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Abstract—Cliques are defined as complete graphs or subgraphs; Aabeled eg(ﬁ\ I - rlabeled agongi™.
they are the strongest form of cohesive subgroup, and are of / semples riginal grap yd samples N
interest in both social science and engineering contextsn Ithis st ’ ""‘1. N
paper we show how to efficiently estimate the distribution otlique i ‘-.."‘~.,-1-.| T '
sizes from a probability sample of nodes obtained from a grap ‘ .";".-"'“-" e !
(e.g., by independence or link-trace sampling). We introdoe two [, 2T el |
types of unbiased estimators, one of which exploits labelgn of | L8 NP R S A

; i ; i P Sl Vi NN WEB Jealy W el g
sampled nodes neighbors and one of which does not require #hi U6 Teda SN ST LTIy e
information. We compare the estimators on a variety of realworld Nl L \,’: % " ke % )
graphs and provide suggestions for their use. We generalizeur \\‘_‘\;_7!_{,/ * S ‘/‘-,'

estimators to cases in which cliques are distinguished notndy
by size but also by node attributes, allowing us to estimatelique
composition by size. Finally, we apply our methodology to aample
of Facebook users to estimate the clique size distributionyogender
over the social graph.

Fig. 1. lllustration of the egocentric approach, cliqueesdistribution and
difference between labeled and unlabeled cases. In thes eges 1, 6, 9 are
sampled from graphG. The maximal clique size distribution of G I§' =
(0,0, 2,2) since there are two maximal cliques of sizeand 4.

. INTRODUCTION egonet calculations so as to estimate the clique distdhbuftr

In a large number of real-world applications it is commahe whole graph.
to represent systems, structures, or data using graghs Our approach has several benefits. The first obvious benefit
social graphs, web graphs, or protein interaction graphs.id that it allows us to estimate the clique distribution of an
many cases these graphs are difficult to study, most commantknown graph, as long as we have a sampling primitive that
because of their massive size and/or access limitationsa A®veals the neighbors of a selected node in that graph. The
result, there is a growing body of work JL1]16,21] that ussscond benefit is that it can be used to estimate the clique
sampling to estimate the properties of such graphs as a slispributions of a fully known massive graph. Our approach
towards understanding them. Furthermore, network modeis hdecomposes a large problem into many smaller problems that
been developed that receive as an input such estimated grwhbe independently computed, hence making estimation em-
properties so as to generate synthetic graphs that resehebldarrassingly parallel. Another benefit is the ability toiresite
real graph[[18.15]. clique distribution in the absence of unique node lalegjs due

In this paper, we show how to efficiently estimate grapb privacy-sensitive network data or data collection latiiins.
properties of the clique structure from a probability saenpFinally, our techniques can be employed with data collected
of nodes. Cliques are employed in a wide range of fields. using standard techniques in both onlireeg{ random walk
social network analysis, cliques are the foundation fodtng or user ID sampling[[12]) and offlinee@., survey instruments
both clustering i(e., via triangles) and cohesive subgroudg4]) settings.
[35]. Scholars have used cliques to study advice networks inn summary, we make the following contributions. (i) We
entrepreneurial firms[[22], informant accuracy in behasliopresent two types of unbiased estimators for the cliqueidist
and cognitive network datal[3], and friendship networks agiobution, one that exploits labeling of nodes and one that doés
school classed [19]. In bioinformatics, calculations dfjeés require this information. To the best of our knowledge, we ar
have been used to identify protein structufes [14] and deter the first to present estimators for clique distributionsrioitaary
optimal protein structure alignmenk_[29]. Other fields haggaphs using sampled network data. We compare our estisnator
studied image recognition using maximal cliques as interes a variety of real-world graphs and provide suggestions fo
points [28] and have used maximal cliques to solve the stetheir use. (ii) We generalize the clique distribution toeam
correspondence problem [17]. which cliques are distinguished not only by size but also by

Our estimation techniques employ an egocentric approagile attributes, and provide estimators for these cas@a/Vg
[35]. We first collect a uniform or non-uniform probabilitg®- apply our methodology to a sample of Facebook (FB) users to
ple of nodes (“ego”) from the target graph. Then, we collbet testimate the clique size distribution and gender commusitif
egonet of each sampled node, which consists of the neighlafitfues across the social graph.
of the node and the edges between these neighbors[Fig. The structure of the remainder of the paper is as follows.
presents an example that illustrates the egocentric apipro&ection[l reviews related work. Sectibnllll presents théano
Next, we use an existing clique enumeration tool to caleuldion and objective. Sectidn 1V presents our clique distiiu
the exact clique distribution for each collected egonefstlLaestimators for uniform and non-uniform probability sangle
we apply our unbiased estimators that combine the individSction[\ presents simulation results on real-life fullyolum
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graphs. Sectioh VI applies our estimators to samples delfiecA. Clique Distributions

from Facebook. Sectidn VIl concludes the paper. 1) Without Attributes: A clique is an induced subgraph
in which every vertex adjacent to every other vertex (i.e., a
Il. RELATED WORK complete induced subgraph). A clique that containrtices

. . . js_called anorder-i clique (or i-clique). A clique is said to
Egocentric sampling is a widely used method for gatheri maximal if no higher order clique contains it. We define

network data 3]. This method samples individual nod o X

and then expg[rﬁ-i ]to include their neigﬁborhoods. While t 'Stf b%the méjmberhof Olfdemg.q“‘?g n G, afn(éthecvector
procedure does not necessarily describe the structure eof P_ ( 1’|"i.’ )t edctlhque |s_tr| llm(?.n 0 d'.t'(b (?mts
entire network, it can yield representative samples of t g maximai cliques, and the maximai clique distribution are
network [23]. Standard random sampling methods can be u ggne_d analogou.sly, W'.th the constraint that the cliques in
to obtain egocentric network data and generalize the esublt question are maximal cliques.)

I lation 231, E | f licati f eqdn 2) With Attributes: We generalize the clique distribution to
arger popuia ion[[2 ]'. xamples of applications of €ganen .o 5qe in which cliques are distinguished not only by simé,
sampling procedures include the network items in the Gén

; . Ro by composition. Specifically, let us assume that eadlexe
Sr?licr;?el Silégfﬁgs\}orakrgﬂg?tworks obtained through CraWl”}gin the graph has some categorical attribfe; we denote

the possible states ok; by the integersl,...,p. Potential

. Although cllqug enumerauon Is in general expo.nentlal tlm“?tribute distributions within cliques are defined e@nposition
in graph order (since the maximum number of cliques sca

) . . ) veé%tors, u, that indicate the number of vertices within a clique
exponentially in the number of vertices), algorithms haeerb . ) e .
) . elonging to each of the categories onX . Specifyingu tacitly
proposed for enumeration on small and/or sparse graphis-[8 if d . » i wh is th ber of
. . . . . pecifies order (sincg’_, u; = ¢, whereu; is the number o
troduces an algorithm to list all maximal cliques in largarse J

. . : vertices belonging to categopy, and thusu can be viewed as
graphs. In contrast t0 [82] which uses adjacency matricealto eonging gory ) -
. . : . . a generalization of order for purposes of clique categticna
culate all maximal cliques, this algorithm offers an altgive

) . Accordingly, we defineC’, to be the number of cliques it
for analysis of large sparse graphs whose adjacency rrmtr{ e

are too large for fast computatiofl [7] propose an algoritam at have composition vectar (u-cliques), with the set of al

. 9 . comp prop  algort C, all thatu € {u e NP : 1 < >*¥_ | u; < N} comprising the
cligue enumeration with improved space complexity, whisoa _. . o J=1"

- I : ; clique composition distribution of G.

facilitates decomposition of clique calculations on laggaphs.
All of these approaches are exact, but require processidg Bn Objective
storage of the entire graph. o An egocentric network sample Hy,..., H, is a probability

_ [27] examines three methods for estimating the numbersgimple ofn egonets from(z. Our goal is to estimat€’; and/or
cliques in a random graph. The first is a sampling technigge from this sample for any given ordépr composition vector
where they use the Bron and Kerbosch method to count, gas defined above). When estimatifig, we assume that the

representative selection of subgraphs. This produces e C@gocentric network sample also contains attribute infeiona
for the graph, and they use the area under the curve to estingt each ego and all neighbors.

the total number of cliques in the graph. The second method is )
using probabilistic arguments to calculate the expectedber C- Sample Properties
of cliques. The third is a curve fitting method. These resultsAS noted above, we assume that our egonets comprise a
assume that the target graph is well-approximated by a umifdrobability sample of the egonets i; that is, (i) we can
random graph.[T19] outlines two approaches for estimatifi§at each ego as being included in the sample with known
non-overlapping latent clique structures in a regular grafrobability, and (i) the probability of sampling any verte is
The first uses maximum likelihood estimates and the sec(ﬂﬂfitive for allv € V. Itis convenient to focus on two important
uses Bayesian estimates. These techniques estimate (ladentCases:
observed) cliques, and assume both disjointness and a fidaiform Independence Sampling (UIS) where nodes are
number of edges per node. These and other model-basedsappled independently with equal probabilities.
proaches require assumptions regarding the network g@mgraNon-uniform Independence Sampling (WIS) where nodes
mechanism, which are avoided by our design-based approam. sampled independently with probability proportioralat
known weightw(v).

[11. NOTATION AND OBJECTIVE Sampling may occur with or without replacement; we in-
dicate these distinctions where they affect estimationteNo
_ W also that, in practice, samples drawn using link-trace ousgh
and |E| edges. For a given nodec V' (“ego’), let N'(v) € (o g [12]) may closely approximate UIS or WIS, and may be

V' denote the neighborhood ofin G. ?”S egpnet consists_of employed as well. We provide an example of this approach in
the subgraph of7 induced byv and its neighborhood ("e"Sectiorm.

Glv UN(v)]). In general, we will be concerned with settings

in which we observe a probability sample of egonets frémn D. Node Labeling

possibly accompanied by attributes of the associatedcesiti When egonetH; of egoi is sampled, it may or may not
and seek to infer properties of the clique structureGofWe be possible to uniquely identify's neighbors (in the sense of
elaborate as follows. knowing, e.g., whether € H; also belongs to som&;). When

Let G = (V, E) be an undirected graph with' = |V'| nodes



such identification is possible, we say that the sampllabid ed, ﬁ; of D; and D,,, the estimators/?\i = b\i/i and(/J; = l/)\u/i
otherwise denoting it agnlabeled. Fig.[d shows the effect ofare unbiased estimators 6f andC, respectivelyEl Moreover,
labeling in an example graph in which egos 1,6, and 9 (centealso follows from standard properties of the variancet tha
graph, red) are sampled. If the sample is labeled (left), are d/ar(C;) = Var(D;)/i* and Var(C,) = Var(D,)/i* since
discern that the three sampled nodes belong to two maximel are merely multiplying a random variable by a constant.
cliques:{1,2,5} and{6,7,8,9}. In the unlabeled case (right),Thus, the sampling variability of our cliqgue count estimatoan
however, we know only that ego 1 belongs to a maximal Be determined immediately from the properties of our degree
cligue, and that egos 6 and 9 each belong to one maximakdm estimators.
clique. As we will show, estimation is possible in both cases To estimate clique degree sums from egonet data, we employ
however, labeled samples provide additional informatioat t Horvitz-Thompson (H-T) estimators [118], which are design-
can be leveraged to reduce sampling error. unbiased (with or without replacement) and which are asymp-
totically Gaussian for many data collection desidns [3Gifibe
IV. ESTIMATION p, as the a priori probability off; appearing in the sample (i.e.,

As stated, our goal is to infe€; and/orC, for some set the jth unique ego having been sampled at any point), and let

of i and/oru from an egocentric sample. Our methods agg(r7;) and d,(H;) be respectively the ordérelique degree

applicable to either cliques or maximal cliques, so long agd u-clique degree of egg. The H-T estimators of); and
the same definition is applied consistently throughout. latv ), are then

follows, we will assume that a sample af egos was taken " d(H,) " d,(H)
from the population of vertices, of which are unique; in the D; = Z 3) and D, = Z CASrRA (3)
case of sampling with replacementmay be less than’. Our = Pi = Pi

data consists of’ andn together with the sampléfs, ..., H,  \yith the H-T estimates of; and C., obtained by dividing the
of egonets associated with unique egos (i.e., any repgatgflyree sum estimators byNote that since’s ego net contains

sampled egonets appear only once). Note that it is stillipless 51 "o jts cliques,d; and d, require only local network infor-
that vertices may appear in multiple egonets, a useful f@t ty5ion; this can also greatly speed computation, as dieduss
we exploit. in Sectior IV=C. Since we are concerned only with ego’s @iqu
A. General Techniques membership, we do not require labeled neighborhoods fer thi
method nor do our results require any assumptions regarding
yssible neighborhood overlap. The inclusion probaéditior
ample elements arise from the design, and may differ for

We use two basic techniques to estimatg and C,, one
of which can be used with either labeled or unlabeled nei
borhood d the oth f which i labeling inforomati > . . .

Ornoogas ant the oIer of Which requires 'abeng Inior IngtInCtj. We discuss this further below.

we present these general techniques herez foII_oweq byf'mpe For designs where the probability that any two observed
details on how they may be used for estimation in d'ﬁerer%des,j and k, are both included in the sample is known,

sampling and/or labeling scenarios. unbiased estimators of the clique count estimator variamee
a) Estimation via Clique Degree Sums (CDS): In this q

approach, we transform the problem of estimatifygr C,, into given by the general ford
one of estimating a sum of local structural features, andyap o~ 1 1 d.(H;) 2
standard (Horvitz-Thompson) sampling theory to obtain r(Ce) —Z <—>
estimate. The approach does not require labeled neighbdsho g=1

We begin by defining therder-i clique degree and u-clique 5 & 1 1 d.(H;)d.(Hg)
degrees of nodej, denotedd;; andd,;, to be respectively the * Z . DDk B ﬁ i2 ’
numbers ofi-cliques and:-cliques to whichj belongs. Totaling =1 k=gt 4)

these quantities ovér gives us the correspondiicque degree ) . ) N
sums, wherex is replaced with the desired ordel) ©r composition

N N vector () as appropriatep;;, above is the probability of both
D, = Z d;; and D, = Z duj, (1) andk appearing in_ the sample. For fjesigns such;bgl;at:annot
j=1 be readily determined, the generalized H-T estimators ohfo

of which the conventional degree suf, is a special case.Eq'(@.belOW can be employed. . .
An important special case arises when sample inclusion

The cligue degree sums are important because of their “ne%babilities are unequal and known onlv up to a constanofac
relationships withC; and C,, respectively. In particular, note? q yup

that everyi-clique appears times in D;; since this is true (e, somewj_o<dp%-). In this gase,fgelz_nerallzed H-T estimators
irrespective of composition, we take without loss of geligra [20) are required for estimation of clique counts:

i = Y. uy for the u-clique case to simplify exposition. From & _ IV di(Hj)/wj o o N du(Hj)/wj ®)
this it immediately follows thatD; = iC; and D,, = iC,,, and Y 1w, Y 1w

hence The denominator in these estimators may be recognized as

1

Jj=1

. .. L . 1An unbiased estimatot, of ¢ is a statistic such thak[t] = ¢. The result
Sincei is a known constant, this gives us a direct meanssgfows immediately from the linearity of expectation.

estimating the clique counts: for any unbiased estimaiprand  2This is a direct application of Eq. 6 df 0], p54.



an H-T estimate of the total population weight (and henceeplacement, a total of’ = n of the N available nodes
normalizer of the weights);). The above estimators are asymm@re drawn, any of which could bg The resulting inclusion
totically unbiased[[30]; given that joint inclusion proliiies probability is thus simply; = n//N.
are not available here, an adaptation of the Brewer and anif Under UIS, joint inclusion probabilities for nodes are
H) variance estimatof [4] leads to the following generahior also easily determined. For arbitrary nodgg under with-
n 2 replacement UIS, the probability of observing bgthand &
Var(C,) = (M) Z (w — 6’:) (6) in the sample is given by, =1 —2((N — 1)/N)" + (N —
n(n—1)N = k=1 B/ W 2)/N)™"; without replacement, the corresponding probability
(where = is replaced withi or u as appropriate). The B-iS Pjx = n(n —1)/(N(N — 1)). Both arise from standard
H estimator is generally biased upwafd1[30], and is hencé(?‘{p/b'”am”al arguments.

conservative estimate of measurement error, but does quiree her: :hte lpro:aaplllty Ofbmt;:.:.l:.s'on on dany g(;ventgra}tvj;/a IS
joint inclusion weights. unequal, total inclusion probabilities may depend on thai

b) Estimation via Distinct Clique Counting (CC): In the of the sampling mechanism. In the common case of independent

case of labeled neighborhoods, we can identify particufith-replacement sampling with unequal probabilities S\
cliques across egonets. This allows us to develop H-T ettsnd€ Probability of including nodg can be determined from
for clique counts that do not require degree sums.d. &t the the probability ?f obtainingj on any given draw, pj, by
number ofdistinct i-cliques inHy, . . ., H,, that contain the egosp; = 1—(1—p})" . Without-replacement inclusion probabilities
of their respective egonets, witf}, the corresponding numbeith unequal are not easily summarized, but computatia@ust

of distinct u-cliques. We definer;, to be the probability of the such as[[31] can be employed to obtain them.

kth such clique appearing in the sample (i.e., the probgtzifit In some cases the per-draw inclusion probablht_y may be
selecting at least one of its members as an ego). Giyeid-T Unequal and known only up to a constant factor (i},

estimators of the clique counts are given by p}). This situation is common in e.g. random walk sa_mpling
, , of OSNs, where vertices are often sampled (approximately)
C; C . . .
— ~ 1 —~ 1 independently with replacement, proportional to degree. |
Ci = Z . and  Cy = Z - () such cases, approximatipg by the Hansen-Hurwitz estimator
k=1 k=1

/o~ / n’ / / .
(with the = values in each sum being specific to that set Bf ~ ¥ (Zkzl ka) /(n'N) (where the sum is over all

cliques). Because joint sampling probabilities of cliqdepend ©Pservations, including repetitions) is a practical alétive.
on the structure of clique overlap (and are not in general d) Cliqueinclusion probabiliies: The probability of sam-

known), we propose to estimate the variance of the above g a clique is equal to the probability of sampling at teas
the B-I—i estimators one of its members. In the with-replacement UIS case, this is

- simply 7, = 1 — (1 — i/N)", wherei is the order of the
_ A
Var(Cy) = <070A>

- nc, & 2 8 cligue. When nodes are drawn uniformly without replacement
Z <) 8 the corresponding inclusion probability becomes

c(c,—=1)Cs ) 1= \ Tk
with x replaced byi or « as appropriate. Intuitively, the above _1_ e N —i—k
estimates the variability in count estimates associatéld @ach Tk = P N —k

of the effective sample size (i.e. number of cliques obsdr r.oer.r; t(;lrlzeprgpl)TJlljastig:weo?Zimciligrjeserggggleﬂ))/ drawmgodes
relative to the total population. In the WIS case, clique inclusion probabilities will vary

B. Inclusion Probabilities with the inclusion probabilities of their members. For thid
We have provided estimators (and variance estimators) @gue in ani or u-defined set, letn; be thei-vector denoting
clique counts based on order and/or composition for eitfieg clique members. The resulting inclusion probability is

labeled or unlabeled egonet samples. To use them, it remgips, - i "

V1o d ine the inclusi babilities of nodes g =1-(1-2>_1pm, ) . wherep’ contains the
only to determine the inclusion probapilities of nodes aquss ger-draw node sampling probabilities. More complex unéqua

sampled clique, and rescale the result to reflect the eﬂin%at
%

(p and 7, above). These quantities depend on the sampl bability designs (e.g., without replacement) do nobwall

design; we here provide examples for some common imple specification of clique inclusion probabilitiest s with

important cases for sampling of OSNs in particular but alﬁ?e nodal case these may be computed in particular caseg Sin

other arbitrary graphs. : .
¢) Node )i/nglugon probabilities. The simplest case forthe approach to be used depends on details of the sampling
procedure, we do not consider this further here.

node inclusion probabilities is that in which egos are saupl
uniformly at random from the population (UIS). The inclusioC. Implementation considerations

probabilities depend upon the total number of samples drawiThe estimation of clique distributions requires the graigk s

(n’ > n), and whether samples are drawn with or withol¥ and the enumeration of cliques for each sampled egonet.
replacement. In the with-replacement case, an arbitrade ndVe point out that in the cases whé¥ is not known a priori,

j is fails to be selected on any given draw with probabilifi2g0] provides estimators that work with sampled networkadat
1—1/N, and hence is ultimately included with total probabilitin general, the enumeration of maximal cliques is an NP-
pj=1—(1- 1/N)”'. When sampling is performed withouhard problem with worst case complexity(3"¥/3). In our



approach we decompose the enumeration over the whole gr: 2773 e
to enumeration for each sampled egonet separately. Since |
egonet has in the worst case size equal to the maximum °
degree, the worst case complexity @(n = 3(P/3) where ;'5 "
n is the egonet sample size; this can be trivially reduced 5 H 2 H T |
0O(3(P/3)) via parallel computation on each egonet. It is wortl ° H I H ]
noting that in real-world graphs there is often a large déffee  °7 E ] E
between the graph siz& and maximum degre® e.g., in the  °y E E _ o1 E E E -
FB social grapWV = 1.11 billion whereasD = 5000. Further, 007125250 500 1000 2000 4000 aooo Te00032000  O0 T35 750 500 1000 2000 4000 8000 1600032000
. . . . . Egonet Sample Size Egonet Sample Size
our method is flexible to support partial enumeration of dig
up to order:.
The space complexity of the Clique Degree Sum metho 140000t
which works only with unlabeled needs, @len(C))) which 5 120000 g@@
is almost negligible. On the other hand, the distinct CI|quw 122283; ta
Counting methods requireS(}_,_, C;)) which can be quite Z 60000

(9]
=
w

large depending on the graph. In Sectloh V we describe ™ 40000y -

(a) NMAE distribution for sample sizes:j 125-32,000

T T T T T T T T T T T T T T T T T T
eoo True Value

ooo Mean Estimate ||

€ 100000

In this section, we evaluate the performance of the estirsatc3 8ooooi®  *

with labeled and unlabeled neighborhoods (i.e., direcntiog £ 20007 :

versus clique degree sums) via simulated uniform withou 50000

. o000 Mean Estimate [|
|
I
I

- 20000} LT g
heuristic that helps us choose between CDS and CC. o€ E Oddg.. .,
2 3456 7 8 910111213141516171819202122232425262728293
T L T T T T T T T T T T T T T T T T T T T T T T
V. PERFORMANCEEVALUATION VIA SIMULATED 140000F 10w T eos TrueValue |
SAMPLING 1200007 g BBEB B

r_eplacement Sampling from reaI'WOrId datas_ets‘ Our rEShbd 0 ‘2 ‘3 4‘1 _‘5 é ‘7 é é 1‘01‘11213141‘51‘617{8 2021222324252627282930
light on the relative advantages of these estimators fassazg Maximal Clique size
both order and composition distributions. (b) Distribution of simulatec”; versus true valuesy = 1000, i € 1,...,30
Datasdr 4 [ETAveragé Max [ Maxima] Maximum F‘ig. I2 d(I:jB: New Orleans) Cliquelslijze d_]istriblutior_i‘ﬁ() uestimates for 1000
DegreeDegree Cquues Clique Size simulate ata sets. Egonets sampled uniformly witho acement.
FB:New Orl. [34] 63392 816884 25.7] 1098 1538105 30
email-EuAll [2] 224832 339923 3.02 7636 353194 1§ (NMAE), defined as:
soc-sign-Epin([4] 119129 70426% 11.82 355822219084 94 N
soc-Slashdof[p] 77360 469179 12.13 2539 823412 26 NMAE(E,7) = 2 (7 — ) ©)
amazon0601[]2] 4033642443309 12.11 2752 1023558 11 )= I
roadnet[[2]1 0875611541512 2.83 9 1413059 4 N
Ca-gfng?t } Bgéggi 42%11 %%’3 lg-gﬁ Ggg‘f 14%)712%) 4212 whereZ and ¥ are the vectors that correspond to the real and
web-Google 2 .02 y. . PSR . .
Voutube-links [28]1 1348942 987 628 52628 754 3265955 17 estlmated_dlstnbutlonsNMAE returns the absolute est|r.nat.|on
FB.Duke 0899 506447 102.36 1887 8474776 34 error relative to the true value, averaged over every paitié
FB:UVA 1719¢ 789321 91.80 3182 4727791 42 distribution.
FB:UCSD [33] 14948 443221 59.30 2165 74332 43
TABLE |: EMPIRICAL TOPOLOGIES USED INSEC.M C Re&.l'ts . .
Fig.[2 shows the simulation results for the topology "FB: New
A. Datasets Orleans” and egonet sample sized (25-32000. We observe

Table[] lists the empirical networks that we use in odfpat with only 125 egonets the median NMAE error for both
evaluation study. It includes several online social neksprdistinct Clique Counting (CC) and Clique Degree Sum (CDS)
an email communication graph, a co-authorship networkggtimators is already fairly small at 0.42. As the sample
transportation topology and a web graph; we here treat fe€ increases, the error rapidly declines (dropplng bel6%o,
structures as undirected graphs. For each network we kst @@ average, fom ~ 4e3). In Fig.[2(b) we “zoom in” to the
number of nodes, number of edges, average and maxinfigie ofn = 1000 to observe the sampling distribution of
degree, sum of maximal C“ques over the whole distributsom estimates for all Ordef-CquUGS in the distribution. Confirming
the maximum clique size. The numbers of nodes and sumdhsf unbiasedness of our estimators, the mean estimatesn(and
maximal C|iques in the graphs range from thousands to mghothls case the median estimates) Closely match the true value

The list is composed of two groups. The first group contaifes all observed clique orders (1-30).
no attributes and will be used to estimate The second group !N Fig.[3 we plot the median NMAE of the CC and CDS es-
contains several node attributes. We have selected the rdpators ofC; for various real-world topologies as a function of

attribute “gender” to estimaté,,. sample size. We vary from 125 to the total size of each graph,
_ allowing us to observe the effects of saturation on measemném
B. Error Metric error. We note that for smaller sample sizes, the CC and CDS

We measure the difference between estimated and acéstimators perform equally well. Beyond a threshold sample
cligue distributions using the Normalized Mean AbsolutecEr size, however, the CC begins to substantially outperforen th
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Fig. 3. Clique order distribution for real-world topologieMedian NMAE for the estimation of’; calculated over 1000 replications, as a functionnof
(uniform sampling without replacement).
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CDC estimator (reflecting the additional information asatexl On the other hand, the threshold for the network “amazon0601
with vertex labels). We use Tablel Il to better interpret ¢hes atn =64 000, at which point 80.9% of all nodes and 63.3%
results and shed some light on the causes of the “threshalfi’all edges have been captured by some egocentric sample
behavior. Tabl€]l contains for each topology and egonepsamon overage. While saturation aids the CC estimator relative
size the average % of all nodes and % of all edges sampledhe CDS estimator, the degree of saturation requirecesari
when both egos and neighbors are included. We observe thattlarkedly.

CC “breakaway” threshold varies for different graphs evéemw Fig.[@ shows the median NMAE error of the CC and CDS

taking into account the total % of nodes and edges sampled. A? L .
; . . . estimators ofC; and C,, for several empirical networks with
an example, the threshold for the network "soc-sign-Episio

is atn ~4 000, corresponding tez 18.1% of all nodes being}[/he erteex ?)t;rell?ustzrsﬁ D|é] eSE(Z)éhiZ sgze? il?ﬁggfﬁyféégesfaﬁﬁ’
sampled and 34.8% of all edges being contained in someé 9 P )

0, 0,
egocentric network sample on average (over 1000 simub)tior%hows the values for the mean % of nodes and % of edges

sampled for these egonet sample sizes. As expected from the
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N 250 500 1IK| 2K 4K| B8K| 16K 32K 64K

N % nodes sampl¢do. 1] 16.16 26.6] 40.04 55.25 70.5 84.53 95.3 ;

(g 4 EB- % edges sampleds.53 10.55 19.08 32.12 49.33 67.82 84.21 95.75 -

. Q' O?IW avg edge coupt1.06 1.11 1.23 1.4% 190 2.76 4.43 7.83 g
m S : avg node count1.14 1.31 1.59 2.1]1 3.04 4.74 8.0Q 14.17 -
= | 0% nodes sampl¢d0.38 0.76 1.3] 2.53 4.6§ 8.75 16.35 30.10 52.6
=z email- |% edges sampled0.47 0.97 1.84 3.5 6.7Q 12.2% 21.6] 36.49 58.64
%) EuAll | avg edge couft1.0] 1.02 1.04 1.07 1.14 1.2 1.43 1.70 2.13
g 4 avg node coupt1.1§ 1.24 1.34 1.44 155 1.65 1.7 1.91 2.1§
m soc-Slashdot coc. |6 nodes samplfd2.23 4.05 6.84 11.3] 18.14 28.6] 43.7] 64.5] 87.94
s email-EuAll cign  |% edges samplpdd.3] 8.3¢ 14.2] 23.30 34.84 4.1 64.32 80.14 93.9]
= FB: New Orl. | epinions V0 edge count1.01 116 133 164 2.19 3.14 4.7 7.72131
" ' ' avg node count1.19 1.34 1.5 1.90 2.36 3.03 3.93 5.34 7.8
o FB: UCSD 0% nodes sampled3.60 6.5 11.15 18.3] 28.71 43.14 61.75 82.79 98.8
= FB: UVA | soc- (% edges sampledl.6§ 3.31 6.20 11.3% 19.90 33.39 53.1% 77.9% 98.43
. . slashdot avg edge count1.03 1.06 1.13 1.24 1.43 1.71 2.1 2.93 4.6§

soc-sign-Epin avg node count1.17 1.30 1.52 1.85 2.3 3.14 4.4Q0 6.56 10.9

web-Google || % nodes sampléd0.8q 1.60 3.13 6.15 11.72 21.59 37.43 59.07 80.94

] % edges sampled0.44 0.83 1.69 3.3§ 6.56 12.60 23.3] 40.59 63.3

1.0 1.5 2.0 2.5 3.0 3.5 4.0 [AM3ZON " oug edge cout1.04 1.01 1.01 1.02 1.04 1.04 1.17 1.3 1.79
Avg Edge Count avg node count1.0] 1.02 1.03 1.0 1.11 129 1.39 1.7§ 2.5

% nodes sampl¢d0.09 0.1 0.3 0.70 1.4Q 2.79 5.51 10.78 20.6

Fig. 5. Ratio of the error between CDS and CC estimators asiétifun of roadnet% edges sampled0.03 0.1 0.29 0.3 0.7§ 1.56 3.1] 6.1¢ 12.1

Average Edge Count i.e. a ratio of 1.30 means that the NMABrdor the oo avg edge couft1.00 1.00 1.00 1.00 1.0 1.00 1.01 1.02 1.04
CC estimator was 30% smaller than the CDC estimator. Largleies indicate avg node count1.0Q 1.00 1.00 1.00 1.01 1.01 1.02 1.0§ 1.1@
greater returns to use of node labels. % nodes sampl¢@0.0218.35 31.61 50.08 71.39 80.9 99.25 1 ]

ca- % edges sampled8.43 16.04 29.04 48.47 71.81 91.32 99.5 g g
condmdt avg edge coupt1.06 1.11 1.23 1.47 1.99 3.13 5.74 g g

larger number of values (and smaller counts), estimatiofi,of avg node Coufit1.1] 1.22 1437 1.79 25Q0 3.9 721 | -
is at least as hard as the estimation(gf Depending on the 0% nodes sampld0.3d 0.64 1.23 2.39 4.6] 8.6 15.85 27.40 43.9
i ; Lo web- % edges sampled0.33 0.6§ 1.31 2,57 5.03 9.61 17.79 31.05 49.7]
composition of t_he attributes, the estimation(cf ranges from |ooogle | avg edge coupt1.0d 1.0] 104 103 106 114 119 137 1.71
being indistinguishable fror@; (see FB:Duke) or slightly worse avg node coupt1.0 1.03 1.0§ 1.0§ 1.12 1.19 1.3Q 1.5] 1.8
than; (see FB.UCSD). 46 cdges samplidd 10 021 0.46 089 171 321 619 1143 201
. edges sampigeal. . . .04 . . .19 . .13
Our results show clear returns to the use of labeled nei g avg odge count1.00 101 10] 103 108 10§ 114 124 144
borhoods where possible: the CC estimators perform as well o avg node coupt1.0§ 1.04 1.04 1.12 1.1§ 1.2 1.3 153 1.7
better than the CDS estimators in all cases. However, totco(atasel Propert Egonet Sample Size

|
o ; . - T§ 37 67 123 250 500 1IK| 2K 4K
the distinct cliques the CC estimator needs additional 8pac—— nodes sampl >m3.3%25.0 711 58.85 74.26 84.65 91.20 95.44 98,31

as discussed in Sectign TV-C. Depending on the topology, the:  |% edges sampledd.57 9.27 17.6% 30.88 49.43 69.09 85.0% 94.71 98.84
. . . . We avg edge coupt1.03 1.08 1.1 1.33 1.61 2.39 3.83 6.91 13.3
amount .Of space r.equwed to implement th? CC estimator mig avg node coupt1.12 1.2 1.5 2.22 3.53 6.2q 11.4] 21.8¢ 42.52
be considerably high. For example, the estimation of thgueli 0% nodes sampl&d7.47 14.50 25.66 41.60 60.17 75.70 86.58 92.95 96.6]
istributi i i ' FB:  |% edges sampled2.24 4.41 8.47 15.97 28.28 44.70 63.90 81.33 93.01
.dIStI'Iij[IonS with Igbellng for the F_ac_ebook 09 data SaEBpl HVA avg edge count1.01 1.03 1.0 1.16 1.33 1.66 2.33 3.67 6.4]
in Section[V] requires space that is in the order of hundregds avg node coupt1.04 1.14 1.30 1.61 2.26 3.5§ 6.23 11.60 22.34
of GB. One question that naturally rises is whether there iSTa % nodes sampi¢d5.7311.17 20.39 33.69 51.1 67.93 81.3] 90.3¢ 95.0
-~ ; ; . |% edges sampled1.92 3.93 7.77 14.21 25.91 42.10 61.34 79.05 91.9
heUI'IS.tIC that can ,Su,ggeSt Whether the CC estllmator IS WO@%SD avg edge count1.02 1.03 1.07 1.13 1.28 1.59 2.19 3.38 5.83
applying by a preliminary analysis of egonet daite.(before avg node coupt1.09 1.11 1.23 1.46 1.97 2.9 4.94 8.92 16.8]
we do any clique enumeration and estimation whatsoevex). Tw TABLE Il: UNIFORM SAMPLING WITHOUT REPLACEMENT TOTAL %
.. . NODES SAMPLED IN THE GRAPH WHEN INCLUDING ALL EGOS AND
such heuristics that we examined are the use of average 8698B0RS TOTAL % E DGES SAMPLED IN THE GRAPH WHEN INCLUDING
count and average node count as indicators of saturaticgy ThALL EDGES BETWEEN EGOS AND NEIGHBORSAVERAGE EDGE COUNT:
are defined and included in Tali[& Il for all networks and egjone RAT!O BETWEEN ALL EDGES OVER UNIQUE EDGESAVERAGE NODE
. . COUNT: RATIO BETWEEN ALL NODES OVER UNIQUE NODES
sample sizes examined here.
F_ig. [§ shows the rgtio of the error between CDS and CC VI. FACEBOOK
estimators as a function of the average edge count. (Values .
greater than 1 favor CC.) Empirically, we observe that aealu A. Dataset Description
Average Edge Count abowes is a heuristic indicator that a CC  In previous work[[11], we collected a representative sample
clique estimator for a specific egonet sample significantiit oof ~ 1 million unique Facebook (FB) users by crawling
performs the corresponding CDS clique estimator. Intefyiy the social graph using a Metropolis Hasting Random Walk
the average edge count of an egonet sample is correlated WWthIRW) method. Subsequently we collected the egonets for
the percentage of cliques that are not distinct. The higher 86,628 unique nodes that were randomly selected from the
number of non-distinct cliques the more information the J@HRW sample. This sub-sampling eliminates the correlation
estimator uses compared to the CDS estimator. of consecutive nodes in the same crawl. The representatgen
Of course, in some settings (e.g., due to privacy or datfathis data has been validated against true random samples
collection limitations, particularly offline) is not posé to from the Facebook taken during the same period[11,12].
obtain information on neighbors’ identities. In these cagrir This sample closely approximates a uniform, with replacgme
simulations suggest that the CDS estimator can still pevisample of egonets from the publicly visible FB graph. In this
excellent performance, even for very large graphs. sample all neighborhoods are uniquely labeled which allows
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Rather more order is shown in the distribution of maximum
clique sizes by ego (i.e., the largest clique to which a given
individual belongs). (Fid.16, bottom panel.) This shows anmo
tone distribution with a stable exponential decay over e
that is well-supported by our data. Membership in modemate t
large cliques is thus quite rare, despite their prevalencie
FB graph.

Beyond size distributions, our estimators allow us to exami
— how the composition of cliques varies across the FB graph.
Maximal Clique Size . Fig.[d shows the estimated gender composition of FB cliques
for all cliques (panel a) and cliques of varying order (panel
10° b-h). The X axis in each panel indicates the fraction of clique
members who are male, from 0 (entirely female) to 1 (entirely
male); a vertical reference line indicates gender parityr O
] results provide clear evidence for strong heterogeneitthe
makeup of FB cliques. We see several distinct modes with
210° characteristic gender frequencies, that occur over spesiife
“ % . ranges. These include: a “small equal clique” mode of near-
’.“. parity cligues of size 0-40; a 70-80% male mode for cliques
10° L ettt 000 4 e of size 40-100; a 60-80% female mode for cliques of order
0 20 40 60 80 100 120 140 160 180 200 220 .
Maximum Clique size 40-80; a second near-parity mode over the small range of
, _ _ T _ sizes 100-120; and a strongly female dominated mode of very
Fig. 6. Estimated clique size distribution (Facebook dograph '09); top | l . 120). Alth h data d t all
panel shows CDS estimates of maximal clique frequencypboftanel shows arge ¢ 'ques_ (sizes- )- ) ough our a a does not allow
the distribution of maximum clique sizes by ego. us to establish the mechanisms underlying these modes, we
speculate that each is the result of a particular collectibn
for estimation using either the CDS or CC estimators. Tﬁgc'al settings (e.g., fr_atefmtles or sororities, famy;oups,
M . : : schools, or work organizations) that acts as a foCus [9]ior t
value of the “Average Edge Count” is03 which according to . . o o
S . . T . . formation. Systematic variation in the gender compositidn
our heuristic in Sectioh V is an indication that the inforioat . . e
: these settings then leads to corresponding variation guel
provided by labels would not be very useful. Hence, we emplog o . o
. . . composition. Interestingly, our findings do not corrobertte
CDS estimators for our analysis. We use the population size . : X ) .
. . . rédictions of [[25] regarding the relationship of cliqueesi
N = 240M which was estimated for this dataset hyl[2 : ; :
. . . gender homogeneity based on their analysis of face-to-
and agrees with the statistics reported by Facebook duhiag R . d .
. . face groups: while they posit a strongly negative relatigms
collection of the dataset (April 2009). het it d . find that the FB

We complement this egonet sample with gender attribuﬁgwﬁen € erogelnel y ?n .grou? size, we ml' at the
for each user. We were able to fetch the publicly declared udap lsuppor(tjs a ar?ﬁ r_aqtmr: 0 near—hpanty ¢ 'quTS a!n((ejv
declared gender for 90% of sampled users by crawling the ﬂh‘fte arge or elr.s. W Ibe itis asc|> truel that extremely g}Inl
atlhttp:// graph.facebook.convuserid. Additionally, we classified omogeneous ¢ |que”s ecome t:e atl\ée y more prevalentgg la b
another 9.5% by a majority rule that uses the first name of e&gﬂers (ve(;su_s sma _f(_)ne’\:?),_rt] edp enon’tl)enon arr])pears tol €
user and a database of the number of times that first natjies/e"n and size-specitic. eltj er ozgvefo Serve t” € power-ia
were assigned to males and females. We first used the Iisfi%?ay |nSgrouphS|zes (eporte I by T ]bor r&aturag OC(;gI’II’I
first names from the US Social Security records. If there was oups. mcilt. e?e pnorfresu ts were ?ﬁel OE Of sersation
match we then used the list of first names from the populati fiu€s In public, a(_:Ie-to-Icl':lc_e settings, this hac ol_dr_mﬂofn h
of Facebook users with declared gender. Last, we Used [1 P&hs nf)t ”eTes_Sa“Y Cﬁ _|nt(_) _qu?snon t 'eh validity 0 the
predict the gender for the remaining 0.5% users with a Na gors con%usmt?s :cn t elr or|g|fn?_ cogt(:_(t, l(_)weve[da)%sSN
Bayes classifier, based on the letter composition of firstesanf!Nderscore that the formation of friendship cliques in S

may operate very differently from the sorts of groups exadin
B. Results in previous studies.

The top panel of Fig.]6 shows the estimated distribution of
maximal clique sizes over the entire FB social graph. The FB VII. ConcLusioN
graph is known to be highly clustered, and it indeed containdn this paper, we introduced novel unbiased estimators of
many large cliques: the modal clique size is 50, with thedatgclique composition and size distributions based on egoicent
observed clique containing over 205 individuals. Intenggy, network samples. We presented two techniques, one of which
the form of the clique distribution is neither monotone naxploits labeling of nodes (CC) and one which does not requir
unimodal; significant peaks occur at 32, 41, and 50, withttds information (CDS). Both techniques are easily paliale
minor mode near 84. This suggests substantial heterogéneitable, and suitable for use with large graphs. (A Python imple
the mechanisms of clique formation, a point underscoreduny mentation of our estimators is available [at|[10].) We evida
findings regarding gender (see below). estimator performance via simulated sampling from realldvo

Frequency
N w R Ul
L]
Ty
@
|

=

101®
D o\c\.n.u.uou-
]l

[S)
N
o
»
o
o
=]

siz



http://graph.facebook.com/userid

% male members inside clique

% male members inside clique

Fig. 7.

% male members inside clique

le—-4 le-2 le-2
T T T T T T T ! T T T 1 T T
" Al Clique sizes 3'5’(b) Cligpe sizes (0-20) - 2'5’(c) Cligug sizes (20-40) | 3'5’(d) Cliqug sizes (40-60) |
8 i _
3 3.0 i 3.0 1
2.0 B
= 2.5F . 2.5F .
T 2.0 4 15¢ 7 2.0 8
o 1.5+ 1 1.0 | 1.5r T —
G 1.0F - 1.0F .
ES 0.5 {037 1 o5 .
[ul | I | | I
.Ooﬁﬂ 0.2 04 06 0.8 11)&80 0.2 04 06 0.8 11)080 0.2 04 06 08 1.0
le—3 le—4 le—4
o 6/ (e) cliqub sizes fsb-80), 25} ) " Clique]sizes (80-100) ] g_(;,(g) " Clique §zes (100120) | | h) ‘ _cnqu‘e dizeS (120'220) |
> 5f B o i = 7 51 B
e, 2.0 3.0F 1 .
= 1.5F 4 250 .
g3k - 2.0F 4 3F -
+— 1.0 4 1.5 i
5 2r g : 2F -
X 1+ ] 0.5F L.or I 1+ .
) oo W ]
| I | | . | | |
80 02 04 06 0.8 10(180 02 04 06 0.8 10(180 02 04 06 08 1.0 80 02 04 06 08 1.0

% male members inside clique

CDS estimates for gender composition of maximalugg&] by order. (Facebook social graph '09)

graphs, showing that both proposed techniques work well gng H. M. Grindley, P. J. Artymiuk, D. W. Rice, and P. Willettdentification

that CC generally outperforms CDS as the sample

the

“saturates”
graph; because CC imposes higher space complexity,

of tertiary structure resemblance in proteins using a makioommon
subgraph isomorphism algorithndournal of molecular biology, 1993.

[MFM. S. Handcock, D. R. Hunter, C. T. Butts, S. M. Goodreamnd

provided a simple heuristic that suggests when gains from M. Morris. statnet: Software tools for the representatigisualization,
using CC are likely to be substantial. Last, we demonstra[%:l
an application of our estimators to clique composition inN3S

We

applied our methodology to egocentric samples colleicted

Facebook, which we complemented with gender informatid]
allowing us to estimate the joint size and composition tigtr

tion
imp

of FB cliques with respect to gender. Our results unches [18]
ortant differences between online and (previously rieah)

offline group structure, and provide evidence for strongdgen [19]
heterogeneity in the makeup of FB cliques.
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