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Abstract—Cliques are defined as complete graphs or subgraphs;
they are the strongest form of cohesive subgroup, and are of
interest in both social science and engineering contexts. In this
paper we show how to efficiently estimate the distribution ofclique
sizes from a probability sample of nodes obtained from a graph
(e.g., by independence or link-trace sampling). We introduce two
types of unbiased estimators, one of which exploits labeling of
sampled nodes neighbors and one of which does not require this
information. We compare the estimators on a variety of real-world
graphs and provide suggestions for their use. We generalizeour
estimators to cases in which cliques are distinguished not only
by size but also by node attributes, allowing us to estimate clique
composition by size. Finally, we apply our methodology to a sample
of Facebook users to estimate the clique size distribution by gender
over the social graph.

I. I NTRODUCTION

In a large number of real-world applications it is common
to represent systems, structures, or data using graphse.g.,
social graphs, web graphs, or protein interaction graphs. In
many cases these graphs are difficult to study, most commonly
because of their massive size and/or access limitations. Asa
result, there is a growing body of work [11,16,21] that uses
sampling to estimate the properties of such graphs as a step
towards understanding them. Furthermore, network models have
been developed that receive as an input such estimated graph
properties so as to generate synthetic graphs that resemblethe
real graph [13,15].

In this paper, we show how to efficiently estimate graph
properties of the clique structure from a probability sample
of nodes. Cliques are employed in a wide range of fields. In
social network analysis, cliques are the foundation for studying
both clustering (i.e., via triangles) and cohesive subgroups
[35]. Scholars have used cliques to study advice networks in
entrepreneurial firms [22], informant accuracy in behavioral
and cognitive network data [3], and friendship networks among
school classes [19]. In bioinformatics, calculations of cliques
have been used to identify protein structures [14] and determine
optimal protein structure alignment [29]. Other fields have
studied image recognition using maximal cliques as interest
points [28] and have used maximal cliques to solve the stereo
correspondence problem [17].

Our estimation techniques employ an egocentric approach
[35]. We first collect a uniform or non-uniform probability sam-
ple of nodes (“ego”) from the target graph. Then, we collect the
egonet of each sampled node, which consists of the neighbors
of the node and the edges between these neighbors. Fig. 1
presents an example that illustrates the egocentric approach.
Next, we use an existing clique enumeration tool to calculate
the exact clique distribution for each collected egonet. Last,
we apply our unbiased estimators that combine the individual

Fig. 1. Illustration of the egocentric approach, clique size distribution and
difference between labeled and unlabeled cases. In this case, egos 1, 6, 9 are
sampled from graphG. The maximal clique size distribution of G isC =
(0, 0, 2, 2) since there are two maximal cliques of sizes3 and4.

egonet calculations so as to estimate the clique distribution for
the whole graph.

Our approach has several benefits. The first obvious benefit
is that it allows us to estimate the clique distribution of an
unknown graph, as long as we have a sampling primitive that
reveals the neighbors of a selected node in that graph. The
second benefit is that it can be used to estimate the clique
distributions of a fully known massive graph. Our approach
decomposes a large problem into many smaller problems that
can be independently computed, hence making estimation em-
barrassingly parallel. Another benefit is the ability to estimate
clique distribution in the absence of unique node labelse.g., due
to privacy-sensitive network data or data collection limitations.
Finally, our techniques can be employed with data collected
using standard techniques in both online (e.g., random walk
or user ID sampling [12]) and offline (e.g., survey instruments
[24]) settings.

In summary, we make the following contributions. (i) We
present two types of unbiased estimators for the clique distri-
bution, one that exploits labeling of nodes and one that doesnot
require this information. To the best of our knowledge, we are
the first to present estimators for clique distributions in arbitrary
graphs using sampled network data. We compare our estimators
on a variety of real-world graphs and provide suggestions for
their use. (ii) We generalize the clique distribution to cases in
which cliques are distinguished not only by size but also by
node attributes, and provide estimators for these cases. (iii) We
apply our methodology to a sample of Facebook (FB) users to
estimate the clique size distribution and gender composition of
cliques across the social graph.

The structure of the remainder of the paper is as follows.
Section II reviews related work. Section III presents the nota-
tion and objective. Section IV presents our clique distribution
estimators for uniform and non-uniform probability samples.
Section V presents simulation results on real-life fully known
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graphs. Section VI applies our estimators to samples collected
from Facebook. Section VII concludes the paper.

II. RELATED WORK

Egocentric sampling is a widely used method for gathering
network data [6,23]. This method samples individual nodes
and then expands to include their neighborhoods. While this
procedure does not necessarily describe the structure of the
entire network, it can yield representative samples of the
network [23]. Standard random sampling methods can be used
to obtain egocentric network data and generalize the results to a
larger population [23]. Examples of applications of egocentric
sampling procedures include the network items in the General
Social Survey [5] and networks obtained through crawling
online social networks [12].

Although clique enumeration is in general exponential time
in graph order (since the maximum number of cliques scales
exponentially in the number of vertices), algorithms have been
proposed for enumeration on small and/or sparse graphs. [8]in-
troduces an algorithm to list all maximal cliques in large sparse
graphs. In contrast to [32] which uses adjacency matrices tocal-
culate all maximal cliques, this algorithm offers an alternative
for analysis of large sparse graphs whose adjacency matrices
are too large for fast computation. [7] propose an algorithmfor
clique enumeration with improved space complexity, which also
facilitates decomposition of clique calculations on largegraphs.
All of these approaches are exact, but require processing and
storage of the entire graph.

[27] examines three methods for estimating the number of
cliques in a random graph. The first is a sampling technique
where they use the Bron and Kerbosch method to count a
representative selection of subgraphs. This produces a curve
for the graph, and they use the area under the curve to estimate
the total number of cliques in the graph. The second method is
using probabilistic arguments to calculate the expected number
of cliques. The third is a curve fitting method. These results
assume that the target graph is well-approximated by a uniform
random graph. [19] outlines two approaches for estimating
non-overlapping latent clique structures in a regular graph.
The first uses maximum likelihood estimates and the second
uses Bayesian estimates. These techniques estimate latent(not
observed) cliques, and assume both disjointness and a fixed
number of edges per node. These and other model-based ap-
proaches require assumptions regarding the network generating
mechanism, which are avoided by our design-based approach.

III. N OTATION AND OBJECTIVE

Let G = (V,E) be an undirected graph withN = |V | nodes
and |E| edges. For a given nodev ∈ V (“ego”), let N (v) ⊆
V denote the neighborhood ofv in G. v’s egonet consists of
the subgraph ofG induced byv and its neighborhood (i.e.,
G[v ∪ N (v)]). In general, we will be concerned with settings
in which we observe a probability sample of egonets fromG,
possibly accompanied by attributes of the associated vertices,
and seek to infer properties of the clique structure ofG. We
elaborate as follows.

A. Clique Distributions
1) Without Attributes: A clique is an induced subgraph

in which every vertex adjacent to every other vertex (i.e., a
complete induced subgraph). A clique that containsi vertices
is called anorder-i clique (or i-clique). A clique is said to
be maximal if no higher order clique contains it. We define
Ci to be the number of order-i cliques inG, and the vector
C = (C1, . . . , CN ) the clique distribution of G. (Counts
of maximal cliques, and the maximal clique distribution are
defined analogously, with the constraint that the cliques in
question are maximal cliques.)

2) With Attributes: We generalize the clique distribution to
the case in which cliques are distinguished not only by size,but
also by composition. Specifically, let us assume that each vertex
j in the graph has some categorical attributeXj; we denote
the possible states ofXj by the integers1, . . . , p. Potential
attribute distributions within cliques are defined viacomposition
vectors, u, that indicate the number of vertices within a clique
belonging to each of thep categories onX . Specifyingu tacitly
specifies order (since

∑p
j=1 uj = i, whereuj is the number of

vertices belonging to categoryj), and thusu can be viewed as
a generalization of order for purposes of clique categorization.
Accordingly, we defineCu to be the number of cliques inG
that have composition vectoru (u-cliques), with the set of all
Cu all that u ∈ {u ∈ N

p : 1 ≤
∑p

j=1 uj ≤ N} comprising the
clique composition distribution of G.

B. Objective
An egocentric network sample H1, ..., Hn is a probability

sample ofn egonets fromG. Our goal is to estimateCi and/or
Cu from this sample for any given orderi or composition vector
u (as defined above). When estimatingCu, we assume that the
egocentric network sample also contains attribute information
for each ego and all neighbors.

C. Sample Properties
As noted above, we assume that our egonets comprise a

probability sample of the egonets inG; that is, (i) we can
treat each ego as being included in the sample with known
probability, and (ii) the probability of sampling any vertex v is
positive for allv ∈ V . It is convenient to focus on two important
cases:
Uniform Independence Sampling (UIS), where nodes are
sampled independently with equal probabilities.
Non-uniform Independence Sampling (WIS), where nodes
are sampled independently with probability proportional to a
known weightw(v).

Sampling may occur with or without replacement; we in-
dicate these distinctions where they affect estimation. Note
also that, in practice, samples drawn using link-trace methods
(e.g. [12]) may closely approximate UIS or WIS, and may be
employed as well. We provide an example of this approach in
Section VI.

D. Node Labeling
When egonetHi of ego i is sampled, it may or may not

be possible to uniquely identifyi’s neighbors (in the sense of
knowing, e.g., whetherv ∈ Hi also belongs to someHj). When



such identification is possible, we say that the sample islabeled,
otherwise denoting it asunlabeled. Fig. 1 shows the effect of
labeling in an example graph in which egos 1,6, and 9 (center
graph, red) are sampled. If the sample is labeled (left), we can
discern that the three sampled nodes belong to two maximal
cliques:{1, 2, 5} and{6, 7, 8, 9}. In the unlabeled case (right),
however, we know only that ego 1 belongs to a maximal 3-
clique, and that egos 6 and 9 each belong to one maximal 4-
clique. As we will show, estimation is possible in both cases;
however, labeled samples provide additional information that
can be leveraged to reduce sampling error.

IV. ESTIMATION

As stated, our goal is to inferCi and/orCu for some set
of i and/or u from an egocentric sample. Our methods are
applicable to either cliques or maximal cliques, so long as
the same definition is applied consistently throughout. In what
follows, we will assume that a sample ofn′ egos was taken
from the population of vertices, of whichn are unique; in the
case of sampling with replacement,n may be less thann′. Our
data consists ofn′ andn together with the sampleH1, . . . , Hn

of egonets associated with unique egos (i.e., any repeatedly
sampled egonets appear only once). Note that it is still possible
that vertices may appear in multiple egonets, a useful fact that
we exploit.

A. General Techniques

We use two basic techniques to estimateCi and Cu, one
of which can be used with either labeled or unlabeled neigh-
borhoods and the other of which requires labeling information.
We present these general techniques here, followed by specific
details on how they may be used for estimation in different
sampling and/or labeling scenarios.

a) Estimation via Clique Degree Sums (CDS): In this
approach, we transform the problem of estimatingCi orCu into
one of estimating a sum of local structural features, and apply
standard (Horvitz-Thompson) sampling theory to obtain an
estimate. The approach does not require labeled neighborhoods.
We begin by defining theorder-i clique degree and u-clique
degrees of nodej, denoteddij andduj , to be respectively the
numbers ofi-cliques andu-cliques to whichj belongs. Totaling
these quantities overV gives us the correspondingclique degree
sums,

Di =

N∑

j=1

dij and Du =

N∑

j=1

duj , (1)

of which the conventional degree sumD2 is a special case.
The clique degree sums are important because of their linear
relationships withCi and Cu respectively. In particular, note
that everyi-clique appearsi times in Di; since this is true
irrespective of composition, we take without loss of generality
i =

∑
j uj for the u-clique case to simplify exposition. From

this it immediately follows thatDi = iCi andDu = iCu, and
hence

Ci = Di/i and Cu = Du/i. (2)

Sincei is a known constant, this gives us a direct means of
estimating the clique counts: for any unbiased estimatorsD̂i and

D̂u of Di andDu, the estimatorŝCi = D̂i/i and Ĉu = D̂u/i
are unbiased estimators ofCi andCu respectively.1 Moreover,
it also follows from standard properties of the variance that
V ar(Ĉi) = V ar(D̂i)/i

2 and V ar(Ĉu) = V ar(D̂u)/i
2 since

we are merely multiplying a random variable by a constant.
Thus, the sampling variability of our clique count estimators can
be determined immediately from the properties of our degree
sum estimators.

To estimate clique degree sums from egonet data, we employ
Horvitz-Thompson (H-T) estimators [18], which are design-
unbiased (with or without replacement) and which are asymp-
totically Gaussian for many data collection designs [30]. Define
pj as the a priori probability ofHj appearing in the sample (i.e.,
the jth unique ego having been sampled at any point), and let
di(Hj) and du(Hj) be respectively the order-i clique degree
and u-clique degree of egoj. The H-T estimators ofDi and
Du are then

D̂i =
n∑

j=1

di(Hj)

pj
and D̂u =

n∑

j=1

du(Hj)

pj
, (3)

with the H-T estimates ofCi andCu obtained by dividing the
degree sum estimators byi. Note that sincej’s ego net contains
all of its cliques,di and du require only local network infor-
mation; this can also greatly speed computation, as discussed
in Section IV-C. Since we are concerned only with ego’s clique
membership, we do not require labeled neighborhoods for this
method nor do our results require any assumptions regarding
possible neighborhood overlap. The inclusion probabilities for
sample elements arise from the design, and may differ for
distinct j. We discuss this further below.

For designs where the probability that any two observed
nodes,j and k, are both included in the sample is known,
unbiased estimators of the clique count estimator varianceare
given by the general form2

V̂ ar(Ĉ∗) =

n∑

j=1

(
1

p2j
−

1

pj

)(
d∗(Hj)

i

)2

+ 2

n∑

j=1

n∑

k=j+1

(
1

pjpk
−

1

pjk

)(
d∗(Hj)d∗(Hk)

i2

)
,

(4)

where∗ is replaced with the desired order (i) or composition
vector (u) as appropriate.pjk above is the probability of bothj
andk appearing in the sample. For designs such thatpjk cannot
be readily determined, the generalized H-T estimators of form
Eq.(6) below can be employed.

An important special case arises when sample inclusion
probabilities are unequal and known only up to a constant factor
(i.e., somewj ∝ pj). In this case, generalized H-T estimators
[30] are required for estimation of clique counts:

Ĉi =
N

i

di(Hj)/wj∑n
j=1 1/wj

and Ĉu =
N

i

du(Hj)/wj∑n
j=1 1/wj

. (5)

The denominator in these estimators may be recognized as

1An unbiased estimator,̂t of t is a statistic such thatE[t̂] = t. The result
follows immediately from the linearity of expectation.

2This is a direct application of Eq. 6 of [30], p54.



an H-T estimate of the total population weight (and hence a
normalizer of the weightswj). The above estimators are asymp-
totically unbiased [30]; given that joint inclusion probabilities
are not available here, an adaptation of the Brewer and Hanif(B-
H) variance estimator [4] leads to the following general form:

V̂ ar(Ĉ∗) =

(
N − n

n(n− 1)N

) n∑

j=1

(
nd∗(Hj)/wj∑n

k=1 i/wk
− Ĉ∗

)2

(6)

(where ∗ is replaced withi or u as appropriate). The B-
H estimator is generally biased upward [30], and is hence a
conservative estimate of measurement error, but does not require
joint inclusion weights.

b) Estimation via Distinct Clique Counting (CC): In the
case of labeled neighborhoods, we can identify particular
cliques across egonets. This allows us to develop H-T estimates
for clique counts that do not require degree sums. Letc′i be the
number ofdistinct i-cliques inH1, . . . , Hn that contain the egos
of their respective egonets, withc′u the corresponding number
of distinctu-cliques. We defineπk to be the probability of the
kth such clique appearing in the sample (i.e., the probability of
selecting at least one of its members as an ego). Givenπk, H-T
estimators of the clique counts are given by

Ĉi =

c′i∑

k=1

1

πk
and Ĉu =

c′u∑

k=1

1

πk
(7)

(with the π values in each sum being specific to that set of
cliques). Because joint sampling probabilities of cliquesdepend
on the structure of clique overlap (and are not in general
known), we propose to estimate the variance of the above via
the B-H estimators

V̂ ar(Ĉ∗) =

(
Ĉ∗ − c′

∗

c′
∗
(c′

∗
− 1)Ĉ∗

) c′
∗∑

k=1

(
nc′

∗

πk
− Ĉ∗

)2

, (8)

with ∗ replaced byi or u as appropriate. Intuitively, the above
estimates the variability in count estimates associated with each
sampled clique, and rescale the result to reflect the estimate
of the effective sample size (i.e. number of cliques observed)
relative to the total population.

B. Inclusion Probabilities
We have provided estimators (and variance estimators) for

clique counts based on order and/or composition for either
labeled or unlabeled egonet samples. To use them, it remains
only to determine the inclusion probabilities of nodes or cliques
(p and π, above). These quantities depend on the sampling
design; we here provide examples for some common and
important cases for sampling of OSNs in particular but also
other arbitrary graphs.

c) Node inclusion probabilities: The simplest case for
node inclusion probabilities is that in which egos are sampled
uniformly at random from the population (UIS). The inclusion
probabilities depend upon the total number of samples drawn
(n′ ≥ n), and whether samples are drawn with or without
replacement. In the with-replacement case, an arbitrary node
j is fails to be selected on any given draw with probability
1−1/N , and hence is ultimately included with total probability
pj = 1 − (1 − 1/N)n

′

. When sampling is performed without

replacement, a total ofn′ = n of the N available nodes
are drawn, any of which could bej. The resulting inclusion
probability is thus simplypj = n′/N .

Under UIS, joint inclusion probabilities for nodes are
also easily determined. For arbitrary nodesj, k under with-
replacement UIS, the probability of observing bothj and k
in the sample is given bypjk = 1− 2((N − 1)/N)n

′

+ ((N −
2)/N)n

′

; without replacement, the corresponding probability
is pjk = n(n − 1)/(N(N − 1)). Both arise from standard
combinatorial arguments.

When the probability of inclusion on any given draw is
unequal, total inclusion probabilities may depend on the details
of the sampling mechanism. In the common case of independent
with-replacement sampling with unequal probabilities (WIS),
the probability of including nodej can be determined from
the probability of obtainingj on any given draw, p′j , by
pj = 1−(1−p′j)

n′

. Without-replacement inclusion probabilities
with unequal are not easily summarized, but computational tools
such as [31] can be employed to obtain them.

In some cases the per-draw inclusion probability may be
unequal and known only up to a constant factor (i.e.,w′

j ∝
p′j). This situation is common in e.g. random walk sampling
of OSNs, where vertices are often sampled (approximately)
independently with replacement, proportional to degree. In
such cases, approximatingp′j by the Hansen-Hurwitz estimator

p′j ≈ w′

j

(∑n′

k=1 1/w
′

k

)
/(n′N) (where the sum is over all

observations, including repetitions) is a practical alternative.
d) Clique inclusion probabilities: The probability of sam-

pling a clique is equal to the probability of sampling at least
one of its members. In the with-replacement UIS case, this is
simply πk = 1 − (1 − i/N)n

′

, where i is the order of the
clique. When nodes are drawn uniformly without replacement,
the corresponding inclusion probability becomes

πk = 1−
n′∏

k=0

N − i− k

N − k

(i.e., one minus the chance of sequentially drawingn nodes
from the population of non-clique members).

In the WIS case, clique inclusion probabilities will vary
with the inclusion probabilities of their members. For thekth
clique in ani or u-defined set, letmk be thei-vector denoting
the clique members. The resulting inclusion probability is

then πk = 1 −
(
1−

∑i
j=1 p

′

mkj

)n′

, where p′ contains the
per-draw node sampling probabilities. More complex unequal
probability designs (e.g., without replacement) do not allow
simple specification of clique inclusion probabilities, but as with
the nodal case these may be computed in particular cases. Since
the approach to be used depends on details of the sampling
procedure, we do not consider this further here.

C. Implementation considerations
The estimation of clique distributions requires the graph size

N and the enumeration of cliques for each sampled egonet.
We point out that in the cases whenN is not known a priori,
[20] provides estimators that work with sampled network data.
In general, the enumeration of maximal cliques is an NP-
hard problem with worst case complexityO(3N/3). In our



approach we decompose the enumeration over the whole graph
to enumeration for each sampled egonet separately. Since an
egonet has in the worst case sizeD equal to the maximum
degree, the worst case complexity isO(n ∗ 3(D/3)) where
n is the egonet sample size; this can be trivially reduced to
O(3(D/3)) via parallel computation on each egonet. It is worth
noting that in real-world graphs there is often a large difference
between the graph sizeN and maximum degreeD e.g., in the
FB social graphN = 1.11 billion whereasD = 5000. Further,
our method is flexible to support partial enumeration of cliques
up to order-i.

The space complexity of the Clique Degree Sum method,
which works only with unlabeled needs, isO(len(C))) which
is almost negligible. On the other hand, the distinct Clique
Counting methods requiresO(

∑
i=1 Ci)) which can be quite

large depending on the graph. In Section V we describe a
heuristic that helps us choose between CDS and CC.

V. PERFORMANCEEVALUATION VIA SIMULATED

SAMPLING

In this section, we evaluate the performance of the estimators
with labeled and unlabeled neighborhoods (i.e., direct counting
versus clique degree sums) via simulated uniform without-
replacement sampling from real-world datasets. Our results shed
light on the relative advantages of these estimators for assessing
both order and composition distributions.

Dataset |V | |E|Average Max # Maximal Maximum
DegreeDegree Cliques Clique Size

FB:New Orl. [34] 63 392 816 884 25.77 1 098 1 538 105 30
email-EuAll [2] 224 832 339 923 3.02 7 636 353 194 16

soc-sign-Epin [2] 119 129 704 265 11.82 355822 219 084 94
soc-Slashdot [2] 77 360 469 179 12.13 2 539 823 412 26
amazon0601 [2] 403 3642 443 309 12.11 2 752 1 023 558 11

roadnet [2]1 087 5611 541 512 2.83 9 1 413 059 4
ca-CondMat [2] 21 362 91 282 8.55 279 17 757 26
web-Google [2] 855 8024 291 350 10.02 6 332 1 401 600 44

youtube-links [26]1 134 8942 987 623 5,2628 754 3 265 955 17
FB:Duke [33] 9 895 506 442 102.36 1 887 8 474 776 34
FB:UVA [33] 17 196 789 321 91.80 3 182 4 727 791 42

FB:UCSD [33] 14 948 443 221 59.30 2 165 743 328 43

TABLE I: EMPIRICAL TOPOLOGIES USED INSEC. V

A. Datasets

Table I lists the empirical networks that we use in our
evaluation study. It includes several online social networks,
an email communication graph, a co-authorship network, a
transportation topology and a web graph; we here treat all
structures as undirected graphs. For each network we list the
number of nodes, number of edges, average and maximum
degree, sum of maximal cliques over the whole distribution,and
the maximum clique size. The numbers of nodes and sums of
maximal cliques in the graphs range from thousands to millions.

The list is composed of two groups. The first group contains
no attributes and will be used to estimateCi. The second group
contains several node attributes. We have selected the node
attribute “gender” to estimateCu.

B. Error Metric

We measure the difference between estimated and actual
clique distributions using the Normalized Mean Absolute Error
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(b) Distribution of simulated̂Ci versus true values;n = 1000, i ∈ 1, . . . , 30

Fig. 2. (FB: New Orleans) Clique size distribution (Ci) estimates for 1000
simulated data sets. Egonets sampled uniformly without replacement.

(NMAE), defined as:

NMAE(~̂x, ~x) =

∑
(|x̂i − xi|)∑

|xi|
, (9)

where~x and ~̂x are the vectors that correspond to the real and
estimated distributions.NMAE returns the absolute estimation
error relative to the true value, averaged over every point in the
distribution.

C. Results
Fig. 2 shows the simulation results for the topology ”FB: New

Orleans” and egonet sample sizes (n) 125-32 000. We observe
that with only 125 egonets the median NMAE error for both
distinct Clique Counting (CC) and Clique Degree Sum (CDS)
estimators is already fairly small at∼ 0.42. As the sample
size increases, the error rapidly declines (dropping below10%,
on average, forn ≈ 4e3). In Fig. 2(b) we “zoom in” to the
case ofn = 1000 to observe the sampling distribution of
estimates for all order-i cliques in the distribution. Confirming
the unbiasedness of our estimators, the mean estimates (andin
this case the median estimates) closely match the true values
for all observed clique orders (1–30).

In Fig. 3 we plot the median NMAE of the CC and CDS es-
timators ofCi for various real-world topologies as a function of
sample size. We varyn from 125 to the total size of each graph,
allowing us to observe the effects of saturation on measurement
error. We note that for smaller sample sizes, the CC and CDS
estimators perform equally well. Beyond a threshold sample
size, however, the CC begins to substantially outperform the



102 103 104 10510-4

10-3

10-2

10-1

100

M
ed

ia
n 

NM
AE

FB: New Orl.
102 103 104 105 10610-3

10-2

10-1

100

email-EuAll
102 103 104 10510-4

10-3

10-2

10-1

100

soc-sign-Epin

102 103 104 10510-4

10-3

10-2

10-1

100

M
ed

ia
n 

NM
AE

soc-Slashdot

CDS
CC

102 103 104 105 10610-4

10-3

10-2

10-1

100

amazon
102 103 104 105 106 10710-5

10-4
10-3
10-2
10-1
100

roadnet

102 103 104 105

Egonet Sample Size
10-3

10-2

10-1

100

M
ed

ia
n 

NM
AE

ca-CondMat
102 103 104 105 106

Egonet Sample Size
10-3

10-2

10-1

100

web-Google
102 103 104 105 106

Egonet Sample Size
10-2

10-1

100

youtube

Fig. 3. Clique order distribution for real-world topologies. Median NMAE for the estimation ofCi calculated over 1000 replications, as a function ofn
(uniform sampling without replacement).
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Fig. 4. Clique order and composition distributions for real-world topologies. Median NMAE for the estimation ofCi andCu over 1000 replications, as a
function ofn (uniform sampling without replacement).

CDC estimator (reflecting the additional information associated
with vertex labels). We use Table II to better interpret these
results and shed some light on the causes of the “threshold”
behavior. Table II contains for each topology and egonet sample
size the average % of all nodes and % of all edges sampled
when both egos and neighbors are included. We observe that the
CC “breakaway” threshold varies for different graphs even when
taking into account the total % of nodes and edges sampled. As
an example, the threshold for the network ”soc-sign-Epinions“
is at n ≈4 000, corresponding to≈ 18.1% of all nodes being
sampled and 34.8% of all edges being contained in some
egocentric network sample on average (over 1000 simulations).

On the other hand, the threshold for the network “amazon0601”
is atn =64 000, at which point 80.9% of all nodes and 63.3%
of all edges have been captured by some egocentric sample
on overage. While saturation aids the CC estimator relative
to the CDS estimator, the degree of saturation required varies
markedly.

Fig. 4 shows the median NMAE error of the CC and CDS
estimators ofCi andCu for several empirical networks with
vertex attributes. Due to the size and density of these topologies,
the egonet sample size is set between15 − 4 000. Table II
shows the values for the mean % of nodes and % of edges
sampled for these egonet sample sizes. As expected from the
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larger number of values (and smaller counts), estimation ofCu

is at least as hard as the estimation ofCi. Depending on the
composition of the attributes, the estimation ofCu ranges from
being indistinguishable fromCi (see FB:Duke) or slightly worse
thanCi (see FB:UCSD).

Our results show clear returns to the use of labeled neigh-
borhoods where possible: the CC estimators perform as well or
better than the CDS estimators in all cases. However, to count
the distinct cliques the CC estimator needs additional space
as discussed in Section IV-C. Depending on the topology, the
amount of space required to implement the CC estimator might
be considerably high. For example, the estimation of the clique
distributions with labeling for the Facebook ’09 data samples
in Section VI requires space that is in the order of hundreds
of GB. One question that naturally rises is whether there is a
heuristic that can suggest whether the CC estimator is worth
applying by a preliminary analysis of egonet data (i.e., before
we do any clique enumeration and estimation whatsoever). Two
such heuristics that we examined are the use of average edge
count and average node count as indicators of saturation. They
are defined and included in Table II for all networks and egonet
sample sizes examined here.

Fig. 5 shows the ratio of the error between CDS and CC
estimators as a function of the average edge count. (Values
greater than 1 favor CC.) Empirically, we observe that a value of
Average Edge Count above1.5 is a heuristic indicator that a CC
clique estimator for a specific egonet sample significantly out-
performs the corresponding CDS clique estimator. Intuitively,
the average edge count of an egonet sample is correlated with
the percentage of cliques that are not distinct. The higher the
number of non-distinct cliques the more information the CC
estimator uses compared to the CDS estimator.

Of course, in some settings (e.g., due to privacy or data
collection limitations, particularly offline) is not possible to
obtain information on neighbors’ identities. In these cases, our
simulations suggest that the CDS estimator can still provide
excellent performance, even for very large graphs.

Dataset Property Egonet Sample Size
250 500 1K 2K 4K 8K 16K 32K 64K

FB:
New
Orl.

% nodes sampled9.11 16.16 26.61 40.04 55.25 70.56 84.53 95.38 -
% edges sampled5.53 10.55 19.08 32.12 49.33 67.82 84.27 95.75 -

avg edge count1.06 1.11 1.23 1.45 1.90 2.76 4.45 7.83 -
avg node count 1.16 1.31 1.59 2.11 3.06 4.78 8.00 14.17 -

email-
EuAll

% nodes sampled0.38 0.76 1.37 2.53 4.65 8.75 16.35 30.10 52.66
% edges sampled0.47 0.97 1.86 3.58 6.70 12.25 21.61 36.49 58.66

avg edge count1.01 1.02 1.04 1.07 1.14 1.25 1.43 1.70 2.13
avg node count 1.16 1.24 1.34 1.44 1.55 1.65 1.76 1.91 2.18

soc-
sign-
epinions

% nodes sampled2.23 4.05 6.86 11.31 18.14 28.61 43.77 64.57 87.92
% edges sampled4.31 8.36 14.21 23.30 34.84 49.10 64.32 80.14 93.97

avg edge count1.07 1.16 1.33 1.65 2.19 3.15 4.78 7.72 13.10
avg node count 1.19 1.34 1.56 1.90 2.36 3.02 3.93 5.34 7.83

soc-
slashdot

% nodes sampled3.60 6.51 11.15 18.31 28.71 43.14 61.75 82.79 98.83
% edges sampled1.68 3.31 6.20 11.38 19.90 33.39 53.15 77.95 98.43

avg edge count1.03 1.06 1.13 1.24 1.43 1.71 2.15 2.93 4.65
avg node count 1.17 1.30 1.52 1.85 2.36 3.14 4.40 6.56 10.99

amazon

% nodes sampled0.80 1.60 3.15 6.15 11.72 21.59 37.48 59.07 80.95
% edges sampled0.42 0.85 1.69 3.35 6.56 12.60 23.37 40.59 63.35

avg edge count1.00 1.01 1.01 1.02 1.04 1.08 1.17 1.35 1.73
avg node count 1.01 1.02 1.03 1.06 1.11 1.20 1.39 1.76 2.57

roadnet
PA

% nodes sampled0.09 0.18 0.35 0.70 1.40 2.79 5.51 10.78 20.60
% edges sampled0.05 0.10 0.20 0.39 0.78 1.56 3.11 6.16 12.10

avg edge count1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.02 1.04
avg node count 1.00 1.00 1.00 1.00 1.01 1.01 1.02 1.05 1.10

ca-
condmat

% nodes sampled10.0218.35 31.61 50.08 71.39 89.91 99.25 - -
% edges sampled8.43 16.04 29.04 48.47 71.87 91.32 99.53 - -

avg edge count1.06 1.11 1.23 1.47 1.99 3.13 5.74 - -
avg node Count 1.11 1.22 1.42 1.79 2.50 3.98 7.21 - -

web-
google

% nodes sampled0.32 0.62 1.23 2.39 4.61 8.69 15.85 27.40 43.95
% edges sampled0.33 0.65 1.31 2.57 5.02 9.61 17.79 31.05 49.71

avg edge count1.00 1.01 1.02 1.03 1.06 1.10 1.19 1.37 1.71
avg node count 1.02 1.03 1.05 1.08 1.12 1.19 1.30 1.51 1.88

youtube
links

% nodes sampled0.13 0.26 0.52 0.98 1.88 3.51 6.46 11.65 20.28
% edges sampled0.10 0.21 0.46 0.85 1.71 3.27 6.19 11.48 20.15

avg edge count1.00 1.01 1.01 1.02 1.05 1.08 1.14 1.24 1.40
avg node count 1.03 1.05 1.08 1.12 1.18 1.26 1.36 1.52 1.73

Dataset Property Egonet Sample Size
15 31 62 125 250 500 1K 2K 4K

FB:
Duke

% nodes sampled13.3925.06 41.12 58.86 74.26 84.65 91.20 95.44 98.35
% edges sampled4.57 9.27 17.65 30.88 49.43 69.09 85.05 94.71 98.84

avg edge count1.03 1.08 1.16 1.33 1.67 2.39 3.83 6.91 13.30
avg node count 1.12 1.28 1.58 2.22 3.53 6.20 11.41 21.86 42.52

FB:
UVA

% nodes sampled7.42 14.50 25.66 41.60 60.11 75.70 86.58 92.95 96.61
% edges sampled2.20 4.41 8.47 15.97 28.28 44.70 63.90 81.33 93.07

avg edge count1.01 1.03 1.08 1.16 1.33 1.66 2.33 3.67 6.41
avg node count 1.06 1.14 1.30 1.61 2.26 3.55 6.23 11.60 22.32

FB:
UCSD

% nodes sampled5.73 11.12 20.30 33.69 51.16 67.93 81.37 90.38 95.93
% edges sampled1.92 3.93 7.77 14.21 25.91 42.10 61.34 79.05 91.90

avg edge count1.02 1.03 1.07 1.13 1.28 1.59 2.19 3.38 5.83
avg node count 1.05 1.11 1.23 1.46 1.97 2.96 4.96 8.92 16.81

TABLE II: U NIFORM SAMPLING WITHOUT REPLACEMENT. TOTAL %
NODES SAMPLED IN THE GRAPH WHEN INCLUDING ALL EGOS AND

NEIGHBORS. TOTAL % E DGES SAMPLED IN THE GRAPH WHEN INCLUDING
ALL EDGES BETWEEN EGOS AND NEIGHBORS. AVERAGE EDGE COUNT :

RATIO BETWEEN ALL EDGES OVER UNIQUE EDGES. AVERAGE NODE
COUNT : RATIO BETWEEN ALL NODES OVER UNIQUE NODES.

VI. FACEBOOK

A. Dataset Description

In previous work [11], we collected a representative sample
of ≈ 1 million unique Facebook (FB) users by crawling
the social graph using a Metropolis Hasting Random Walk
(MHRW) method. Subsequently we collected the egonets for
36, 628 unique nodes that were randomly selected from the
MHRW sample. This sub-sampling eliminates the correlation
of consecutive nodes in the same crawl. The representativeness
of this data has been validated against true random samples
from the Facebook taken during the same period [11,12].
This sample closely approximates a uniform, with replacement
sample of egonets from the publicly visible FB graph. In this
sample all neighborhoods are uniquely labeled which allows
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Fig. 6. Estimated clique size distribution (Facebook social graph ’09); top
panel shows CDS estimates of maximal clique frequency, bottom panel shows
the distribution of maximum clique sizes by ego.

for estimation using either the CDS or CC estimators. The
value of the “Average Edge Count” is1.03 which according to
our heuristic in Section V is an indication that the information
provided by labels would not be very useful. Hence, we employ
CDS estimators for our analysis. We use the population size
N = 240M which was estimated for this dataset by [20]
and agrees with the statistics reported by Facebook during the
collection of the dataset (April 2009).

We complement this egonet sample with gender attributes
for each user. We were able to fetch the publicly declared user-
declared gender for 90% of sampled users by crawling the url
at http://graph.facebook.com/userid. Additionally, we classified
another 9.5% by a majority rule that uses the first name of each
user and a database of the number of times that first names
were assigned to males and females. We first used the list of
first names from the US Social Security records. If there was no
match we then used the list of first names from the population
of Facebook users with declared gender. Last, we used [1] to
predict the gender for the remaining 0.5% users with a Naive
Bayes classifier, based on the letter composition of first names.

B. Results

The top panel of Fig. 6 shows the estimated distribution of
maximal clique sizes over the entire FB social graph. The FB
graph is known to be highly clustered, and it indeed contains
many large cliques: the modal clique size is 50, with the largest
observed clique containing over 205 individuals. Interestingly,
the form of the clique distribution is neither monotone nor
unimodal; significant peaks occur at 32, 41, and 50, with a
minor mode near 84. This suggests substantial heterogeneity in
the mechanisms of clique formation, a point underscored by our
findings regarding gender (see below).

Rather more order is shown in the distribution of maximum
clique sizes by ego (i.e., the largest clique to which a given
individual belongs). (Fig. 6, bottom panel.) This shows a mono-
tone distribution with a stable exponential decay over the range
that is well-supported by our data. Membership in moderate to
large cliques is thus quite rare, despite their prevalence in the
FB graph.

Beyond size distributions, our estimators allow us to examine
how the composition of cliques varies across the FB graph.
Fig. 7 shows the estimated gender composition of FB cliques
for all cliques (panel a) and cliques of varying order (panels
b-h). TheX axis in each panel indicates the fraction of clique
members who are male, from 0 (entirely female) to 1 (entirely
male); a vertical reference line indicates gender parity. Our
results provide clear evidence for strong heterogeneity inthe
makeup of FB cliques. We see several distinct modes with
characteristic gender frequencies, that occur over specific size
ranges. These include: a “small equal clique” mode of near-
parity cliques of size 0–40; a 70–80% male mode for cliques
of size 40-100; a 60-80% female mode for cliques of order
40–80; a second near-parity mode over the small range of
sizes 100–120; and a strongly female dominated mode of very
large cliques (sizes> 120). Although our data does not allow
us to establish the mechanisms underlying these modes, we
speculate that each is the result of a particular collectionof
social settings (e.g., fraternities or sororities, familygroups,
schools, or work organizations) that acts as a focus [9] for tie
formation. Systematic variation in the gender compositionof
these settings then leads to corresponding variation in clique
composition. Interestingly, our findings do not corroborate the
predictions of [25] regarding the relationship of clique size
to gender homogeneity based on their analysis of face-to-
face groups: while they posit a strongly negative relationship
between heterogeneity and group size, we find that the FB
graph supports a large fraction of near-parity cliques at even
quite large orders. While it is also true that extremely gender-
homogeneous cliques become relatively more prevalent at large
orders (versus small ones), the phenomenon appears to be
uneven and size-specific. Neither do we observe the power-law
decay in group sizes reported by [25] for naturally occurring
groups. Since these prior results were based on observations of
cliques in public, face-to-face settings, this lack of replication
does not necessarily call into question the validity of the
authors’ conclusions in their original context; however, it does
underscore that the formation of friendship cliques in OSNs
may operate very differently from the sorts of groups examined
in previous studies.

VII. C ONCLUSION

In this paper, we introduced novel unbiased estimators of
clique composition and size distributions based on egocentric
network samples. We presented two techniques, one of which
exploits labeling of nodes (CC) and one which does not require
this information (CDS). Both techniques are easily paralleliz-
able, and suitable for use with large graphs. (A Python imple-
mentation of our estimators is available at [10].) We evaluated
estimator performance via simulated sampling from real-world

http://graph.facebook.com/userid
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Fig. 7. CDS estimates for gender composition of maximal cliques, by order. (Facebook social graph ’09)

graphs, showing that both proposed techniques work well and
that CC generally outperforms CDS as the sample “saturates”
the graph; because CC imposes higher space complexity, we
provided a simple heuristic that suggests when gains from
using CC are likely to be substantial. Last, we demonstrated
an application of our estimators to clique composition in OSNs.
We applied our methodology to egocentric samples collectedin
Facebook, which we complemented with gender information,
allowing us to estimate the joint size and composition distribu-
tion of FB cliques with respect to gender. Our results underscore
important differences between online and (previously reported)
offline group structure, and provide evidence for strong gender
heterogeneity in the makeup of FB cliques.
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