to
networks. In their seminar work, Gupta and Kumar [17] shoiucrease the capacity of wireless networkselal. [28] show
that assuming each node can transmit with constant rate, e capacity in a random wireless network can be improved
per-node throughput capacity of a random wireless ad hoga constant (w.r.t. the number of wireless nodes) factor that
network with n static nodes decreases withas O(1//n) is inverse proportional to the beam width of the antennas.
(in the physical model, the definition of which is given irPeraki and Servetto [2] show that even if the transmitter can
Section VI). They also show that a per-node throughput génerate arbitrarily narrow beams (which essentially removes
rate2(1/y/nlogn) can be achieved in the same setting. all wireless interference) and the transmission ranges are
Gupta and Kumar’s result indicates that the network caet as minimal as possible to maintain connectivity, the
pacity “vanishes” as the number of nodes increases. Duectpacity can only improve by an order 6flog?(n)). Thus
this pessimistic result, many researchers have investigatieel capacity improvement using directional antenna is very
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limited. if two points have non-diminishing distance, the minimum

The fourth type of method to improve the capacity bounaeight path between them (which can be obtained using any
is to leverage the unlimited spectrum resources, in particuldlportest path algorithm) has weight at least in the order of
the Ultra Wideband (UWB). Negi and Rajeswaran [21] show!!~®)/2. The upper bound is derived based on the above
that under the limiting case when the bandwidth— oo and result. The lower bound is derived leveraging the technique
each node has a power constrdifig, the per node capacityused in [11], [12] (in a different context). The derivation is
is upper bounded by ((nlogn)@~1/2) and lower bounded made by constructing a backbone network which consists of
by Q((bg:)‘%), whereq is the path-loss exponent. Notenany disjoint horizontal paths and disjoint vertical paths.
there Is a gap oflogn)® between the derived upper bound The rest of the paper is organized as follows. In Section
and lower bound of the capacity. Dana and Hassibi [3], We discuss the background that pertains to the problem
[6] consider a different scenario in which there areelay considered in the paper to facilitate derivation. Following that
nodes andr < /n source-destination pairs. Assuminyve derive the upper bound in Section Il and the lower bound
unlimited bandwidth, they show that given the total rate scalis Section IV. In Section V, we discuss how the capacity
like ©(f(n)), the minimum power required by each nodsécales as the area increases and density is kept constant. W
scales liked(f(n)/+/n). In addition to the difference in thegive a comprehensive overview of related work on deriving
scenario, these bounds are derived based on a simple “lidtég Wireless capacity in Section VI and conclude the paper
and transmit” protocol, which may not be optimal in termi Section VII.
of the capacity-power tradeoff.

It seems that the most promising approach to improving the II. BACKGROUND
capacity bo.und is to use thg unlimited bandwidth (spectrur.n)-l-he objective of this paper is to derive bounds on the
resources, i.e., Fhe UWB. Since the approval (_)f C_Ommercb%{pacity of the ad hoc network that employs UWB. The
use .by the Un_lted States Federal Communications (,:0 rivation is made based on some of the results in [21]. For
mission (FCC) in 2002, the UWB technology has receiv mpleteness of the paper, we highlight results in [21] that

a great deal of attention in the wireless community [104e taing 19 our derivation. We start with the assumptions on

[9], [1]. UWB is defi_ned as any_radio technology using e system model and the performance metrics that define the
spectrum that occupies a bandwidth greater than 20 perceiti o rate

of the center frequency, or a bandwidth of at least 500MHz.
UWB technology is most appropriate for short range com- _
munications € 10 meters). By Shannon’s capacity theoryd. Assumptions on the System Model

UWB transmitters are capable of transmitting, with very we consider a square of unit area, in which nodes are
lower power, at a rate ranging from 100Mbps to 500 Mbpgistributed according to a Poisson point process of intensity
The characteristics of UWB make it well suited for wires,  Each node has a power constralfit. The underlying
less sensor networks (in addition to wireless personal a@mmunication system has an arbitrarily large bandwiith
networks, such as smart home environments). In particulgle., B — ~c). An ambient Gaussian noise model with the
wireless sensor networks are expected to be deployed wjliwer spectral density ¥, and the signal noise power loss
high densities (up to 20 nodes?[24]) and sensors have veryof 1/4* is assumed, wheréis the distance and > 1 is the
limited power supplies. distance loss exponent. Capacity-achieving Gaussian channe

In this paper we study the same problem as that in [2tbdes are assumed for each link. Thus each link can support
i.e., deriving the capacity bound in the limiting case when (§ data rate as determined by the Shannon capacity of that
the bandwidth3 — oo, (ii) each node’s power is constrainedink [4], i.e., r = Blog(1 + SINR). Similar to [21], we use
by Wy, and (iii) each link achieves its Shannon capacityg(-) to denoteog, (-) and the capacity is expressed in units
We tighten both the lower and upper bounds of the netwosk nats [4].
capacity to©(n(*>~1)/%), and close the gap between the Specifically, letX; denote node’s position andW;; the
two bounds that exist in [21]. Although we investigate thgansmission power of nodeto nodej. The power constraint
same problem in [21], we have used a dramatically differepiy each nodéV,, implies that1V, = >0 Wi < Wo. Let
proof technique. Our derivation is based on the theory gf; denote the power loss between nadand j and g;; =
percolation. We expect the same proof technique can be usgd— X;|=*. The SINR of the transmission from nodeo
to establish tighter bounds in several other related works.nodej can be computed as

In order to derive the capacity bound in the aforementioned W s
limiting case, we derive an important result on random SINR = ij9ij

g case, ! _‘mporta . . BNo+ > ne; Witk;'

geometric graphs. Given a Poisson point process with density 0 kel YV k9kj
n in a unit square (in which each link of lengthbetween where/ is the set of nodes that are simultaneously transmit-
two points is given a weight® wherea > 0), we show that ting.

(1)



B. Performance Metric because the upper bound under a more relaxed assumption i
All nodes send traffic at a rate ofn) nats per second to clearly an upper bound under a more restricted assumption.

their corresponding destinations. We pick uniformly and ran-AS has been proved in [21], the optimal route that maxi-

domly source-destination pairs, so that each node is exadi{fes the throughput capacity under this relaxed assumption

the destination of one source. A uniform throughp(it) is 'S the minimum power route for each sourc_e-destlnatlon pair,

feasible if there exists a routing and scheduling scheme tR§Fause minimizing the power consumption of a route for

can satisfy the throughput requirementr6h) nats per sec- each source destination pair is equivalent to minimizing the

ond for each source-destination pair. The maximum feasiiéerage power consumption of all nodes. I&tdenote the

uniform throughput is the uniform throughput capacity, arf@inimum power route for a given source-destination pair

is the performance metric studied in this paper. e, R; = [Xi,Xi,, - Xj.]. Letr; denote the achieved
The objective is to bound the uniform throughput capacil{)roughput on the routé?;. The minimum power on this

by a function ofn. Since the underlying network is randomfUte s (according to Eq. (4))

so is the capacity. The capacity bounds are often derived to K-1

be certain functions with high probabilityv(h.p), i.e., with W(R;) = ri(n) - No Z | X, — Xy | (5)

probability approaching 1 as the density— co. Specifically, k=1

we say that the uniform throughput capacity:) is of order |ntuitively, since the average power consumption on each

O(f(n)) if there exist deterministic constants > c¢o > 0 route is bounded, the achievable ratds determined by the

(w.r.t. n) such that bounds on thgower ratedefined as
lim Prob(r(n) = cof(n)) is feasible ) = 1, (2) K-l
lim Prol(r(n) =c1f(n)) is feasible) < 1.  (3) Pt

n—o0

If only Eq. (2) is satisfied, we say that the uniform throughplit i denote the distance between the soufGe and its

capacityr(n) is of order (or lower bounded by (f(n)). If ~destinationX;, i.e.,

only Eq. (3) is satisfied, we say that the uniform throughput di = | X, — Xi, |- @)

capacityr(n) is of order (or upper bounded by)(f(n)).

In what follows, we establish a bound @) and consequently

. . on the throughput capacity. The key to the derivation is that,

C. Bandwidth Scaling if it is possible for R; to be composed of mostly short hops,
It has been shown in [21] that with high probability nahen potentially the minimum power rat@J) of a route can

pair of nodes has distance less th%ﬁ/ﬁjﬁ, and if the be very small. Thus, our major task is to show that there are

bandwidth scales as fast &n(n?logn)®/?), the interfer- a sufficiently large number of long hops. The proof is based

ence is negligible with respect to ambient noise. Since thg the site percolation model.

bandwidth is arbitrarily large, each link’'s Shannon capacity

rij is proportional to the received power, i.e., A. Construction of the Site Percolation Model
rii = lim Blog(l + VVZ-jgij) _ Wijgi; @ We divide the area into grids of edge lengtty\/n as
U Bl NoB Ny depicted in Fig. 1. By adjusting the constagtwe can adjust

. _ _ the probability that a grid contains at least one node:
The bandwidth requirement for Eq. (4) to hold is later )
reduced to®(n(**+1/2) in [21]. P(a grid contains at least one ngde 1 —e~% £ p.  (8)

A grid is said to beopenif it contains at least one node, and
D. Optimality of CDMA MAC closedotherwise. Two grids are said to lagljacentif they

It is shown in [21] that CDMA performs as well as am§hare an edge or a vertex. Any grid is thus adjacent to 8 other

other optimal scheduling scheme under the assumptionsJfiS: For notational convenience, we use (pathto refer
%Ka list of grids such that any two neighboring grids in the

UWB and bounded power. This means the optimal capac _ - . X
can be achieved by all nodes simultaneously transmittifigh &€ adiacent; and (ii) eoute to refer to a list of wireless
without applying TDMA or FDMA schemes. nodes that are ac_tual_ly used to tran_spo_rt packets from the
source to the destination. By convention in graph theory, we
assume a path does not include any grid twice, except that its
first grid may be the same as the last grid. A path is said to
The upper bound is derived under a relaxed assumption thabpen(closed if all the grids on the path are open (closed).
the average power constraint of all the node8lig instead  As a first step, we observe that if there is an open path
of that each node a power constralify. This is sufficient in the percolation model from the grid where the source is

I11. AN UPPERBOUND ON THROUGHPUT CAPACITY



CERD) a given source I[N (m)] = 8- 7™~1 . p™, It then follows
\ by the Markov inequality that

=S (10)

0 O
) If we choosep < 1/7 and the distance (in terms of grids)
between the source and the destination goes to infinity, then
w.h.p. there is no open path between them.

= The next result is patterned on the results derived in [15]
O © (Eq. (2.49)) in which the bond percolation model is used.
O Since we consider the site percolation model, we give the
proof. Let P, be denoted as the probability measure with the
site-open probability (the probability that a grid is open)

P(N(m) > 1) < E[N(m)]

&
Q.
TOLR

©

@
@@
o1&

Lemma 2 Let A be the event that there exists an open path
of lengthm starting from a given source anids the minimum

Fig. 1.  Construction of the site percolation model. We divide the areg,mber of grids that need to be turned open from closed in
into grids of edge lengtlay/+/n. A grid is said to be open if there is at

least one Poisson point inside it; and closed otherwise. Two grids are s%{ﬁier for the event4 to take place. Then we have

to be adjacent if two grids share an edge or a vertex, i.e., @id is p— p' r
adjacent to(i — 1,4 — 1), (i — 1,4), (i — 1,4+ 1), (4,4 — 1), (3,5 + 1), (i + P,(A) > (—/) Py(Fa <) (11)
1,2 —1),(: + 1,4),(: + 1,7+ 1). An open grid is denoted with a circle l—p

inside it. The dashed lines show all the possible open links. /
forany0 <p' <p<1.

Proof. See Appendix I.
located to the grid where the destination is located, then we

can form a route from the source to the destination by pickirég

one node from each grid on the path. Every hop on this

route is bounded from above B/2¢o/\/n. On the other We are now ready to prove the folloyving result. Note that
hand, if there is no such an open path in the percolatigﬁe resu_lts can be applied to other fields such as random
model, then in any route (including the minimum powe§€OMetric graphs.

route) from the source to the destination, at least one hoR - . :
is of length at least,/+/n. Indeed, ifcy and consequently Theorem 1 Assume_z that noqles are .d'StnbUted n a unit
are sufficiently small, and the distanee, between the sourceSAuare area according to a Poisson point process with density

and the destination is sufficiently large, there exists no op@nIf the distance between a source—destlna}tlpn paid;is>
path between them in the percolation modeh.p. ¢ > 0, the power rateq; (Eg. (6)) of the minimum power

' (1-a)/2
Important Properties of the Site Percolation Mod&le routet betiweeg tgem ]'CS alf leastn w.h.p. for some
formally state and prove the above property in the lemnfg"stantcy = 0. speciiicaly,

below. P(Q; > eyn /2y > 1 — g -exp(—c2v/n), (12)

Derivation of Upper Bound of Network Capacity

Lemma 1 Letp be the probability that a grid is open in theas n — oo, for some constant;, ¢, > 0.
site percolation model we have defined (Eq. (8)). Then t
probability that there exists an open path of lengilstarting
from a source is upper bounded by

B?oof. For any route between the source and the destination,
we can construct a walk (which may include some grids
more than once) in the site percolation model by including
§(7p)m ) all the grids that intersect with the route. The walk can be
7 ' further trimmed into a path which contains the minimum
whereN (m) is the number of open paths of lengthstarting "Umber of closed grids by removing unnecessary grids (see
from a given source. an illustration in Fig. 2). We denotd™ as an optimally
trimmed path that contains the minimum number of closed
Proof. The total number of paths of lengtln are upper grids. In what follows, we bound the probability that the
bounded bys - 77—, because in the first hop there are aiptimally trimmed path7* contains at mosts./n closed
most 8 choices, and in each subsequent hop there are at rgods, wherecs is a constant yet to be determined.
7 choices. Each path is open with a probabilityp8f. Thus, Note that the distance between the source-destination pair

A

the expected number of open paths of lengtistarting from in terms of grids is at leasin £ d;/(v/2co/\/n) =

P(N(m)>1) <



8 . ST
@@ < = (7p)d7,\/77/(\/560) . ke
~co 8 d; log(7
& o = Z.exp (\/ﬁ (M + c3log k)) . (15)
o R @ 7 \/500
‘ \ _ clog(7p) _ _ dilog(7p) i
N i /Gg&i Slo If we choosel < ¢ < — -7 ogh < " Vaeologk® W€ obtain
G- \536‘5'%/& Gm\@; Py(Fa < c3y/n) < % -exp(—c2yv/n) — 0 (16)
@ Q o asn — oo, where
g ks T
Hence, the optimally trimmed path* contains more than
c3/n closed grids with probability at leagt; = 1 — % .
exp(—ca4/n) if we choose the grid size(,/\/n such that
1—e % =p.

destination D. We can construct a walk (which is also athere is exclusively one line segment completely contained
|[oath) that is composed of grids that intersect with t]he roUutey a link on the minimum power route with length at least
Go,G1,G2,Gs,G4, G5, Gs,Gr,Gs, G, G0, G11, G12, G13, G14]. , . . . . . . . .

Some of the grids can be removed from the path. For exanghlean be C_O/\/ﬁ (An 'IIUStra_tlon IS glven. 'r‘ Fig. 3). In addition, if a
removed becausé, and G are connected (in our percolation model)link on the route intersects with closed grids oril™, the

Similarly, G4, G's, G10, G13 can all be removed. There are multiple waydink has length at leasic)/\/n. To derivate the lower bound

of rimming the path. For example, we can also remGue G but keep —of tha nower rate of the route, we can assume each link only

G4. Among all the trimmed paths, we pick &% the one that contains . . . . L

the minimum number of closed grids. Ties are broken arbitrarily. In tHBtersects at most one grid if*, because if a link intersects

above example, the patfiGo,Ge,Gs,Gs, Gs, G7, Gy, Gi1,Gi2,G1a]  With j grids in 7%, its power rate will be greater than the

contains minimum number (which is 1 in this case) of closed grids. power rate ofj links each with Iengthzg/\/ﬁ. Thus the route
contains at least;/n links each with length at leasf/\/n

with probability at leastp,. Hence the total power rate of
’ (0%
the route is at leasts\/7 - (CU) = c3clon(172)/2 with

’ vn

If T* contains at mosts,/n closed grids, then we canProbability at leasp;. Let ¢; = cscf”. We obtain
construct an open path from the source to the destination (1-a)/2 8

by turning at mosts/n closed grids into open grids. This P(Qi>an )Zzpi=1- 7 rexp(—cav/n).  (18)
further indicates that by turning at most,/n closed grids 0

Into Open ones, we can obtain an open path of length at Ieas{.he following results are intuitively true and a tedious but
m starting from the source. Now we can apply Lemma %

. fis gi in A dix II.
Let A denote the event that there is an open path of IengtﬁOrous prootis given in Appendix

m starting from the source, anH, the minimum number
of closed grids that need to be turned into open in order
eventA to take place. We conclude thaly < r = c3/n if
the trimmed patli™* contains at most;+/n closed grids. By
Lemma 2,

di/n/(v/2¢cq). This implies the path length &f* is at least
m

1J_emma 3 (i) w.h.p, the number of nodes in the field is
t%tweenn/Q and 2n.

(i) With our ways of choosing source-destination pairs, there
existe > 0 such that the number of pairs with distance at
leaste is at leastn/8 w.h.p.

o *03\/5

Py(Fa <csvn) < P,(A4) (11) _Z) . (13) We now prove the main result in this section.

By Lemma 1, Theorem 2 With the assumptions we have made in Section
8 .8 (V3 lI-A, the network capacity is upper bounded @yn(*—1)/2)

Py(4) = 7 (Tp)™ = 7 (7p)d“ﬁ/(\/§ g (14) w.h.p.asn — oo .

We can choose, such that = 1 —e~% < 1/7. After fixing Proof. Combining Egs. (5) and (6), we obtain

co andp, we can choosé > 1/p andp’ = *2=1 < p. Now

plugging the equation of’ and Eq. (14) into Eq. (13), we W(R;) = ri(n)NoQ;. (19)

have Let I; denote the set of routes with the distance between

Py(Fa < c3v/n) the source-destination pair at leastBBy Lemma 3, we have



GO O This completes our proof. O
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A Gl* Rt e o - IV. AL OWERBOUND ON THROUGHPUT CAPACITY
Bt RS In order to derive a lower bound on the throughput capac-
@ €5 ’"/7@ ity, we leverage a routing scheme used in [11], f12)e
GO0 @ show that the routing scheme can achieve a capacity bound
T that is of the same order of the upper bound we have derived
@ ®\ in Section lll. For completeness of the paper, we summarize
Q) © the routing scheme first.

A. Construction of the Backbone Network

The routing scheme lays a wireless backbone network that
carries packets across the network at the desired rate. The
backbone network is composed of short hops (and hence is
Fig. 3. lllustration of the relation between a closed gridfohand a line able to transmit at high rates), and is obtained through the
segment of length at leas}//n on a link of the minimum power route. percolation theory.

If a link crosses a closed grid at the two opposite edges (as in the gri o
Gh), the line segment4 B) on the link that is contained by the grid have dTO construct the backbone network, we divide the area

length at least), /x/ni. Hence without loss of generality, we can assume R0 square grids of edge lengt3/(2/n). The new grid
link enters a closed grid from its bottom and exits from its right (such @&ystem is depicted in Fig. 4 (a). Note that the grid system is

grid Ga). If ggd Gs is Or;]the pathr’”, g‘e”Gﬁ is gitfher ”ﬁt on tpe pathh constructed differently from that in Section Ill. As depicted
T™ or open, because otherwise, can be removed from the path. In this. . .
case, the line segmet?F’ has length at least/n. Similarly if G2 but in Fig. 4 (b), we draw a horizontal edge across half of the

not G is on the pathl™, the line segmen€’E has length at least,,/n. grids and a vertical edge across the others. An edge is said
If a link intersects more than one grid on the pdth, similar analysis can to be open if there exists at least one node (from the Poisson
be performed. point process) in the grid that contains the edge and closed
otherwise. In this way we obtain a bond percolation model.
The probability that an edge is open is independent of all
other edges, and can be expressed as

S OW(R) = ri(n)NoQi. (20) p=1-e /" (25)

el el

. . . . . Next we divide the network area into horizontal rectangles,
Since we are interested in the uniform capacity boud) B oof sizel x - loe Y2 Each of th tanales th
achieved by all routes, we have n, OF Slz€ L X 08 7, - =ach ot Ine rectangles nus

n/8 < |I;| < 2n w.h.p. Summing over all the routes ify,
we have

2n 5

hasm x logm grids in the bond percolation model, with
ZW(Ri) >r(n) ZNonw (21) m = V2n/cs (as the edges have length). As proved in
icl ich, [11] (Theorem 1), there exist many open paths from left to

In Theorem 1, we have shown that there exists; > 0 right inside each such rectanglg,.
such that
_ 8 Lemma 4 (Theorem 1 in [11]) If¢s is sufficiently large
PO: < (I1-a)/2y « 2 _ 22 _ 5 ,
(Q: < erm )< 7 exp(—c2v/n) (22) there exists a constart = 3(c5) > 0 such thatw.h.p. there
for a given source destination pdiwith distance at least are 3logm = 3log ‘/6—2_" disjoint open paths that cross each
Without loss of generality, we can assuidgl < 2n because rectangleR,, from left to right.

otherwise we may only keep the firdt routes inl;. Thus
With all the rectangles, we obtaiim open paths from

P(Fiel, st.Q; <cnl™/%) < 2n'§eXp(—62\/ﬁ).(23) left to right. We can also divide the area into vertical
rectangles and reach similar results for paths that cross the
area from bottom to top. With the use of a simple union
bound argument, we conclude that there exist horizontal
disjoint paths andim vertical disjoint paths simultaneously
w.h.p. These paths constitute the backbone network.

The right equation in the above converges to Ohas> oco.
Thus,w.h.p.we have at least/8 routes, each with at least
power ¢;n(1=%)/2 |n addition, w.h.p. the total power of all
routes inl; is at mos2ni, by Lemma 3(i). Plugging these
results into Eq. (21), we obtain thath.p.

2Wy

< a—l)/2' (24) IWe make minor revision on the choice of the exit point to facilitate our
B N()Cln(l_a)/2/8

— (
=cyn N
1 derivation.

r(n)




(a) New grid system (b) Edges for the bond percolation model

Fig. 4. Construction of the bond percolation model. We divide the unit square area into square grids of sidesl&i2gffn). A grid is said to be
openif it contains at least one point in the Poisson point processcirgkdotherwise. The edge that crosses an open (closed) grid is saiddpepe
(closed.

B. Routing in the Backbone Network

Packets are transported from sources to destinations in the
above backbone network via three phas#sining phase
backbone phaseanddelivery phraseln the first (draining)
phase, the source sends packets directly to a node on a
horizontal path of the backbone network. In the second (back-
bone) phase, packets are transported along the horizontal path
and reach a vertical path. In the third (delivery) phase, a node
in the vertical path sends packets directly to the destination.
In what follows we discuss the detailed operations in each
phase.

1) Draining phase:In the draining phase, packets are car-
ried from the source to the backbone network. We first evenly
divide the square area infém horizontal slabs of widt }n
Now since there are exactly as many slabs as horizontal paths,
we can enforce that nodes in tl#h slab send their packetsrig. 5. A source transmits packets directly to the entry point on a
using theith horizontal path. More precisely, an entry poinitorizontal path.
in the ith horizontal path can be assigned to each source in
the ith slab. As shown in Fig. 5, the entry point is chosen to
be the node on théth horizontal path that is closest to theo the entry point, it is carried along the corresponding
vertical line drawn from the source point. By Lemma 4, theorizontal path until it reaches the crossing point with the
distance between a source and its corresponding entry peiget vertical path. The target vertical path is determined by
is never larger thafics /v/2n) log(v/2n/c5) +c5/v/2n (Since  the vertical slab that contains the destination node, i.e, if the
the source and the entry point are in the same rectaligle destination is in theth vertical slab, the target vertical path
their vertical distance is at moéts /v/2n) log(v/2n/cs), and s theith vertical path. The following result is proved in [11]:
their horizontal distance is at mosf/+/2n by the choice of
the entry point).

2) Backbone phaseSim”aﬂy we can divide the squarel_emma 5 The probablllty that each slab contains less than
area into3m vertical slabs. Once a packet is transmittegsv'2n/8 nodes tends to one when— oc.




3) Delivery phase:In the delivery phase, packets aréroof. See appendix Ill.
transported from the exit point of the vertical path to the Again the maximum distance between an exit point and the
destination directly. Theexit point for a given destination corresponding destination node(is/v/2n)(log(v/2n/cs) +
is defined as a node in the grid on the vertical path. Using Lemma 6 and Eq. (5), we can conclude that,p,
whose center (i.e., the center of the grid) is closest tioe power consumption of every exit point is less than
the horizontal line drawn from the destination. Again, the 9 Jan a
destination from the exit point to the destination is at most NOC6nOT_l .5 logn - i (log " + 1{)

(c5/v2n)log(v2n/cs) + c5/V 2n. 20 Vv2n C5
B NOCﬁC?) logn cs V2on
C. Achievable Throughput = T ﬁ(log - 1) (28)

We now show that the achievable throughput using theCIearIy, whenn is sufficiently large,cs can be chosen

routing scheme presented in Section IV-B is at legsf = sufficiently small (but independent af) to satisfy the power

wherecg > 0 is to be determined later. Clearly it is sumCienEonsumption constraint(1W;) for each exit point.

to show this is true in each phase of the routing scheme. »
1) Draining phase:Since the distance from each sourc

X; to the entry pointX;, is never larger tha@%(log V2n |

Cs

1), the achievable rate from each sourCgto the entry point Theorem 3 With the assumptions we have made in Section

In summary, we have proved the lower bound of the
fetwork capacity as follows.

is II-A, the network capacity is lower bounded Byn(*—1)/2)
N Wo w.h.p.
; = — 0
NolX; — X;, | _
W(')’ 3 " ’\/2— o Remark: A node may play multiple roles. For example,
> 0 " ) it can be a source node, a transit node on a horizontal path
No 05(; +log v2n/cs) or a vertical path, and/or an exit point. In such cases, we can

> cenl@ /2, (26) evenly distribute its power for each role. The achievable rate

P i a—1)/2
Clearly the last inequality holds ifi is sufficiently large 'S Stil Q(n(e-172).

and ¢g is sufficiently small (but independent af). There-
fore, the ratecgn(®~1/2 is achievable as long as there are V. Discussions
Blog(v/2n/cs) horizontal paths in every rectanglg,. Since ~ Area RescalingSince the assumption of unit area is an
the latter takes place.h.p, the ratecgn(®=1)/2 is achievable abstraction of the real world with larger area, we consider
w.h.p. the rescaled network where the side length of the squate is
2) Backbone phaseBy Lemma 5, every slab has lessind the node density in the rescaled networiisThus if we
than csv/2n /3 nodesw.h.p. Thusw.h.p, every node in the envision the side length as 1 unit, the network density in the
backbone (on the horizontal path, the vertical path, or bothipit area isn = ngL?. In the rescaled network, we keep the
will need to relay traffic at a rate; < 2 - (c5v/2n/B) - densityn, fixed and letL — co. Since the edge length in the
cen(@~1/2 = 24/2¢5¢4n*/? /5. In the backbone phase, a nodeescaled network is multiplied by, the power rate function
only need to transmit packets to its next hop node and tisemultiplied byL®/2. For the upper bound, Theorem 1 should
transmission distance is at most\/2/n. Thus the power be revised to that if a source and a destination have distance at
consumption on each nod#; is leaste L, the total power rat€); of the minimum power route
W o between them is at lea§t(n(!=®/2L%) = Q(n'/2n,*/?).
i riNo(c51/2/n) 0 -
/2 o Thus by Eq. (19), the upper bound of the per node capacity
(2v2¢5¢6n°/%/B) - No(es\/2/n) s of ordern-1/2. For the | bound. since the t e
206(c57/2)* Ny /8. 27) is of ordern™"/=. For the lower bound, since the transmission
distance in the backbone network is upper bounded by a
If we chooserg < %,we havelV; < W,. Thus the constant, the transmission rate in the backbone is lower
backbone can support a rate @fn(“~1/2 for each source Pounded by a constant. Since each node in the backbone
w.h.p. is responsible to relay traffics f&(,/n) source-destination

3) Delivery phase:In the delivery phase, an exit pointPairs, the achievable rate is at legt /\/n). Itis not hard to
on the vertical path sends packets to the destination no@éify that the draining phase and the delivery phase can also

directly. The following Lemma bounds the number of destichieve this rate since they are not the bottleneck. This is not
nation nodes each exit point needs to handle. surprising because the assumption of bounded power in the

unit-area network is equivalent to that the power of each node
Lemma 6 The probability that there are less thans of order©®(L®) = ©(n®?) in the rescaled (large-area)
(c2/(28))logn destination nodes for each exit poinhetwork. By Eq. (4), the rate of each link is proportional to
approaches one ag8 — oo. the transmission power. So if in the rescaled network each

I IAIA



node has transmission pow@(n/?), the (per node) network uniform distribution on an open disk, Grossglauser and Tse

capacity is stillo(n(@—1)/2), [16] show that the average long-term throughput per source-
destination pair can be kept constamh.p.as the number
VI. RELATED WORK n of nodes in each unit area goes to infinity. Diggavial.

[7] further show that even if nodes are only allowed to move

In their ground breaking work [17] Gupta and Kumar ! di _ h nod ined
first derive the transport capacity of wireless ad hoc netwolR, ON€ dimension (each node are constrained to move on a

Specifically, they assume that nodes are independentlys'ngle'_dimens_ional great circle on the unit sphere), each node
and uniformly randomly distributed, either on the surfacg®" Still obtain constant capacity as the number of nodes

of a three-dimensional sphere of unit area, or on a disk |8fthe unit area increases. Their derivation is based on the

unit area in the plane, that the destination is independerl?llglys'Cal .model. ,
chosen as the node that is closest to a randomly |Ocate(l_j'-ollowmg_that, s_everal researchers_study the delay |r_10urred
point (according to the uniform distribution), and that al'Sing mobility to improve the capacity. Bansal and Liu [3]
nodes employ the same transmission range or power. Tf&dY the achievable rate together with the maximum delay
further assume two transmission models: protocol model dRgurred. Specifically, under the assumptions thastatic

physical model. In the protocol model, a transmission froRPdes andn mobile nodes (that move according to the ran-
nodei to j is successful if and only if (i)X; — X;| < r and dom mobility model given in [16]) are randomly distributed,

(i) [ Xy — X;| > (1+ A)r for every other simultaneouslya”d thatn sender-receiver pairs are chosen randomly among

transmission, whereX; is the location of node. In the the static nodes according to a uniform distribution, they
) ’ " . . . i ( , )

physical model, all nodes choose a common powefor Show that the achievable capacity is at lég¢t+7=) and

their transmissions. A transmission from nad® nodej is the maximum delay incurred by packets is at mpgfv,

successful if and only if vvfhehred isbt_rlme diaclimeter of the network andis the velocity
of the mobile nodes.
P
X=X, > 3 (29) Perevalov and Blum [23] obtain an expression for the ca-
N+ 3 per poti ﬁ - pacity as a function of the maximum allowable delay in an all

mobile network. They show that there exists a critical value

wherel is the set of simultaneously transmitting nod&sis ﬁithe delay such that for delays below the critical value,

:he am'ble'nt no![sg powertle\:gfl.trlln ?dd'tlor_" t'hey_ assume capacity does not benefit from the motion significantly.

ra?r?mlsilr?n raﬁ 'S (t:r?nf an Id ej[hransr][wlssulon "Zslufﬁes t delaysd above the critical value, the capacity increases
€ authors showina (1) under the protocolmodel, IN€ P&ls . oximately asi?/3. In addition, they show that the value

node capacity of the wireless network is both upper bound

. Sldthe critical delay increases approximately as the order of
and lower bounded by(1/y/nlogn), and (i) under the 114 it the numben of nodes. They assume the physical

physical model, the per-node capacity is upper bounded rl?%del as in [16]
O(l//n) and lower bounded b@(1/vnlog n). Gamalet al.[13] characterize the optimal throughput-delay

in hen, many r rch efforts hav nm ) .
invSest(i:eatte f[}htie wiilgsserfss/vgrk ‘ca:aoatf:it asgmbeeif thezririjztlﬁde()ﬁ for both the static network model and the mobile
9 pacity. network model. For the static network model, the optimal

to improve the capacity bound in different ways, while Othe{ﬁroughput-delay tradeoff iB(n) = O(nT'(n)) whereT(n)

attempt to derive the capacity bound under under dlffeéhd D(n) are the throughput and delay respectively. For

ent (usually more realistic) assumptions or different traffh:]e mobile network model, they show that delay scales as

patterns. We roughly classify existing work into those th 1/2 . . .
improve the capacity bound (Section VI-A) and those th%t(r'? ./U(n.)) if the per node capacity scales@(1). Their

. . . . erivation is based on a relaxed protocol model where a
derive the bound under different assumptions (Section VI-

In the former category, we further group existing methods fopomission from nodé to j is successful if for any other

. . . . nodek that transmits simultaneousk(k, j) > (1+A)d(i, j
improving the network capacity bound into four types. for some fixedA > 0, whered(i, ) li)'ls'Fthje)dis'Eance)bétvigen

nodes: andj.

Improving the network capacity bound by infrastructure
Improving the network capacity bound by mobility: support: The second type of methods use the infrastructure
The first type of methods employs mobility to improve theupport to improve the capacity bound, where a number of
capacity bound. Under the assumption that nodes are mobiieed base stations are deployed in the network to help
and the position of each node is ergodic with stationatyansport packets. (Networks of this type are calksdbrid

networks.) Liuet al. [20] consider the case where base

2Some of the works reported here also contain results on the capacityé&fltions are placed in a regular hexagonal pattern within
an arbitrary network where node positions, traffic patterns and transmissjon

ranges are optimally chosen. For the brevity of the paper, we only cite _ad hoc network withn nodes. _Under a determinis.tic
results on random networks, which is the main focus of this paper. ~ routing strategy, they show that ifn grows asymptoti-

A. Work that Improves the Capacity Bounds
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cally slower than,/n, the maximum throughput capacitythe physical model. Toumpis and Goldsmith [26] study the
is ©(y/n/log-"); and if m grows faster thany/n, the network capacity under a general fading channel model. They
maximum capacity i99(m). Under a probabilistic routing show that in a static network, each node can send data to its
strategy, they show that ifn grows slower than, /-2, destination with a rate o (n~1/2(logn)~3/2). In a mobile

the maximum throughput capacity has the same asymptdtRiwork each of the: mobile nodes can achieve the same
behavior as a pure ad hoc network; anehifyrows faster than order of magnitude throughput with a fixed maximum delay
logn’ the maximum throughput capacity scalesegn). constraint that does not depend onlf each node is willing

Kozat and Tassiulas [18] consider the case where botthE folerate packet dela@)(n) where0 < d < 1, they show

wireless nodes and base stations are deployed randomly ag/ each mobile node can send data to its destination with
(d=1)/2( 5/2
show that the per source node capacity@ifl/log(n O(n (log72)™*/%).
achievable, if the ratio of the numberof ad hoc nodes to Xie and Kumar [27] study the capacity bound in a setting
the numbern of the base stations are bounded from abo\)é(here nodes can employ sophisticated cooperative strategies
Improving the network capacity bound via directiondP achieve interference cancellation. They show that the
antennas: The third type of methods employs directionaf99regate capacity of an arbitrary network is upper bounded

antennas to improve the capacity bound.e¥ial. [28] show PY O(vn) (in a large-area network), assuming some natural
that in a random wireless network, use of directional antenra@n@l attenuation law, and the upper bound is sharp for
with beamwidth o for the transmitters can increase th&f9ular planar networks where the nodes reside at integer
capacity by a factor ofr/a and use of directional antennadttice sites in a square.
with beamwidth3 for the receivers can increase the capacity Some other researchers develop capacity bounds under
by a factor of2x/(. In addition, if both the transmitter anddifferent traffic patterns. Gastpar and Vetterli [14] consider
the receiver employ directional antenna, the capacity cantbe same physical model as in [17], but a different traffic
improved by a factor ofin?/a/3. Peraki and Servetto [2] pattern, namely theelay traffic pattern There exists only
shows that even if transmitter can generate arbitrarily narréf€ (randomly chosen) source-destination pair and all other
beams (which essentially removes all wireless interferend®@des serve as relay nodes. They show that if arbitrarily
and the transmission ranges are set as minimal as possibleo@plex network coding is allowed, the upper bound and
maintain connectivity, the capacity can only improve by dawer bound of the capacity of a wireless network with
order of©(log?(n)). nodes under the relay traffic pattern meet asymptotically at
Improving the network capacity bound with the use &¥(logn) as the number. of nodes in the network goes to
UWB: The fourth type of methods to improve capacity levetdfinity. Marco et al. study the network capacity under the
age unlimited bandwidth resources to improve the netwom@ny-to-onescenario where there is only one destination and
capacity bound. Negi and Rajeswaran [21] show that und®ery node needs to transmit packets to the destination. They
the limiting case when bandwidt — oo and that each show that per node capacity scalesad /n) as the number
node has a power constraifity, the per node capacity isn of nodes increases. This is due to the bottleneck at the
upper bounded by)((nlogn) @ Y/2) and lower bounded single destination.
by Q((lof’g:)iﬂfw In [25], Toumpis studies the capacity bounds of three
Dana and Hassibi [5], [6] consider a different scenaritlasses of wireless networks under fading channels. The first
in which there aren relay nodes and- < /n source- class is asymmetric networks where theresasource nodes
destination pairs. Assuming unlimited bandwidth, they shaand aroundn? destination nodes, and each source picks a
that given the total rate scales like(f(n)), the minimum destination at random. The author show that/i® < d < 1,
power required by each node scales IiRéf(n)/\/n). The an aggregate throughput 8fn'/?(log n)~3/?) is achievable;
required bandwidth for achieving the minimum power iand if0 < d < 1/2, an aggregate throughput 8{n</log n)
©(f(n)). In addition to the difference in the scenario, thede achievable. In both cases, the aggregate throughput is uppel
bounds are based on a simple “listen and transmit” protocbbunded byO (n?1og n). The second class is cluster networks
which may not be optimal in terms of the capacity-powewhere there are client nodes and around® cluster heads.
bandwidth tradeoff. Each client communicates with one of the cluster heads, but
the particular choice of the cluster head is not important. They
B. Work that Derive the Capacity Bound Under Differenghow in this setting, the maximum aggregate throughput is
Assumptions lower bounded byQ2(n?(logn)~2) and upper bounded by
Some other researchers study capacity bounds under difte(n? log n). The third class is hybrid networks where there
ent (usually more realistic) assumptions. Dousse and Thirame n wireless nodes ana‘ base stations, and the base
[8] show the available rate per node decreases like stations are connected through wired lines and only used to
under the assumption that the attenuation function is usiipport the operation of wireless nodes. They show that if
formly bounded at the origin. Their derivation is based ory2 < d < 1, the maximum aggregate throughput is lower
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bounded by (n?(logn)~2) and if 0 < d < 1/2, there is no [10] J. Forester, E. Green, S. Somayazulu, and D. Leeper. Ultra-wideband
significant gain of employing the infrastructure. We note the technology for short- or medium-range wireless communications.

last result is similar to that in [20].

http://lwww.intel.com/technology/itj/q22001/articles/drtitm.
11] M. Franceschetti, O. Dousse, D. Tse, and P. Thiran. Closing the

. . [
Li et al. [19] study the capacity of small ad hoc networks ~ gap in the capacity of random wireless networkgreprint under
through extensive simulations, which verifies the capacity submission2004.
bound of order©(1/,/n) to some extent. Finally in a very[12] M. Franceschetti, O. Dousse, D. Tse, and P. Thiran. Closing the

recent work, Franceschetéit al. [11], [12] close the gap

gap in the capacity of random wireless networks. Rroc. of
IEEE International Symposium on Information Theory (ISIT;04)

between the capacity upper bound and lower bound in Gupta june 2004.
and Kumar's original results [17] under the physical modékl3] A. Gamal, J. Mammen, B. Prabhakar, and D. Shah. Throughput-delay
They use percolation theory to devise a routing strategy Whiﬁﬂ trade-off in wireless networks. IRroc. of IEEE Infocom 2004

achieves a per node capacity boundaifl/\/n).

In this paper, we have derived lower and upper bounds

] M. Gastpar and M. Vetterli. On the capacity of wireless networks:
the relay case. Iproc. of IEEE Infocom 2002
[15] Geoffrey Grimmett.Percolation Springer, 1998.
VIl. CONCLUSION [16] M. Grossglauser and D. Tse. Mobility increases the capacity of ad-
hoc wireless networks. Iproc. of IEEE Infocom 2001
P. Gupta and P. R. Kumar. The capacity of wireless netwdikEE

the uniform capacity of'a power constrained wireless ad h%c] Transactions and Information Thegrilarch 2000.
network with an arbitrarily large bandwidth. The problem wgss] U. Kozat and L. Tassiulas. Throughput capacity of random ad hoc
first introduced and studied in [21] We close the gap between networks with infrastructure support. IRroc. of ACM Mobicom

the lower and upper bounds that exist in [21] and show tr}%]

2003
J. Li, C. Blake, D. S. J. De Couto, H. Lee, and R. Morris. Capacity

—1)/2
both the bounds scale &X(n(*~1)/2). Contrary to the results of ad hoc wireless networks. lproc. of ACM Mobicom’01
in [17], we demonstrate an increasing per-node throughga] B. Liu, Z. Liu, and D. Towsley. On the capacity of hybrid wireless
capacity as the number of wireless nodes increases. This _ networks. InProc. of IEEE Infocom 2003

is because the bandwidth (spectrum) is assumed to sdaté

R. Negi and A. Rajeswaran. Capacity of power constrained ad-hoc
networks. InProc. of IEEE Infocom 2004

with the density of nodes, and the throughput of each ling] m. Penrose.Random Geometric GraphsOxford University Press,
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constant as in [17]. [23] E. Perevalov and R. Blum. Delay limited capacity of ad hoc networks:
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A be an increasing event. Far € , let F4(w) denote the definition, see [29]). Clearlyl, > d. Let I(-) denote an

“distance” ofw from A4, i.e., indicator function. For any) < e < 1/2,
I(d; >€) > I(d,>¢) =1—mé 34
}.(30) (di > €) > I(d; > ) (34)

Among the N source-destination pairs, we can pidk =
N/3 pairs such that any two of them do not share a
node. Since nodes’ locations are independently uniformly
distributed, if two source-destination paifsj do not share

Fi(w) = inf {Z(w/(s) —w(s) W >ww eA

S

Note thatF4(w) = 0 if w € A. The generalized version of
Lemma 2 is

P,.(A) > (p2 —1?1>TPP1 (Fa < 1) (31) nodes, their d'istarjcdi,dj (and d;,d;., respectively in the.
I—p Torus convention) is independent. Without loss of generality,
for any 0 < p; < py < 1. we can assume the fir$f’ pairs do not share nodes. Thus

A . .. . . -
Proof. Suppose thak (s) : s € Z¢ is a family of independent I, = I(d, > e 2|s i.i.d. Bernoulli random variable with
random variables indexed by the grid (site) & where Parameterl — ze®. Let Sy = 37,y Ii. By Chernoff
eachX (s) is uniformly distributed on [0,1]. We may coupleln€auality, for anyt < 0,a > 0,

together all the site percolation processes ®h in the P(Sy < aN’)
following way. Let0 < p <1 and definen, € Q by < E—[exp(H(SN/ — aN"))]
/ 01;
(1 X(s) < p, = exp(N'(In E[e"] — 6a))
ols) = {O otherwise. (32) = oexp(N'(In(me® + (1 — we?)e’) — fa)  (35)
We may think ofrn, as the random outcome of the sitéet § = —1,a = 3/4 ande sufficiently small, we have £

percolation process ofi¢ with the site-open probability. In(re® 4 (1 — we?)e?) — fa < 0 and
It is clear thatn,, < n,, wheneverp; < p,. Thus we may , , ,
couple two percolation processes with site-open probability P(Sy < 3N'/4) < exp(N'6) — 0 asN' —oo.  (36)

p1 andpy in such a way that the set of open sites of the firshusw.h.p, the number of pairs with distance at leass at

process is a subset of the set of the open sites of the secqsgst3 N /4 = N/4 >n/8. O
Suppose that < p; < po < 1 and A4 is an increasing

event. Denotel,.(4) = {w : Fa(w) < r}. If n,, € 1.(A), APPENDIX I

there exists a (random) collectiari = C'(7),, ) of sites such PROOF OFLEMMA 6

that

By the choice of the exit points, a given exit poinwill
@ |Cl<r only be responsible to the destination nodes in a rectangle of
(0) 7, (s) = 0 for all s € C; and _ size not larger thafil /(3v/2n/cs)) x (c5/v/2n). The number
(c)  the configuratiom obtained from,, by declaring 1. of nodes inside this area has Poisson distribution with
all edges inC' to be open, satisfieg c A. parameterc; = ¢2/(26). By Chernoff inequality, for any
Suppose now that everyin the setC satisfiegp; < X(s) < ¢ > 0, we have
po. It follows from (c) above that),, € A. Conditioning

on (b) above, the probability of: < X(5) < p2 is (> - P (iw bé[g{kzg ;4) e togn)
p1)/(1 — p1))I€l. Therefore, - exp(g(ee i ) —79c§10g ») @7
P(np, € Alny, € I(A) = (%) , (33) Letd =2/c;, we have

P(M; > crlogn) < exp(cr(e”" —1)) n™* (38)

Againw.h.p, there are less thain exit points. Conditioning
on this,

since|C| < r. Eq. (31) follows easily.

APPENDIX Il
PROOF OFLEMMA 3 P(3i,s.t. M; > crlogn) < 2n-exp(cr(e?/¢" —1)) n=2.  (39)

(i) follows directly from Lemma 1.2 in [22]. Alternatively, The right equation tends to 0 as— oc. Thereforew.h.p,

this can be proved using Chernoff bound. _ _every exit point needs to deliver packets to at mgdbg n
(i) Let N be the number of nodes in the field. By (Ijestinations.

w.h.p, N > n/2. Now conditioning onN > n/2, all
nodes’ locations are uniformly independently distributed on
the unit square area. Lef be the distance between tli
source-destination pairs ant] be the distance between the
ith source-destination pairs under Torus convention (for a



