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Abstract— In this paper, we study how the achievable
throughput scales in a wireless network with randomly located
nodes as the number of nodes increases, under a communication
model where (i) each node has a maximum transmission power
W0 and is capable of utilizing B Hz of bandwidth and (ii)
each link can obtain a channel throughput according to the
Shannon capacity. Under the limiting case thatB tends to
infinity, we show that each node can obtain a throughput
of Θ(n(α−1)/2) where n is the density of the nodes andα
is the path loss exponent. Both the upper bound and lower
bound are derived through percolation theory. In order to
derive the capacity bounds, we have also derived an important
result on random geometric graphs: if the distance between
two points in a Poisson point process with densityn is non-
diminishing, the minimum power route requires power rate at
least Ω(n(1−α)/2). Our results show that the most promising
approach to improving the capacity bound in wireless ad hoc
networks is to employ unlimited bandwidth resources, such as
UWB.

keywords– Stochastic processes/Queuing theory, Graph the-
ory, Combinatorics, Information theory

I. INTRODUCTION

A wireless ad hoc network consists of nodes that communi-
cate with each other over a shared wireless channel. Without
the need for centralized infrastructure support, wireless ad
hoc networks have many salient features such as ease of
deployment, low cost and low maintenance. However, wire-
less radio signal attenuation and interference on the shared
wireless medium impose new challenges in building large
scale wireless ad hoc networks. A natural question is how the
throughput scales with the numbern of nodes in this type of
networks. In their seminar work, Gupta and Kumar [17] show
that assuming each node can transmit with constant rate, the
per-node throughput capacity of a random wireless ad hoc
network with n static nodes decreases withn as O(1/

√
n)

(in the physical model, the definition of which is given in
Section VI). They also show that a per-node throughput of
rateΩ(1/

√
n log n) can be achieved in the same setting.

Gupta and Kumar’s result indicates that the network ca-
pacity “vanishes” as the number of nodes increases. Due to
this pessimistic result, many researchers have investigated

different ways of increasing the capacity. The first type of
methods uses mobility to increase the capacity. Specifically,
in a network where nodes move randomly on a unit-area
disk such that their steady state distribution is uniform,
Grossglauser and Tse [16] show each source-destination pair
can achieve a constant throughput, which is independent of
the number of nodes. Several subsequent works [3], [23],
[13] study the delay introduced due to mobility, and show
that in order to achieve constant per-node throughput, the
delay has to be proportional to the inverse of the velocity of
node movement [3], [13]. In general, since node movement is
much slower than the radio propagation, the delay introduced
using node mobility is non-negligible, and to some extent,
intolerable for most applications. In addition, the buffer
required for mobile nodes to carry data packets to their
destinations is another issue.

The second type of methods use static infrastructures to
increase the capacity of wireless networks. In this case,
m base stations interconnected with wired lines are placed
within the ad hoc network withn nodes to help transport
packets. Liuet al. [20] consider the case wherem base
stations form a regular hexagonal pattern. They show that the
numberm of base stations has to grow at a rate faster than√

n, in order to effectively improve the throughput capacity.
Kozat and Tassiulas [18] show that assuming the base stations
are also randomly deployed, the per-node throughput capacity
can only beΘ(1/ log n), even if the numberm of base
stations grows at a rate proportional ton. Therefore, the
use of infrastructure support requires a large number of base
stations interconnected through wired line.

The third type of methods use directional antennas to
increase the capacity of wireless networks. Yiet al. [28] show
the capacity in a random wireless network can be improved
by a constant (w.r.t. the number of wireless nodes) factor that
is inverse proportional to the beam width of the antennas.
Peraki and Servetto [2] show that even if the transmitter can
generate arbitrarily narrow beams (which essentially removes
all wireless interference) and the transmission ranges are
set as minimal as possible to maintain connectivity, the
capacity can only improve by an order ofΘ(log2(n)). Thus
the capacity improvement using directional antenna is very
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limited.
The fourth type of method to improve the capacity bound

is to leverage the unlimited spectrum resources, in particular,
the Ultra Wideband (UWB). Negi and Rajeswaran [21] show
that under the limiting case when the bandwidthB →∞ and
each node has a power constraintW0, the per node capacity
is upper bounded byO((n log n)(α−1)/2) and lower bounded
by Ω( n(α−1)/2

(log n)(α+1)/2 ), whereα is the path-loss exponent. Note
there is a gap of(log n)α between the derived upper bound
and lower bound of the capacity. Dana and Hassibi [5],
[6] consider a different scenario in which there aren relay
nodes andr ≤ √

n source-destination pairs. Assuming
unlimited bandwidth, they show that given the total rate scales
like Θ(f(n)), the minimum power required by each node
scales likeΘ(f(n)/

√
n). In addition to the difference in the

scenario, these bounds are derived based on a simple “listen
and transmit” protocol, which may not be optimal in terms
of the capacity-power tradeoff.

It seems that the most promising approach to improving the
capacity bound is to use the unlimited bandwidth (spectrum)
resources, i.e., the UWB. Since the approval of commercial
use by the United States Federal Communications Com-
mission (FCC) in 2002, the UWB technology has received
a great deal of attention in the wireless community [10],
[9], [1]. UWB is defined as any radio technology using a
spectrum that occupies a bandwidth greater than 20 percent
of the center frequency, or a bandwidth of at least 500MHz.
UWB technology is most appropriate for short range com-
munications (≤ 10 meters). By Shannon’s capacity theory,
UWB transmitters are capable of transmitting, with very
lower power, at a rate ranging from 100Mbps to 500 Mbps.
The characteristics of UWB make it well suited for wire-
less sensor networks (in addition to wireless personal area
networks, such as smart home environments). In particular,
wireless sensor networks are expected to be deployed with
high densities (up to 20 nodes/m2[24]) and sensors have very
limited power supplies.

In this paper we study the same problem as that in [21],
i.e., deriving the capacity bound in the limiting case when (i)
the bandwidthB →∞, (ii) each node’s power is constrained
by W0, and (iii) each link achieves its Shannon capacity.
We tighten both the lower and upper bounds of the network
capacity to Θ(n(α−1)/2), and close the gap between the
two bounds that exist in [21]. Although we investigate the
same problem in [21], we have used a dramatically different
proof technique. Our derivation is based on the theory of
percolation. We expect the same proof technique can be used
to establish tighter bounds in several other related works.

In order to derive the capacity bound in the aforementioned
limiting case, we derive an important result on random
geometric graphs. Given a Poisson point process with density
n in a unit square (in which each link of length̀between
two points is given a weight̀α whereα > 0), we show that

if two points have non-diminishing distance, the minimum
weight path between them (which can be obtained using any
shortest path algorithm) has weight at least in the order of
n(1−α)/2. The upper bound is derived based on the above
result. The lower bound is derived leveraging the technique
used in [11], [12] (in a different context). The derivation is
made by constructing a backbone network which consists of
many disjoint horizontal paths and disjoint vertical paths.

The rest of the paper is organized as follows. In Section
II, we discuss the background that pertains to the problem
considered in the paper to facilitate derivation. Following that
we derive the upper bound in Section III and the lower bound
in Section IV. In Section V, we discuss how the capacity
scales as the area increases and density is kept constant. We
give a comprehensive overview of related work on deriving
the wireless capacity in Section VI and conclude the paper
in Section VII.

II. BACKGROUND

The objective of this paper is to derive bounds on the
capacity of the ad hoc network that employs UWB. The
derivation is made based on some of the results in [21]. For
completeness of the paper, we highlight results in [21] that
pertains to our derivation. We start with the assumptions on
the system model and the performance metrics that define the
feasible rate.

A. Assumptions on the System Model

We consider a square of unit area, in which nodes are
distributed according to a Poisson point process of intensity
n. Each node has a power constraintW0. The underlying
communication system has an arbitrarily large bandwidthB
(i.e., B → ∞). An ambient Gaussian noise model with the
power spectral density ofN0 and the signal noise power loss
of 1/dα is assumed, whered is the distance andα > 1 is the
distance loss exponent. Capacity-achieving Gaussian channel
codes are assumed for each link. Thus each link can support
a data rate as determined by the Shannon capacity of that
link [4], i.e., r = B log(1 + SINR). Similar to [21], we use
log(·) to denoteloge(·) and the capacity is expressed in units
of nats [4].

Specifically, letXi denote nodei’s position andWij the
transmission power of nodei to nodej. The power constraint
on each nodeW0 implies thatWk ,

∑
j Wkj ≤ W0. Let

gij denote the power loss between nodei and j and gij =
|Xi −Xj |−α. The SINR of the transmission from nodei to
nodej can be computed as

SINR =
Wijgij

BN0 +
∑

k∈I Wkgkj
, (1)

whereI is the set of nodes that are simultaneously transmit-
ting.
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B. Performance Metric

All nodes send traffic at a rate ofr(n) nats per second to
their corresponding destinations. We pick uniformly and ran-
domly source-destination pairs, so that each node is exactly
the destination of one source. A uniform throughputr(n) is
feasible if there exists a routing and scheduling scheme that
can satisfy the throughput requirement ofr(n) nats per sec-
ond for each source-destination pair. The maximum feasible
uniform throughput is the uniform throughput capacity, and
is the performance metric studied in this paper.

The objective is to bound the uniform throughput capacity
by a function ofn. Since the underlying network is random,
so is the capacity. The capacity bounds are often derived to
be certain functions with high probability (w.h.p.), i.e., with
probability approaching 1 as the densityn →∞. Specifically,
we say that the uniform throughput capacityr(n) is of order
Θ(f(n)) if there exist deterministic constantsc1 > c0 > 0
(w.r.t. n) such that

lim
n→∞Prob(r(n) = c0f(n)) is feasible ) = 1, (2)

lim
n→∞Prob(r(n) = c1f(n)) is feasible ) < 1. (3)

If only Eq. (2) is satisfied, we say that the uniform throughput
capacityr(n) is of order (or lower bounded by)Ω(f(n)). If
only Eq. (3) is satisfied, we say that the uniform throughput
capacityr(n) is of order (or upper bounded by)O(f(n)).

C. Bandwidth Scaling

It has been shown in [21] that with high probability no
pair of nodes has distance less than1

n
√

log n
, and if the

bandwidth scales as fast asΘ(n(n2 log n)α/2), the interfer-
ence is negligible with respect to ambient noise. Since the
bandwidth is arbitrarily large, each link’s Shannon capacity
rij is proportional to the received power, i.e.,

rij = lim
B→∞

B log(1 +
Wijgij

N0B
) =

Wijgij

N0
. (4)

The bandwidth requirement for Eq. (4) to hold is later
reduced toΘ(n(α+1)/2) in [21].

D. Optimality of CDMA MAC

It is shown in [21] that CDMA performs as well as any
other optimal scheduling scheme under the assumptions of
UWB and bounded power. This means the optimal capacity
can be achieved by all nodes simultaneously transmitting
without applying TDMA or FDMA schemes.

III. A N UPPERBOUND ON THROUGHPUT CAPACITY

The upper bound is derived under a relaxed assumption that
the average power constraint of all the nodes isW0, instead
of that each node a power constraintW0. This is sufficient

because the upper bound under a more relaxed assumption is
clearly an upper bound under a more restricted assumption.

As has been proved in [21], the optimal route that maxi-
mizes the throughput capacity under this relaxed assumption
is the minimum power route for each source-destination pair,
because minimizing the power consumption of a route for
each source destination pair is equivalent to minimizing the
average power consumption of all nodes. LetRi denote the
minimum power route for a given source-destination pairi,
i.e., Ri = [Xi1 ,Xi2 , · · ·XiK

]. Let ri denote the achieved
throughput on the routeRi. The minimum power on this
route is (according to Eq. (4))

W (Ri) = ri(n) ·N0

K−1∑
k=1

|Xik
−Xik+1 |α. (5)

Intuitively, since the average power consumption on each
route is bounded, the achievable rateri is determined by the
bounds on thepower ratedefined as

Qi ,

K−1∑
k=1

|Xik
−Xik+1 |α. (6)

Let di denote the distance between the sourceXi1 and its
destinationXiK

, i.e.,

di = |Xi1 −XiK
|. (7)

In what follows, we establish a bound onQi and consequently
on the throughput capacity. The key to the derivation is that,
if it is possible forRi to be composed of mostly short hops,
then potentially the minimum power rate (Qi) of a route can
be very small. Thus, our major task is to show that there are
a sufficiently large number of long hops. The proof is based
on the site percolation model.

A. Construction of the Site Percolation Model

We divide the area into grids of edge lengthc0/
√

n as
depicted in Fig. 1. By adjusting the constantc0, we can adjust
the probability that a grid contains at least one node:

P (a grid contains at least one node) = 1− e−c2
0 , p. (8)

A grid is said to beopenif it contains at least one node, and
closedotherwise. Two grids are said to beadjacentif they
share an edge or a vertex. Any grid is thus adjacent to 8 other
grids. For notational convenience, we use (i) apath to refer
to a list of grids such that any two neighboring grids in the
list are adjacent; and (ii) aroute to refer to a list of wireless
nodes that are actually used to transport packets from the
source to the destination. By convention in graph theory, we
assume a path does not include any grid twice, except that its
first grid may be the same as the last grid. A path is said to
beopen(closed) if all the grids on the path are open (closed).

As a first step, we observe that if there is an open path
in the percolation model from the grid where the source is
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Fig. 1. Construction of the site percolation model. We divide the area
into grids of edge lengthc0/

√
n. A grid is said to be open if there is at

least one Poisson point inside it; and closed otherwise. Two grids are said
to be adjacent if two grids share an edge or a vertex, i.e., grid(i, i) is
adjacent to(i− 1, i− 1), (i− 1, i), (i− 1, i + 1), (i, i− 1), (i, i + 1), (i +
1, i − 1), (i + 1, i), (i + 1, i + 1). An open grid is denoted with a circle
inside it. The dashed lines show all the possible open links.

located to the grid where the destination is located, then we
can form a route from the source to the destination by picking
one node from each grid on the path. Every hop on this
route is bounded from above by2

√
2c0/

√
n. On the other

hand, if there is no such an open path in the percolation
model, then in any route (including the minimum power
route) from the source to the destination, at least one hop
is of length at leastc0/

√
n. Indeed, ifc0 and consequentlyp

are sufficiently small, and the distance,di, between the source
and the destination is sufficiently large, there exists no open
path between them in the percolation modelw.h.p..

Important Properties of the Site Percolation Model:We
formally state and prove the above property in the lemma
below.

Lemma 1 Let p be the probability that a grid is open in the
site percolation model we have defined (Eq. (8)). Then the
probability that there exists an open path of lengthm starting
from a source is upper bounded by

P (N(m) ≥ 1) ≤ 8
7
(7p)m, (9)

whereN(m) is the number of open paths of lengthm starting
from a given source.

Proof. The total number of paths of lengthm are upper
bounded by8 · 7m−1, because in the first hop there are at
most 8 choices, and in each subsequent hop there are at most
7 choices. Each path is open with a probability ofpm. Thus,
the expected number of open paths of lengthm starting from

a given source isE[N(m)] = 8 · 7m−1 · pm. It then follows
by the Markov inequality that

P (N(m) ≥ 1) ≤ E[N(m)] =
8
7
(7p)m. (10)

�

If we choosep < 1/7 and the distance (in terms of grids)
between the source and the destination goes to infinity, then
w.h.p. there is no open path between them.

The next result is patterned on the results derived in [15]
(Eq. (2.49)) in which the bond percolation model is used.
Since we consider the site percolation model, we give the
proof. LetPp be denoted as the probability measure with the
site-open probability (the probability that a grid is open)p.

Lemma 2 Let A be the event that there exists an open path
of lengthm starting from a given source andFA the minimum
number of grids that need to be turned open from closed in
order for the eventA to take place. Then we have

Pp(A) ≥
(

p− p′

1− p′

)r

Pp′(FA ≤ r) (11)

for any 0 < p′ < p < 1.

Proof. See Appendix I.

B. Derivation of Upper Bound of Network Capacity

We are now ready to prove the following result. Note that
the results can be applied to other fields such as random
geometric graphs.

Theorem 1 Assume that nodes are distributed in a unit
square area according to a Poisson point process with density
n. If the distance between a source-destination pair isdi ≥
ε > 0, the power rateQi (Eq. (6)) of the minimum power
route between them is at leastc1n

(1−α)/2 w.h.p. for some
constantc1 > 0. Specifically,

P (Qi > c1n
(1−α)/2) ≥ 1− 8

7
· exp(−c2

√
n), (12)

as n →∞, for some constantc1, c2 > 0.

Proof. For any route between the source and the destination,
we can construct a walk (which may include some grids
more than once) in the site percolation model by including
all the grids that intersect with the route. The walk can be
further trimmed into a path which contains the minimum
number of closed grids by removing unnecessary grids (see
an illustration in Fig. 2). We denoteT ∗ as an optimally
trimmed path that contains the minimum number of closed
grids. In what follows, we bound the probability that the
optimally trimmed pathT ∗ contains at mostc3

√
n closed

grids, wherec3 is a constant yet to be determined.
Note that the distance between the source-destination pair

in terms of grids is at leastm , di/(
√

2c0/
√

n) =
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G0

G1
G2

G3

G4

G5 G6 G7

G8

G9

G10 G11

G14

G13

G12

S

D

Fig. 2. The bold lines show a route from sourceS to
destination D. We can construct a walk (which is also a
path) that is composed of grids that intersect with the route:
[G0, G1, G2, G3, G4, G5, G6, G7, G8, G9, G10, G11, G12, G13, G14].
Some of the grids can be removed from the path. For example,G1 can be
removed becauseG0 and G2 are connected (in our percolation model).
Similarly, G4, G8, G10, G13 can all be removed. There are multiple ways
of trimming the path. For example, we can also removeG3, G5 but keep
G4. Among all the trimmed paths, we pick asT ∗ the one that contains
the minimum number of closed grids. Ties are broken arbitrarily. In the
above example, the path[G0, G2, G3, G5, G6, G7, G9, G11, G12, G14]
contains minimum number (which is 1 in this case) of closed grids.

di
√

n/(
√

2c0). This implies the path length ofT ∗ is at least
m.

If T ∗ contains at mostc3
√

n closed grids, then we can
construct an open path from the source to the destination
by turning at mostc3

√
n closed grids into open grids. This

further indicates that by turning at mostc3
√

n closed grids
into open ones, we can obtain an open path of length at least
m starting from the source. Now we can apply Lemma 2.
Let A denote the event that there is an open path of length
m starting from the source, andFA the minimum number
of closed grids that need to be turned into open in order for
eventA to take place. We conclude thatFA ≤ r = c3

√
n if

the trimmed pathT ∗ contains at mostc3
√

n closed grids. By
Lemma 2,

Pp′(FA ≤ c3

√
n) ≤ Pp(A)

(
p− p′

1− p′

)−c3
√

n

. (13)

By Lemma 1,

Pp(A) =
8
7
· (7p)m =

8
7
· (7p)di

√
n/(

√
2c0). (14)

We can choosec0 such thatp = 1−e−c2
0 < 1/7. After fixing

c0 andp, we can choosek > 1/p andp′ = kp−1
k−1 < p. Now

plugging the equation ofp′ and Eq. (14) into Eq. (13), we
have

Pp′(FA ≤ c3

√
n)

≤ 8
7
· (7p)di

√
n/(

√
2c0) · kc3

√
n

=
8
7
· exp

(√
n

(
di log(7p)√

2c0

+ c3 log k

))
. (15)

If we choose0 < c3 < − ε log(7p)√
2c0 log k

< − di log(7p)√
2c0 log k

, we obtain

Pp′(FA ≤ c3

√
n) ≤ 8

7
· exp(−c2

√
n) → 0 (16)

asn →∞, where

c2 = −ε log(7p)√
2c0

− c3 log k > 0. (17)

Hence, the optimally trimmed pathT ∗ contains more than
c3
√

n closed grids with probability at leastp1 , 1 − 8
7 ·

exp(−c2
√

n) if we choose the grid sizec′0/
√

n such that
1− e−c′20 = p′.

It is not difficult to see that for each closed grid onT ∗,
there is exclusively one line segment completely contained
in a link on the minimum power route with length at least
c′0/

√
n (An illustration is given in Fig. 3). In addition, if a

link on the route intersects withj closed grids onT ∗, the
link has length at leastjc′0/

√
n. To derivate the lower bound

of the power rate of the route, we can assume each link only
intersects at most one grid inT ∗, because if a link intersects
with j grids in T ∗, its power rate will be greater than the
power rate ofj links each with lengthc′0/

√
n. Thus the route

contains at leastc3
√

n links each with length at leastc′0/
√

n
with probability at leastp1. Hence the total power rate of
the route is at leastc3

√
n ·
(

c′0√
n

)α
= c3c

′α
0 n(1−α)/2 with

probability at leastp1. Let c1 = c3c
′α
0 . We obtain

P (Qi > c1n
(1−α)/2) ≥ p1 = 1− 8

7
· exp(−c2

√
n). (18)

�

The following results are intuitively true and a tedious but
rigorous proof is given in Appendix II.

Lemma 3 (i) w.h.p., the number of nodes in the field is
betweenn/2 and 2n.
(ii) With our ways of choosing source-destination pairs, there
exist ε > 0 such that the number of pairs with distance at
leastε is at leastn/8 w.h.p..

We now prove the main result in this section.

Theorem 2 With the assumptions we have made in Section
II-A, the network capacity is upper bounded byO(n(α−1)/2)
w.h.p. as n →∞ .

Proof. Combining Eqs. (5) and (6), we obtain

W (Ri) = ri(n)N0Qi. (19)

Let I1 denote the set of routes with the distance between
the source-destination pair at leastε. By Lemma 3, we have
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A
G1 G3

G4

G5

G2

E

C

D

F

G6

Fig. 3. Illustration of the relation between a closed grid onT ∗ and a line
segment of length at leastc′0/

√
n on a link of the minimum power route.

If a link crosses a closed grid at the two opposite edges (as in the grid
G1), the line segment (AB) on the link that is contained by the grid have
length at leastc′0/

√
n. Hence without loss of generality, we can assume a

link enters a closed grid from its bottom and exits from its right (such as
grid G4). If grid G3 is on the pathT ∗, thenG6 is either not on the path
T ∗ or open, because otherwiseG4 can be removed from the path. In this
case, the line segmentDF has length at leastc′0

√
n. Similarly if G2 but

not G3 is on the pathT ∗, the line segmentCE has length at leastc′0
√

n.
If a link intersects more than one grid on the pathT ∗, similar analysis can
be performed.

n/8 ≤ |I1| ≤ 2n w.h.p.. Summing over all the routes inI1,
we have ∑

i∈I1

W (Ri) =
∑
i∈I1

ri(n)N0Qi. (20)

Since we are interested in the uniform capacity boundr(n)
achieved by all routes, we have∑

i∈I1

W (Ri) ≥ r(n)
∑
i∈I1

N0Qi. (21)

In Theorem 1, we have shown that there existsc1, c2 > 0
such that

P (Qi ≤ c1n
(1−α)/2) ≤ 8

7
exp(−c2

√
n) (22)

for a given source destination pairi with distance at leastε.
Without loss of generality, we can assume|I1| ≤ 2n because
otherwise we may only keep the first2n routes inI1. Thus

P (∃i ∈ I1, s.t. Qi ≤ c1n
(1−α)/2) ≤ 2n · 8

7
exp(−c2

√
n). (23)

The right equation in the above converges to 0 asn → ∞.
Thus,w.h.p.we have at leastn/8 routes, each with at least
power c1n

(1−α)/2. In addition,w.h.p. the total power of all
routes inI1 is at most2nW0 by Lemma 3(i). Plugging these
results into Eq. (21), we obtain thatw.h.p.

r(n) ≤ 2W0

N0c1n(1−α)/2/8
= c4n

(α−1)/2. (24)

This completes our proof. �

IV. A L OWER BOUND ON THROUGHPUT CAPACITY

In order to derive a lower bound on the throughput capac-
ity, we leverage a routing scheme used in [11], [12]1. We
show that the routing scheme can achieve a capacity bound
that is of the same order of the upper bound we have derived
in Section III. For completeness of the paper, we summarize
the routing scheme first.

A. Construction of the Backbone Network

The routing scheme lays a wireless backbone network that
carries packets across the network at the desired rate. The
backbone network is composed of short hops (and hence is
able to transmit at high rates), and is obtained through the
percolation theory.

To construct the backbone network, we divide the area
into square grids of edge lengthc5/(2

√
n). The new grid

system is depicted in Fig. 4 (a). Note that the grid system is
constructed differently from that in Section III. As depicted
in Fig. 4 (b), we draw a horizontal edge across half of the
grids and a vertical edge across the others. An edge is said
to be open if there exists at least one node (from the Poisson
point process) in the grid that contains the edge and closed
otherwise. In this way we obtain a bond percolation model.
The probability that an edge is open is independent of all
other edges, and can be expressed as

p = 1− e−c2
5/4. (25)

Next we divide the network area into horizontal rectangles,
R̄n, of size 1 × c5√

2n
log

√
2n
c5

. Each of the rectangles thus
has m × log m grids in the bond percolation model, with
m =

√
2n/c5 (as the edges have length1m ). As proved in

[11] (Theorem 1), there exist many open paths from left to
right inside each such rectanglēRn.

Lemma 4 (Theorem 1 in [11]) If c5 is sufficiently large,
there exists a constantβ = β(c5) > 0 such thatw.h.p. there
are β log m = β log

√
2n
c5

disjoint open paths that cross each
rectangleR̄n from left to right.

With all the rectangles, we obtainβm open paths from
left to right. We can also divide the area into vertical
rectangles and reach similar results for paths that cross the
area from bottom to top. With the use of a simple union
bound argument, we conclude that there existβm horizontal
disjoint paths andβm vertical disjoint paths simultaneously
w.h.p.. These paths constitute the backbone network.

1We make minor revision on the choice of the exit point to facilitate our
derivation.
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,

(a) New grid system (b) Edges for the bond percolation model

Fig. 4. Construction of the bond percolation model. We divide the unit square area into square grids of side lengthc5/(2
√

n). A grid is said to be
open if it contains at least one point in the Poisson point process andclosedotherwise. The edge that crosses an open (closed) grid is said to beopen
(closed).

B. Routing in the Backbone Network

Packets are transported from sources to destinations in the
above backbone network via three phases:draining phase,
backbone phase, anddelivery phrase. In the first (draining)
phase, the source sends packets directly to a node on a
horizontal path of the backbone network. In the second (back-
bone) phase, packets are transported along the horizontal path
and reach a vertical path. In the third (delivery) phase, a node
in the vertical path sends packets directly to the destination.
In what follows we discuss the detailed operations in each
phase.

1) Draining phase:In the draining phase, packets are car-
ried from the source to the backbone network. We first evenly
divide the square area intoβm horizontal slabs of width 1

βm .
Now since there are exactly as many slabs as horizontal paths,
we can enforce that nodes in theith slab send their packets
using theith horizontal path. More precisely, an entry point
in the ith horizontal path can be assigned to each source in
the ith slab. As shown in Fig. 5, the entry point is chosen to
be the node on theith horizontal path that is closest to the
vertical line drawn from the source point. By Lemma 4, the
distance between a source and its corresponding entry point
is never larger than(c5/

√
2n) log(

√
2n/c5)+c5/

√
2n (Since

the source and the entry point are in the same rectangleR̄n

their vertical distance is at most(c5/
√

2n) log(
√

2n/c5), and
their horizontal distance is at mostc5/

√
2n by the choice of

the entry point).

2) Backbone phase:Similarly we can divide the square
area intoβm vertical slabs. Once a packet is transmitted

Source

entry point in the horizontal path

,

Fig. 5. A source transmits packets directly to the entry point on a
horizontal path.

to the entry point, it is carried along the corresponding
horizontal path until it reaches the crossing point with the
target vertical path. The target vertical path is determined by
the vertical slab that contains the destination node, i.e, if the
destination is in theith vertical slab, the target vertical path
is theith vertical path. The following result is proved in [11]:

Lemma 5 The probability that each slab contains less than
c5

√
2n/β nodes tends to one whenn →∞.
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3) Delivery phase: In the delivery phase, packets are
transported from the exit point of the vertical path to the
destination directly. Theexit point for a given destination
is defined as a node in the grid on the vertical path
whose center (i.e., the center of the grid) is closest to
the horizontal line drawn from the destination. Again, the
destination from the exit point to the destination is at most
(c5/

√
2n) log(

√
2n/c5) + c5/

√
2n.

C. Achievable Throughput

We now show that the achievable throughput using the
routing scheme presented in Section IV-B is at leastc6n

α−1
2

wherec6 > 0 is to be determined later. Clearly it is sufficient
to show this is true in each phase of the routing scheme.

1) Draining phase:Since the distance from each source
Xi to the entry pointXi1 is never larger thanc5√

2n
(log

√
2n
c5

+
1), the achievable rate from each sourceXi to the entry point
is

ri =
W0

N0|Xi −Xi1 |α

≥ W0

N0

( √
2n

c5(1 + log
√

2n/c5)

)α

≥ c6n
(α−1)/2. (26)

Clearly the last inequality holds ifn is sufficiently large
and c6 is sufficiently small (but independent ofn). There-
fore, the ratec6n

(α−1)/2 is achievable as long as there are
β log(

√
2n/c5) horizontal paths in every rectanglēRn. Since

the latter takes placew.h.p., the ratec6n
(α−1)/2 is achievable

w.h.p..
2) Backbone phase:By Lemma 5, every slab has less

than c5

√
2n/β nodesw.h.p.. Thusw.h.p., every node in the

backbone (on the horizontal path, the vertical path, or both),
will need to relay traffic at a rateri ≤ 2 · (c5

√
2n/β) ·

c6n
(α−1)/2 = 2

√
2c5c6n

α/2/β. In the backbone phase, a node
only need to transmit packets to its next hop node and the
transmission distance is at mostc5

√
2/n. Thus the power

consumption on each nodeWi is

Wi ≤ riN0(c5

√
2/n)α

≤ (2
√

2c5c6n
α/2/β) ·N0(c5

√
2/n)α

= 2c6(c5

√
2)α+1N0/β. (27)

If we choosec6 ≤ W0β

2N0(c5
√

2)α+1 , we haveWi ≤ W0. Thus the

backbone can support a rate ofc6n
(α−1)/2 for each source

w.h.p..
3) Delivery phase:In the delivery phase, an exit point

on the vertical path sends packets to the destination node
directly. The following Lemma bounds the number of desti-
nation nodes each exit point needs to handle.

Lemma 6 The probability that there are less than
(c2

5/(2β)) log n destination nodes for each exit point
approaches one asn →∞.

Proof. See appendix III.
Again the maximum distance between an exit point and the

corresponding destination node is(c5/
√

2n)(log(
√

2n/c5) +
1). Using Lemma 6 and Eq. (5), we can conclude that,w.h.p.,
the power consumption of every exit point is less than

N0c6n
α−1

2 · c2
5

2β
log n ·

(
c5√
2n

(log
√

2n
c5

+ 1)

)α

=
N0c6c

2
5 log n

2β
√

n
·
(

c5√
2
(log

√
2n
c5

+ 1)

)α

(28)

Clearly, whenn is sufficiently large,c6 can be chosen
sufficiently small (but independent ofn) to satisfy the power
consumption constraint (≤ W0) for each exit point.

In summary, we have proved the lower bound of the
network capacity as follows.

Theorem 3 With the assumptions we have made in Section
II-A, the network capacity is lower bounded byΩ(n(α−1)/2)
w.h.p..

Remark: A node may play multiple roles. For example,
it can be a source node, a transit node on a horizontal path
or a vertical path, and/or an exit point. In such cases, we can
evenly distribute its power for each role. The achievable rate
is still Ω(n(α−1)/2).

V. DISCUSSIONS

Area RescalingSince the assumption of unit area is an
abstraction of the real world with larger area, we consider
the rescaled network where the side length of the square isL
and the node density in the rescaled network isn0. Thus if we
envision the side lengthL as 1 unit, the network density in the
unit area isn = n0L

2. In the rescaled network, we keep the
densityn0 fixed and letL →∞. Since the edge length in the
rescaled network is multiplied byL, the power rate function
is multiplied byLα/2. For the upper bound, Theorem 1 should
be revised to that if a source and a destination have distance at
leastεL, the total power rateQi of the minimum power route
between them is at leastΩ(n(1−α)/2Lα) = Ω(n1/2n

−α/2
0 ).

Thus by Eq. (19), the upper bound of the per node capacity
is of ordern−1/2. For the lower bound, since the transmission
distance in the backbone network is upper bounded by a
constant, the transmission rate in the backbone is lower
bounded by a constant. Since each node in the backbone
is responsible to relay traffics forΘ(

√
n) source-destination

pairs, the achievable rate is at leastΩ(1/
√

n). It is not hard to
verify that the draining phase and the delivery phase can also
achieve this rate since they are not the bottleneck. This is not
surprising because the assumption of bounded power in the
unit-area network is equivalent to that the power of each node
is of order Θ(Lα) = Θ(nα/2) in the rescaled (large-area)
network. By Eq. (4), the rate of each link is proportional to
the transmission power. So if in the rescaled network each
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node has transmission powerΘ(nα/2), the (per node) network
capacity is stillΘ(n(α−1)/2).

VI. RELATED WORK

In their ground breaking work [17]2, Gupta and Kumar
first derive the transport capacity of wireless ad hoc network.
Specifically, they assume thatn nodes are independently
and uniformly randomly distributed, either on the surface
of a three-dimensional sphere of unit area, or on a disk of
unit area in the plane, that the destination is independently
chosen as the node that is closest to a randomly located
point (according to the uniform distribution), and that all
nodes employ the same transmission range or power. They
further assume two transmission models: protocol model and
physical model. In the protocol model, a transmission from
nodei to j is successful if and only if (i)|Xi−Xj| ≤ r and
(ii) |Xk − Xj| ≥ (1 + ∆)r for every other simultaneously
transmission, whereXi is the location of nodei. In the
physical model, all nodes choose a common powerP for
their transmissions. A transmission from nodei to nodej is
successful if and only if

P
|Xi−Xj |α

N +
∑

k∈Γ,k 6=i
P

|Xk−Xj |α
≥ β, (29)

whereΓ is the set of simultaneously transmitting nodes,N is
the ambient noise power level. In addition, they assume the
transmission rate is constant if the transmission is successful.

The authors show that (i) under the protocol model, the per-
node capacity of the wireless network is both upper bounded
and lower bounded byΘ(1/

√
n log n), and (ii) under the

physical model, the per-node capacity is upper bounded by
O(1/

√
n) and lower bounded byΩ(1/

√
n log n).

Since then, many research efforts have been made to
investigate the wireless network capacity. Some of them aim
to improve the capacity bound in different ways, while others
attempt to derive the capacity bound under under differ-
ent (usually more realistic) assumptions or different traffic
patterns. We roughly classify existing work into those that
improve the capacity bound (Section VI-A) and those that
derive the bound under different assumptions (Section VI-B).
In the former category, we further group existing methods for
improving the network capacity bound into four types.

A. Work that Improves the Capacity Bounds

Improving the network capacity bound by mobility:
The first type of methods employs mobility to improve the
capacity bound. Under the assumption that nodes are mobile
and the position of each node is ergodic with stationary

2Some of the works reported here also contain results on the capacity of
an arbitrary network where node positions, traffic patterns and transmission
ranges are optimally chosen. For the brevity of the paper, we only cite the
results on random networks, which is the main focus of this paper.

uniform distribution on an open disk, Grossglauser and Tse
[16] show that the average long-term throughput per source-
destination pair can be kept constantw.h.p. as the number
n of nodes in each unit area goes to infinity. Diggaviet al.
[7] further show that even if nodes are only allowed to move
in one dimension (each node are constrained to move on a
single-dimensional great circle on the unit sphere), each node
can still obtain constant capacity as the number of nodes
in the unit area increases. Their derivation is based on the
physical model.

Following that, several researchers study the delay incurred
using mobility to improve the capacity. Bansal and Liu [3]
study the achievable rate together with the maximum delay
incurred. Specifically, under the assumptions thatn static
nodes andm mobile nodes (that move according to the ran-
dom mobility model given in [16]) are randomly distributed,
and thatn sender-receiver pairs are chosen randomly among
the static nodes according to a uniform distribution, they
show that the achievable capacity is at leastΘ(min(m,n)

n log3 n
) and

the maximum delay incurred by packets is at most2d/v,
whered is the diameter of the network andv is the velocity
of the mobile nodes.

Perevalov and Blum [23] obtain an expression for the ca-
pacity as a function of the maximum allowable delay in an all
mobile network. They show that there exists a critical value
of the delay such that for delays below the critical value,
the capacity does not benefit from the motion significantly.
For delaysd above the critical value, the capacity increases
approximately asd2/3. In addition, they show that the value
of the critical delay increases approximately as the order of
n1/14 with the numbern of nodes. They assume the physical
model as in [16].

Gamalet al. [13] characterize the optimal throughput-delay
tradeoff for both the static network model and the mobile
network model. For the static network model, the optimal
throughput-delay tradeoff isD(n) = Θ(nT (n)) whereT (n)
and D(n) are the throughput and delay respectively. For
the mobile network model, they show that delay scales as
Θ(n1/2/v(n)) if the per node capacity scales atΘ(1). Their
derivation is based on a relaxed protocol model where a
transmission from nodei to j is successful if for any other
nodek that transmits simultaneously,d(k, j) ≥ (1+∆)d(i, j)
for some fixed∆ > 0, whered(i, j) is the distance between
nodesi andj.

Improving the network capacity bound by infrastructure
support: The second type of methods use the infrastructure
support to improve the capacity bound, where a number of
wired base stations are deployed in the network to help
transport packets. (Networks of this type are calledhybrid
networks.) Liuet al. [20] consider the case wherem base
stations are placed in a regular hexagonal pattern within
the ad hoc network withn nodes. Under a deterministic
routing strategy, they show that ifm grows asymptoti-
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cally slower than
√

n, the maximum throughput capacity
is Θ(

√
n/ log n

m2 ); and if m grows faster than
√

n, the
maximum capacity isΘ(m). Under a probabilistic routing
strategy, they show that ifm grows slower than

√
n

log n ,

the maximum throughput capacity has the same asymptotic
behavior as a pure ad hoc network; and ifm grows faster than√

n
log n , the maximum throughput capacity scales asΘ(m).

Kozat and Tassiulas [18] consider the case where both the
wireless nodes and base stations are deployed randomly. They
show that the per source node capacity ofΘ(1/ log(n)) is
achievable, if the ratio of the numbern of ad hoc nodes to
the numberm of the base stations are bounded from above.

Improving the network capacity bound via directional
antennas: The third type of methods employs directional
antennas to improve the capacity bound. Yiet al. [28] show
that in a random wireless network, use of directional antennas
with beamwidth α for the transmitters can increase the
capacity by a factor of2π/α and use of directional antennas
with beamwidthβ for the receivers can increase the capacity
by a factor of2π/β. In addition, if both the transmitter and
the receiver employ directional antenna, the capacity can be
improved by a factor of4π2/αβ. Peraki and Servetto [2]
shows that even if transmitter can generate arbitrarily narrow
beams (which essentially removes all wireless interference)
and the transmission ranges are set as minimal as possible to
maintain connectivity, the capacity can only improve by an
order ofΘ(log2(n)).

Improving the network capacity bound with the use of
UWB: The fourth type of methods to improve capacity lever-
age unlimited bandwidth resources to improve the network
capacity bound. Negi and Rajeswaran [21] show that under
the limiting case when bandwidthB → ∞ and that each
node has a power constraintW0, the per node capacity is
upper bounded byO((n log n)(α−1)/2) and lower bounded
by Ω( n(α−1)/2

(log n)(α+1)/2 ).
Dana and Hassibi [5], [6] consider a different scenario

in which there aren relay nodes andr ≤ √
n source-

destination pairs. Assuming unlimited bandwidth, they show
that given the total rate scales likeΘ(f(n)), the minimum
power required by each node scales likeΘ(f(n)/

√
n). The

required bandwidth for achieving the minimum power is
Θ(f(n)). In addition to the difference in the scenario, these
bounds are based on a simple “listen and transmit” protocol,
which may not be optimal in terms of the capacity-power-
bandwidth tradeoff.

B. Work that Derive the Capacity Bound Under Different
Assumptions

Some other researchers study capacity bounds under differ-
ent (usually more realistic) assumptions. Dousse and Thiran
[8] show the available rate per node decreases like1/n
under the assumption that the attenuation function is uni-
formly bounded at the origin. Their derivation is based on

the physical model. Toumpis and Goldsmith [26] study the
network capacity under a general fading channel model. They
show that in a static network, each node can send data to its
destination with a rate ofΘ(n−1/2(log n)−3/2). In a mobile
network each of then mobile nodes can achieve the same
order of magnitude throughput with a fixed maximum delay
constraint that does not depend onn. If each node is willing
to tolerate packet delayΘ(nd) where0 < d < 1, they show
that each mobile node can send data to its destination with
rateΘ(n(d−1)/2(log n)−5/2).

Xie and Kumar [27] study the capacity bound in a setting
where nodes can employ sophisticated cooperative strategies
to achieve interference cancellation. They show that the
aggregate capacity of an arbitrary network is upper bounded
by O(

√
n) (in a large-area network), assuming some natural

signal attenuation law, and the upper bound is sharp for
regular planar networks where the nodes reside at integer
lattice sites in a square.

Some other researchers develop capacity bounds under
different traffic patterns. Gastpar and Vetterli [14] consider
the same physical model as in [17], but a different traffic
pattern, namely therelay traffic pattern. There exists only
one (randomly chosen) source-destination pair and all other
nodes serve as relay nodes. They show that if arbitrarily
complex network coding is allowed, the upper bound and
lower bound of the capacity of a wireless network withn
nodes under the relay traffic pattern meet asymptotically at
Θ(log n) as the numbern of nodes in the network goes to
infinity. Marco et al. study the network capacity under the
many-to-onescenario where there is only one destination and
every node needs to transmit packets to the destination. They
show that per node capacity scales asΘ(1/n) as the number
n of nodes increases. This is due to the bottleneck at the
single destination.

In [25], Toumpis studies the capacity bounds of three
classes of wireless networks under fading channels. The first
class is asymmetric networks where there aren source nodes
and aroundnd destination nodes, and each source picks a
destination at random. The author show that if1/2 < d < 1,
an aggregate throughput ofΩ(n1/2(log n)−3/2) is achievable;
and if 0 < d < 1/2, an aggregate throughput ofΩ(nd/ log n)
is achievable. In both cases, the aggregate throughput is upper
bounded byO(nd log n). The second class is cluster networks
where there aren client nodes and aroundnd cluster heads.
Each client communicates with one of the cluster heads, but
the particular choice of the cluster head is not important. They
show in this setting, the maximum aggregate throughput is
lower bounded byΩ(nd(log n)−2) and upper bounded by
O(nd log n). The third class is hybrid networks where there
are n wireless nodes andnd base stations, and the base
stations are connected through wired lines and only used to
support the operation of wireless nodes. They show that if
1/2 < d < 1, the maximum aggregate throughput is lower
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bounded byΩ(nd(log n)−2) and if 0 < d < 1/2, there is no
significant gain of employing the infrastructure. We note the
last result is similar to that in [20].

Li et al. [19] study the capacity of small ad hoc networks
through extensive simulations, which verifies the capacity
bound of orderΘ(1/

√
n) to some extent. Finally in a very

recent work, Franceschettiet al. [11], [12] close the gap
between the capacity upper bound and lower bound in Gupta
and Kumar’s original results [17] under the physical model.
They use percolation theory to devise a routing strategy which
achieves a per node capacity bound ofΘ(1/

√
n).

VII. C ONCLUSION

In this paper, we have derived lower and upper bounds of
the uniform capacity of a power constrained wireless ad hoc
network with an arbitrarily large bandwidth. The problem was
first introduced and studied in [21]. We close the gap between
the lower and upper bounds that exist in [21] and show that
both the bounds scale atΘ(n(α−1)/2). Contrary to the results
in [17], we demonstrate an increasing per-node throughput
capacity as the numbern of wireless nodes increases. This
is because the bandwidth (spectrum) is assumed to scale
with the density of nodes, and the throughput of each link
is determined by the Shannon capacity instead of being a
constant as in [17].

In order to derive the aforementioned capacity bounds, we
have also derived an important result on random geometric
graphs: if the distance between two points in a Poisson point
process with densityn is non-diminishing, the minimum
power route requires power rate at leastΩ(n(1−α)/2). The
upper bound is obtained with this geometric result. The lower
bound is obtained by constructing a backbone network that
is composed of a sufficient number of disjoint horizontal and
vertical paths.
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APPENDIX I
PROOF OFLEMMA 2

We prove a generalized version of Lemma 2 in the context
of the site percolation model. LetΩ = Πs∈Zd{0, 1} be
the sample space in the underline probability space, where
Z = {· · · ,−1, 0, 1, · · ·}. Points in Ω are represented as
ω = (ω(s) : s ∈ Z

d) and calledconfigurations. The value
ω(s) = 0 corresponds to the site (grid)s being closed and
ω(s) = 1 corresponds to the sites being open. An eventA is
calledincreasingif IA(ω) ≤ IA(ω′) wheneverω ≤ ω′, where
IA is the indicator function of the eventA. (Interested readers
should refer to [15] for more details of the definitions.) Let
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A be an increasing event. Forω ∈ Ω, let FA(ω) denote the
“distance” ofω from A, i.e.,

FA(ω) = inf

{∑
s

(ω′(s)− ω(s)) : ω′ ≥ ω, ω′ ∈ A

}
. (30)

Note thatFA(ω) = 0 if ω ∈ A. The generalized version of
Lemma 2 is

Pp2(A) ≥
(

p2 − p1

1− p1

)r

Pp1(FA ≤ r) (31)

for any 0 < p1 < p2 < 1.
Proof.Suppose thatX(s) : s ∈ Zd is a family of independent
random variables indexed by the grid (site) setZ

d, where
eachX(s) is uniformly distributed on [0,1]. We may couple
together all the site percolation processes onZd in the
following way. Let0 ≤ p ≤ 1 and defineηp ∈ Ω by

ηp(s) =
{

1 if X(s) ≤ p,
0 otherwise.

(32)

We may think of ηp as the random outcome of the site
percolation process onZd with the site-open probabilityp.
It is clear thatηp1 ≤ ηp2 wheneverp1 < p2. Thus we may
couple two percolation processes with site-open probability
p1 andp2 in such a way that the set of open sites of the first
process is a subset of the set of the open sites of the second.

Suppose that0 ≤ p1 ≤ p2 ≤ 1 and A is an increasing
event. DenoteIr(A) = {ω : FA(ω) ≤ r}. If ηp1 ∈ Ir(A),
there exists a (random) collectionC = C(ηp1) of sites such
that

(a) |C| ≤ r;
(b) ηp1(s) = 0 for all s ∈ C; and
(c) the configurationη obtained fromηp1 by declaring

all edges inC to be open, satisfiesη ∈ A.

Suppose now that everys in the setC satisfiesp1 ≤ X(s) ≤
p2. It follows from (c) above thatηp2 ∈ A. Conditioning
on (b) above, the probability ofp1 ≤ X(s) ≤ p2 is ((p2 −
p1)/(1 − p1))|C|. Therefore,

P (ηp2 ∈ A|ηp1 ∈ Ir(A)) ≥
(

p2 − p1

1− p1

)r

, (33)

since|C| ≤ r. Eq. (31) follows easily.

APPENDIX II
PROOF OFLEMMA 3

(i) follows directly from Lemma 1.2 in [22]. Alternatively,
this can be proved using Chernoff bound.
(ii) Let N be the number of nodes in the field. By (i)
w.h.p., N ≥ n/2. Now conditioning onN ≥ n/2, all
nodes’ locations are uniformly independently distributed on
the unit square area. Letdi be the distance between theith
source-destination pairs andd′i be the distance between the
ith source-destination pairs under Torus convention (for a

definition, see [29]). Clearlydi ≥ d′i. Let I(·) denote an
indicator function. For any0 < ε < 1/2,

I(di ≥ ε) ≥ I(d′i ≥ ε) = 1− πε2. (34)

Among theN source-destination pairs, we can pickN ′ =
N/3 pairs such that any two of them do not share a
node. Since nodes’ locations are independently uniformly
distributed, if two source-destination pairsi, j do not share
nodes, their distancedi, dj (and d′i, d

′
j , respectively in the

Torus convention) is independent. Without loss of generality,
we can assume the firstN ′ pairs do not share nodes. Thus
Ii , I(d′i ≥ ε) is i.i.d. Bernoulli random variable with
parameter1 − πε2. Let SN ′ =

∑
i≤N ′ Ii. By Chernoff

inequality, for anyθ < 0, a > 0,

P (SN ′ ≤ aN ′)
≤ E[exp(θ(SN ′ − aN ′))]
= exp(N ′(ln E[eθIi ]− θa))
= exp(N ′(ln(πε2 + (1− πε2)eθ)− θa) (35)

Let θ = −1, a = 3/4 and ε sufficiently small, we haveδ ,
ln(πε2 + (1− πε2)eθ)− θa < 0 and

P (SN ′ ≤ 3N ′/4) ≤ exp(N ′δ) → 0 asN ′ →∞. (36)

Thusw.h.p., the number of pairs with distance at leastε is at
least3N ′/4 = N/4 ≥ n/8. �

APPENDIX III
PROOF OFLEMMA 6

By the choice of the exit points, a given exit pointi will
only be responsible to the destination nodes in a rectangle of
size not larger than(1/(β

√
2n/c5))×(c5/

√
2n). The number

Mi of nodes inside this area has Poisson distribution with
parameterc7 = c2

5/(2β). By Chernoff inequality, for any
θ ≥ 0, we have

P (Mi ≥ c7 log n)
≤ E[exp(θMi − θc7 log n)]
= exp(c7(eθ − 1)− θc7 log n) (37)

Let θ = 2/c7, we have

P (Mi ≥ c7 log n) ≤ exp(c7(e2/c7 − 1)) n−2 (38)

Again w.h.p., there are less than2n exit points. Conditioning
on this,

P (∃i, s.t. Mi ≥ c7 log n) ≤ 2n · exp(c7(e2/c7 − 1)) n−2. (39)

The right equation tends to 0 asn → ∞. Therefore,w.h.p.,
every exit point needs to deliver packets to at mostc7 log n
destinations.


