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Abstract—We consider a source that collects a multiplicity of
streams of updates and sends them through a network to a
monitor. However, only a single update can be in the system
at a time. Therefore, the transmitter always preempts the packet
being served when a new update is generated. We consider
Poisson arrivals for each stream and a common general service
time, and refer to this system as the multi-stream M/G/1/1
queue with preemption. Using the detour flow graph method,
we compute a closed form expression for the average age and
the average peak age of each stream. Moreover, we deduce that
although all streams are treated equally from a transmission point
of view (they all preempt each other), one can still prioritize
a stream from an age point of view by simply increasing its
generation rate. However, this will increase the sum of the ages
which is minimized when all streams have the same update rate.

I. INTRODUCTION

Previous work on status update, e.g. [1]–[6], used an Age
of Information (AoI) metric in order to assess the freshness of
randomly generated updates sent by one or multiple sources
to a monitor through the network. In these papers, updates are
assumed to be generated according to a Poisson process and
the main metric used to quantify the age is the time average
age (which we will call average age) given by

∆ = lim
τ→∞

1

τ

∫ τ

0

∆(t)dt, (1)

where ∆(t) is the instantaneous age at the receiver of the
information about the source status. If the last successfully
received update was generated at time u(t) then the age of the
source status at time t is ∆(t) = t−u(t). When the system is
idle or an update is being transmitted then the instantaneous
age increases linearly with time. Once an update generated at
time ti is received by the monitor at t′i, ∆(t) drops to the
value t′i− ti. This results in the sawtooth sample path seen in
Fig. 1.

Moreover, in [7] the authors introduce another age metric:
the average peak age defined as the time average of the
maximum value of the instantaneous age ∆(t) right before
the reception by the monitor of a new update. In Fig. 1 the
peak age right before the reception of the jth successfully
transmitted update is denoted by Kj . Hence the average peak
age is given by

∆peak = lim
N→∞

1

N

N∑
j=1

Kj . (2)

In this paper, we assume that an ‘observer’ (which we will
call source), generating updates according to a Poisson process
with rate λ, observes M streams of data. At each generation
instant, the source chooses to ‘observe’ stream i and send
its observation (update) of this stream with probability pi,
i = 1, . . . ,M . This probability distribution is a design pa-
rameter that one can control. Moreover, we assume that the
system can handle only one update at a time without any buffer
to store incoming updates. This means that whenever a new
update is generated and the system is busy, the transmitter
preempts the packet being served and starts sending the new
update instead. Since we consider a general service time distri-
bution for the updates, we denote this transmission scheme by
M/G/1/1 preemptive queue. It has been shown that for a single-
stream source and exponential update service time, preemption
ensures the lowest average age [2]. However, the work in
[5] suggests that under the assumption of gamma distributed
service time, preemption might not be the best policy. In [8],
the authors derive a closed form expression for the average
age of a single-stream source and M/G/1/1 preemptive queue.

As a generalization of the result in [8], we derive in this
paper a closed form expression for the average age and average
peak age per stream of the multi-stream source M/G/1/1
preemptive queue. To that end we use the detour flow graph
method which is also used to find an upper bound on the error
probability of a Viterbi decoder (see [9]). A special case of this
problem was studied in [10] where the service time is assumed
to be exponentially distributed. In this paper the average age
of each stream was obtained in closed form using a stochastic
hybrid system. Another related work, [11], gives closed form
expressions for the average peak age of multi-stream source
M/G/1 queues as well as M/G/1/1 queues with blocking. In
this last model, if a newly generated update finds the system
busy, it is discarded.

In addition, given a fixed total update rate λ, we show in
this work that if we want to decrease the age of a certain
stream i with respect to other streams we need to increase its
update rate (by increasing its choice probability pi) and thus
decreasing the update rates of the other streams. Moreover, if
we choose the sum of the ages as our performance metric and
we wish to minimize it then we prove that we need to adopt
a fair strategy: all streams should be given the same update
rate.

This paper is structured as follows: in Section II, we start by
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defining the model and the different variables needed in our
study. In Section III we derive the closed form expressions of
the average age and average peak age and state the conditions
necessary to minimize the sum of the ages.

II. SYSTEM MODEL

In this model a source generates updates according to
a Poisson process with rate λ and send them through the
network. However, we assume that the updates belong to M
different streams, each stream i being chosen independently at
generation time with probability pi,

∑M
i=1 pi = 1. This setup is

equivalent to having M independent Poisson sources with rates
λi = λpi, i = 1, . . . ,M , and λ = λ1 + · · · + λM (see [12]).
Moreover, we consider an M/G/1/1 queue with preemption.
This means that only one update can be in the system at a
time and thus the different streams preempt each others and
even the same stream preempts itself. This setup was analyzed
in [10] where the authors considered an exponential service
time. In this paper, we assume a service time S with general
distribution. Given that the system is symmetric from the point
of view of each stream, we will focus — without loss of
generality— on stream 1 as the main stream. Hence, unless
stated otherwise, all random variables correspond to packets
from stream 1.

Moreover, in this paper we follow the convention where
a random variable U with no subscript corresponds to the
steady-state version of Uj which refers to the random vari-
able relative to the jth received packet from stream 1. To
differentiate between streams we will use superscripts, so U (i)

corresponds to the steady-state variable U relative to the ith

stream.
It is important to note that in M/G/1/1 queues with pre-

emption, some updates might be dropped. Hence we call the
updates that are not dropped, and thus delivered to the receiver,
as “successfully received updates” or “successful updates”. We
also define: (i) Yj = t′j+1 − t′j to be the interdeparture time
between the jth and j + 1th successfully received updates,
(ii) X(i) to be the interarrival time between two consecutive
generated updates from stream i, i = 1, . . . ,M , (which may or
may not be successfully transmitted), so fX(i)(x) = λie

−λix,
(iii) S to be the service time random variable for any update
(from any stream) with distribution FS(t), (iv) Tj to be the
system time, or the time spent by the jth successful update
in the queue and (v) Nτ = max {n : t′n ≤ τ}, the number
of successfully received updates from stream 1 in the interval
[0, τ ]. In our model, we assume the service time of the updates
from the different streams to be independent of the interarrival
time between consecutive packets (belonging to the same
stream or not). These concepts are illustrated in Fig. 1, where
only successfully transmitted packets from stream 1 are shown.

III. AGE OF A MULTI-STREAM M/G/1/1 PREEMPTIVE
QUEUE

We denote by Pλ, the Laplace transform of the service
time distribution evaluated at λ = λ1 + · · · + λM , i.e.
Pλ = E

(
e−λS

)
.
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Fig. 1. Variation of the instantaneous age of stream 1 for M/G/1/1 queue
with preemption

Before stating the main result of this section we need the
following lemmas.

Lemma 1. Let X , Λ and S be three non-negative in-
dependent random variables with respective distributions:
fX(x) = λ1e

−λ1x, fΛ(x) = (λ − λ1)e−(λ−λ1)x and fS(t),
with λ > λ1 > 0. Let A, Z, B, V be random vari-
ables such that P (A > t) = P (X > t|X < Λ), P (Z > t) =
P (Λ > t|X > Λ), P (B > t) = P (X > t|X < min (S,Λ))
and P (V > t) = P (Λ > t|Λ < min (S,X)). Then,

(i) E
(
esA
)

= E
(
esZ
)

= λ
λ−s ,

(ii) E
(
esB
)

= E
(
esV
)

= λ(1−Pλ−s)
(λ−s)(1−Pλ) ,

with Pλ being the Laplace transform of the random variable
S evaluated at λ.

Proof. We will only prove the result for the variable B since
we can apply the same technique for the others. Denote by
F̄S(t) the complementary CDF of S. Then,

P (min(S,Λ) ≥ t) = P (S ≥ t,Λ ≥ t)
= P (S ≥ t)P (Λ ≥ t)
= F̄S(t)e−(λ−λ1)t.

fB(t) = lim
ε→0

P (B ∈ [t, t+ ε])

ε

= lim
ε→0

P (X ∈ [t, t+ ε]|X ≤ min(S,Λ))

ε

= lim
ε→0

P (X ∈ [t, t+ ε])P (X ≤ min(S,Λ)|X ∈ [t, t+ ε])

εP (X ≤ min(S,Λ))

=
λ1e
−λ1tP (min(S,Λ) ≥ t)
P (X ≤ min(S,Λ))

=
λ1e
−λtF̄S(t)

P (X ≤ min(S,Λ))
,

P (X ≤ min(S,Λ)) =

∫ ∞
0

P (min(S,Λ) ≥ t|X = t)λ1e
−λ1tdt

=

∫ ∞
0

λ1e
−λtF̄S(t)dt =

λ1

λ
(1− Pλ) ,

where the last equality is obtained using integration by parts.
Thus fB(t) = λe−λtF̄S(t)

1−Pλ . Using again integration by parts we
find that E

(
esB
)

=
∫∞

0
fB(t)estdt = λ(1−Pλ−s)

(λ−s)(1−Pλ) .



Lemma 2. For the M/G/1/1 queue with preemption described
above, the moment generating function of the system time T (i)

corresponding to a stream i is given by

φT (i)(s) =
Pλ−s
Pλ

. (3)

Note that the right hand side of (3) does not depend on the
chosen stream.

Proof. Without loss of generality we will prove Lemma 2
for stream 1. The system time Tj of the jth successfully
received packet corresponds to the service time of the jth

received packet given that service was completed before any
new arrival (since any new packet from any stream will
preempt the current update being served). So, in steady-state,
P (T > t) = P

(
S > t|S < min

(
X(1), . . . , X(M)

))
. Hence,

for L = min
(
X(1), . . . , X(M)

)
,

fT (t) = lim
ε→0

P (T ∈ [t, t+ ε])

ε

= lim
ε→0

P (S ∈ [t, t+ ε]|S < L)

ε

= lim
ε→0

P (S ∈ [t, t+ ε])P (S < L|S ∈ [t, t+ ε])

εP (S < L)

=
fS(t)P (L > t)

P (S < L)
=
fS(t)e−λt

P (S < L)
,

where the last equality is due to the fact that L is exponentially
distributed with rate λ. Thus,

φT (s) = E
(
esT
)

=

∫ ∞
0

fS(t)

P (S < L)
e−(λ−s)tdt =

Pλ−s
P (S < L)

.

Finally,

P (S < L) =

∫ ∞
0

fS(t)P (L > t) dt =

∫ ∞
0

fS(t)e−λtdt

= Pλ. (4)

Lemma 3. The moment generating function of the interdepar-
ture time of the ith stream, Y (i), is

φY (i)(s) =
λiPλ−s

λiPλ−s − s
. (5)

Proof. Without loss of generality, we will prove Lemma 3
for stream 1. We define L = min

(
X(1), . . . , X(M)

)
and

Λ = min
(
X(2), . . . , X(M)

)
. Since L and Λ are the minimum

of independent exponential random variables, then they are
also exponentially distributed with rates λ = λ1 + · · · + λM
and λ− λ1 respectively. Fig. 2 shows the semi-Markov chain
relative to the interdeparture time Yj between the jth and
j + 1th received packet of the first stream. When the jth

packet leaves the queue, the system enters the idle state q0

where it waits for a new packet from any stream to be
generated. Hence two clocks start: a clock X(1) and a clock Λ.
Clock X(1) ticks first with probability a = P

(
X(1) < Λ

)
, at

which point a new packet from stream 1 will be generated first

q0start

q1

q0′

q1′

a

z

b

u

v

u

v

b

z

a

Fig. 2. Semi-Markov chain representing the M/G/1/1 interdeparture time for
stream 1.

and the system goes to state q1. The value A of the clock when
it ticks has distribution P (A > t) = P

(
X(1) > t|X(1) < Λ

)
.

Clock Λ ticks first with probability z = 1−a = P
(
Λ < X(1)

)
,

at which point a new packet from one of the other M − 1
streams is generated first and the system goes to state q1′ .
The value Z of this second clock when it ticks has distribution
P (Z > t) = P

(
Λ > t|Λ < X(1)

)
.

When the system arrives in state q1, this means a packet
from stream 1 is starting service. Thus, due to the mem-
oryless property of Λ, three clocks start: a service clock
S, clock X(1) and clock Λ. The service clock ticks first
with probability u = P (S < L) and its value U has dis-
tribution P (U > t) = P (S > t|S < L). At this point the
stream 1 packet currently being served finishes service be-
fore any new packet is generated and the system goes
back to state q0. This ends the interdeparture time Yj .
On the other hand, clock X(1) ticks first with probability
b = P

(
X(1) < min (S,Λ)

)
and its value B has distribution

P (B > t) = P
(
X(1) > t|X(1) < min (S,Λ)

)
. At this point, a

new stream 1 update is generated before any other update from
other streams and preempts the one currently in service. In this
case the system stays in state q1. The third clock Λ ticks first
with probability v = P

(
Λ < min

(
S,X(1)

))
and its value V

has distribution P (V > t) = P
(
Λ > t|Λ < min

(
S,X(1)

))
.

At this point a new update not from stream 1 is generated,
preempts the one currently in service and the system switches
to state q1′ .

When the system arrives in state q1′ , this means a packet not
from stream 1 is starting service. Thus, due to the memoryless
property of X(1), three clocks start: a service clock S, clock
X(1) and clock Λ. As for state q1, the service clock ticks
first with probability u and has value U . At this point packet
currently being served finishes service before any new packet
is generated and the system goes to state q0′ . Also like before,
clock X(1) ticks first with probability b and has value B. At
this point, a new stream 1 update is generated before any other
update from other streams and preempts the one currently in
service. In this case the system switches to state q1. The third



clock Λ ticks first with probability v and has value V . At this
point a new update not from stream 1 is generated, preempts
the one currently in service and the system stays in state q1′ .

Finally, when the system arrives in state q0′ , this means the
system is idle but no update from stream 1 has been delivered.
Given X(1) and Λ are memoryless, the system in state q0′

behaves exactly like if it were in state q0.
From the above analysis we see that the interdeparture time

is given by the sum of the values of the different clocks
on the path starting and finishing at q0. For example, for
the path q0q1q1′q0′q1′q1q0 in Fig. 2 the interdeparture time
Y = A1 + V1 + U1 + Z1 + B1 + U2, where all the random
variables in the sum are mutually independent. This value of Y
is also valid for the path q0q1′q0′q1q1′q1q0. Hence Y depends
on the variables Aj , Bj , Uj , Vj , Zj and their number of occur-
rences and not on the path itself. Therefore, the probability
that exactly (i1, i2, i3, i4, i5) occurrences of (A,B,U, V, Z)
happen, which is equivalent to the probability that

Y =

i1∑
k=1

Ak +

i2∑
k=1

Bk +

i3∑
k=1

Uk +

i4∑
k=1

Vk +

i5∑
k=1

Zk

is given by ai1bi2ui3vi4zi5Q(i1, i2, i3, i4, i5), where
Q(i1, i2, i3, i4, i5) is the number of paths with this
combination of occurrences. Taking into account the
fact that the {Ak, Bk, Uk, Vk, Zk} are mutually independent,
the moment generating function of Y is

φY (s) = E
(
E
(
esY | (I1, I2, I3, I4, I5) = (i1, i2, i3, i4, i5)

))
=

∑
i1,i2,i3,i4,i5

[
ai1bi2ui3vi4zi5Q(i1, i2, i3, i4, i5)

E
(
es(

∑i1
k=1 Ak+

∑i2
k=1 Bk+

∑i3
k=1 Uk+

∑i4
k=1 Vk+

∑i5
k=1 Zk)

)]
=

∑
i1,i2,i3,i4,i5

[
ai1bi2ui3vi4zi5Q(i1, i2, i3, i4, i5)

E
(
esA
)i1 E (esB)i2 E (esU)i3 E (esV )i4 E (esZ)i5] ,

(6)

where {I1, I2, I3, I4, I5} are the random variables associated
with the number of occurrences of {A,B,U, V, Z} respec-
tively.

Moreover, given a directed graph G = (V,E) with algebraic
label L(e) on its edges, and a node u ∈ V with no incoming
edges, the transfer function H(v) from u to a node v is the
sum over of all paths from u to v with each path contributing
the product of its edge labels to the sum (see [9, pp. 213–
216]). The complete set of transfer functions {H(v) : v ∈ V }
can be computed easily by solving the linear equations:{

H(u) = 1

H(w) =
∑
w′:(w′,w)∈E H(w′)L((w′, w)), w 6= u.

Observe that the sum in (6) is nothing but the transfer function
from q0 to q̄0 in the graph shown in Fig. 3 with

(D1, D2, D3, D4, D5)

=
(
E
(
esA
)
,E
(
esB
)
,E
(
esU
)
,E
(
esV
)
,E
(
esZ
))
.

q0 q1′ q1 q̄0

q0′

aD1

zD5

bD2

uD3

vD4

uD3

vD4

bD2

zD5
aD1

Fig. 3. Detour flow graph of the M/G/1/1 interdeparture time for stream 1.

Solving the system of linear equations above yields the transfer
function as

H(D1, D2, D3, D4, D5)

=
∑

i1,i2,i3,
i4,i5

[
Q(i1, i2, i3, i4, i5)ai1bi2ui3vi4zi5

Di1
1 D

i2
2 D

i3
3 D

i4
4 D

i5
5

]
=

uD3 (bD2zD5 + aD1 − aD1vD4)

(1− bD2) (1− uD3zD5)− vD4 (1 + uD3aD1)
. (7)

Thus

φY (s) = H
(
E
(
esA
)
,E
(
esB
)
,E
(
esU
)
,E
(
esV
)
,E
(
esZ
))
.

From Lemma 1, we know that E
(
esB
)

= E
(
esV
)

=
λ(1−Pλ−s)

(λ−s)(1−Pλ) and E
(
esA
)

= E
(
esZ
)

= λ
λ−s . Moreover, one

can notice that U has the same distribution as the system time
T so E

(
esU
)

= Pλ−s
Pλ

. Simple computations show that a = λ1

λ ,
b = λ1

λ (1− Pλ), u = Pλ, v = λ−λ1

λ (1− Pλ), z = λ−λ1

λ .
Finally, replacing the above expressions into (7), we get our
result.

Theorem 1. Given an M/G/1/1 queue with preemption and
service time S and a source generating packets belonging to
M streams according to M independent Poisson processes
with rates λi, i = 1, . . . ,M , such that λ = λ1 + · · · + λM ,
then

1) the average age of stream i is given by

∆i =
1

λiPλ
, (8)

2) and the average peak age of stream i is given by

∆peak,i =
1

λiPλ
+

E
(
Se−λS

)
Pλ

. (9)

Proof. Due to the symmetry in the system from a stream point
of view, then, without loss of generality, we will prove 1 for
stream 1 only. The same proof applies for the other M − 1
streams.

From (1) and Fig. 1, the average age for stream 1 of
the M/G/1/1 queue can be also expressed as the sum of the



geometric areas Qi under the instantaneous age curve. Authors
in [2] show that

∆1 = lim
τ→∞

Nτ
τ

1

Nτ

Nτ∑
j=1

Qj = λeE(Q), (10)

where λe = limτ→∞
Nτ
τ , Q is the steady-state counterpart of

Qj and the second equality is justified by the ergodicity of
the system. As shown in [10] and [8], λe is the rate at which
successful updates are received. Given that the interarrival
time of all streams are memoryless, then the interdeparture
times, Yj and Yj+1, between two consecutive received updates
are i.i.d. Hence Nτ forms a renewal process and by [12],
limτ→∞

Nτ
τ = 1

E(Y ) , where Y is the steady-state interdepar-
ture random variable. Moreover, from Fig. 1 we see that by
applying same reasoning as in [5]

E (Q) =
1

2
E
(
Y 2
)

+ E (TY ) =
1

2
E
(
Y 2
)

+ E (T )E (Y ) .

The second equality is obtained by noticing that for any
received packet j, Tj and Yj are independent. Therefore,

∆1 = E (T ) +
E
(
Y 2
)

2E (Y )
(11)

Moreover, from Fig. 1 we see that the peak age at the instant
before receiving the jth packet is given by

Kj = Tj−1 + Yj−1.

Hence, given that the system is ergodic, (2) becomes at steady
state,

∆peak,1 = E (K) = E (T ) + E (Y ) . (12)

Using Lemma 2, we get that E (T ) = P−1
λ E

(
Se−λS

)
.

Using Lemma 3, we get that E (Y ) = (λ1Pλ)
−1 and

E
(
Y 2
)

= 2

(
−E(Se−λS)

λ1P 2
λ

+ 1
λ2
1P

2
λ

)
. Using these expressions

in (11) and (12) we obtain our result for stream 1.

Note that for M = 1, we get back the result derived in [8]
for single stream M/G/1/1 preemptive queue. Moreover, if we
replace Pλ in (8) by the Laplace transform of the exponential
distribution evaluated at λ we recover the expression stated in
[10, Theorem 2(a)].

Corollary 1. Let a source generate updates according to a
Poisson process with fixed rate λ. Moreover, these updates
belong to M different streams, each stream i chosen inde-
pendently with probability pi at generation time. Then if we
use an M/G/1/1 with preemption transmission scheme we can
decrease the average age (and the average peak age) of a
high priority stream k with respect to the other streams by
increasing the probability pk with which it is chosen.

Proof. From Theorem 1 we know that for any two streams i
and k, in order to have ∆i < ∆k or ∆peak,i < ∆peak,k we
must have λi > λk. Given that λi = λpi, i = 1, . . . ,M , then
we must have pi > pk.

Given the source generates multiple streams, one interesting
performance measure of the system would be the total average
age or total average peak age defined respectively as

∆tot =

M∑
i=1

∆i, ∆peak,tot =

M∑
i=1

∆peak,i. (13)

The next theorem gives the distribution over the pi, i =
1, . . . ,M , that minimizes the metrics in (13) as well as their
minimum achievable value.

Theorem 2. For the M/G/1/1 multi-stream preemptive system
described above with fixed total generation rate λ, the optimal
strategy that achieves the smallest value for the total average
age, ∆tot, and the total average peak age, ∆peak,tot, is the
fair strategy: all streams should have the same generation
rate. This means that the probability distribution {pi} over
the choices of streams should be the uniform distribution with
pi = 1

M , i = 1, . . . ,M . Moreover, the optimal values of ∆tot

and ∆peak,tot are given by

∆tot =
M2

λPλ
, ∆peak,tot =

M2

λPλ
+
ME

(
Se−λS

)
Pλ

(14)

Proof. From (8), (9) and (13), we get that

∆tot =
1

Pλ

M∑
i=1

1

λi
=

1

λPλ

M∑
i=1

1

pi

∆peak,tot =
1

Pλ

M∑
i=1

1

λi
+
ME

(
Se−λS

)
Pλ

=
1

λPλ

M∑
i=1

1

pi
+
ME

(
Se−λS

)
Pλ

(15)

Given that λ is fixed, then minimizing ∆tot and ∆peak,tot

over (p1, . . . , pM ) is equivalent to minimizing
∑M
i=1

1
pi

. As
this is a symmetric convex function, it is minimized when
p1 = · · · = pM = 1/M with the value M2, which proves our
theorem.

From Corollary 1 and Theorem 2, we see that prioritizing
a stream over the others from an age point of view and
minimizing the total age are two contradictory objectives.

IV. CONCLUSION

In this paper we studied the M/G/1/1 preemptive system
with a multi-stream updates source. We derived closed form
expressions for the average age and average peak age using
the detour flow graph method. Moreover, using these results
we showed that, for a fixed total generation rate, one can’t
prioritize one of the streams and at the same time minimize
the total age. In fact, we prove that in order to optimize the
total age, the source needs to generate all streams at the same
rate. This means that no single stream can be given a higher
rate, a necessary condition to reduce its age with respect to
the other streams.
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