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Abstract—Federated learning (FL) is a distributed learning
paradigm that enables a large number of devices to collabo-
ratively learn a model without sharing their raw data. Despite
its practical efficiency and effectiveness, the iterative on-device
learning process incurs a considerable cost in terms of learning
time and energy consumption, which depends crucially on the
number of selected clients and the number of local iterations
in each training round. In this paper, we analyze how to
design adaptive FL that optimally chooses these essential control
variables to minimize the total cost while ensuring convergence.
Theoretically, we analytically establish the relationship between
the total cost and the control variables with the convergence
upper bound. To efficiently solve the cost minimization problem,
we develop a low-cost sampling-based algorithm to learn the
convergence related unknown parameters. We derive important
solution properties that effectively identify the design principles
for different metric preferences. Practically, we evaluate our
theoretical results both in a simulated environment and on a
hardware prototype. Experimental evidence verifies our derived
properties and demonstrates that our proposed solution achieves
near-optimal performance for various datasets, different machine
learning models, and heterogeneous system settings.

I. INTRODUCTION

Federated learning (FL) has recently emerged as an at-
tractive distributed learning paradigm, which enables many
clients1 to collaboratively train a model under the coordination
of a central server, while keeping the training data decen-
tralized and private [1]–[6]. In FL settings, the training data
are generally massively distributed over a large number of
devices, and the communication between the server and clients
are typically operated at lower rates compared to datacenter
settings. These unique features necessitate FL algorithms that
perform multiple local iterations in parallel on a fraction of
randomly sampled clients and then aggregate the resulting
model update via the central server periodically [2]. FL has
demonstrated empirical success and theoretical convergence
guarantees in various heterogeneous settings, e.g., unbalanced
and non-i.i.d. data distribution [2], [7]–[11].

The research of B. Luo, X. Li, and J. Huang was supported by the
Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS),
the Presidential Fund from the Chinese University of Hong Kong, Shenzhen,
and the AIRS International Joint Postdoctoral Fellowship. The research of
L. Tassiulas was partially supported by projects ARO W911NF1810378 and
ONR N00014-19-1-2566. (Corresponding author: Jianwei Huang.)

1Depending on the type of clients, FL can be categorized into cross-device
FL and cross-silo FL (clients are companies or organizations, etc.) [1]. This
paper focuses on the former and we use “device” and “client” interchangeably.

Because model training and information transmission for
on-device FL can be both time and energy consuming, it is
necessary and important to analyze the cost that is incurred
for completing a given FL task. In general, the cost of
FL includes multiple components such as learning time and
energy consumption [12]. The importance of different cost
components depends on the characteristics of FL systems and
applications. For example, in a solar-based sensor network,
energy consumption is the major concern for the sensors
to participate in FL tasks, whereas in a multi-agent search-
and-rescue task where the goal is to collaboratively learn
an unknown map, achieving timely result would be the first
priority. Therefore, a cost-effective FL design needs to jointly
optimize various cost components (e.g., learning time and
energy consumption) for different preferences.

A way of optimizing the cost is to adapt control variables
in the FL process to achieve a properly defined objective. For
example, some existing works have considered the adaptation
of communication interval (i.e., the number of local iterations
between two global aggregation rounds) for communication-
efficient FL with convergence guarantees [13], [14]. How-
ever, a limitation in these works is that they only adapt a
single control variable (i.e., communication interval) in the
FL process and ignore other essential aspects, such as the
number of participating clients in each round, which can have
a significant impact on the energy consumption.

In this paper, we consider a multivariate control problem for
cost-efficient FL with convergence guarantees. To minimize
the expected cost, we develop an algorithm that adapts various
control variables in the FL process to achieve our goal.
Compared to the univariate setting in existing works, our
problem is much more challenging due to the following rea-
sons: 1) The choices of control variables are tightly coupled.
2) The relationship between the control variables and the
learning convergence rate has only been captured by an upper
bound with unknown coefficients in the literature. 3) Our
cost objective includes multiple components (e.g., time and
energy) which can have different importance depending on the
system and application scenario, whereas existing works often
consider a single optimization objective such as minimizing
the communication overhead.

As illustrated in Fig. 1, we consider the number of partic-
ipating clients (K) and the number of local iterations (E) in
each FL round as our control variables. A similar methodology
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Fig. 1. A typical federated learning round with K sampled clients and E
steps of local iterations.

can be applied to analyze problems with other control variables
as well. We analyze, for the first time, how to design adaptive
FL that optimally chooses K and E to minimize the total
cost while ensuring convergence. Our main contributions are
as follows:
• Optimization Algorithm: We establish the analytical re-

lationship between the total cost, control variables, and
convergence upper bound for strongly convex objective
functions, based on which an optimization problem for
total cost minimization is formulated and analyzed. We
propose a sampling-based algorithm to learn the unknown
parameters in the convergence bound with marginal esti-
mation overhead. We show that our optimization problem
is biconvex with respect to K and E, and develop efficient
ways to solve it based on closed-form expressions.

• Theoretical Properties: We theoretically obtain important
properties that effectively identify the design principles
for different optimization goals. Notably, the choice of
K leads to an interesting trade-off between learning time
reduction and energy saving, with a large K favoring the
former while a small K benefiting the later. Nevertheless,
we show that a relatively low device participation rate
does not severely slow down the learning. For the choice
of E, we show that neither a too small or too large E
is good for cost-effectiveness. The optimal value of E
also depends on the relationship between computation
and communication costs.

• Simulation and Experimentation: We evaluate our the-
oretical results with real datasets, both in a simulated
environment and on a hardware prototype with 20 Rasp-
berry Pi devices. Experimental results verify our design
principles and derived properties of K and E. They also
demonstrate that our proposed optimization algorithm
provides near-optimal solution for both real and synthetic
datasets with non-i.i.d. data distributions. Particularly, we
highlight that our approach works well with both convex
non-convex machine learning models empirically.

II. RELATED WORK

FL was first proposed in [2], which demonstrated FL’s effec-
tiveness of collaboratively learning a model without collecting

users’ data. Compared to distributed learning in data centers,
FL needs to address several unique challenges, including non-
i.i.d. and unbalanced data, limited communication bandwidth,
and limited device availability (partial participation) [1], [5].
It was suggested that FL algorithms should operate syn-
chronously due to its composability with other techniques such
as secure aggregation protocols [15], differential privacy [16],
and model compression [17]. Hence, we consider synchronous
FL in this paper with all the aforementioned characteristics.

The de facto FL algorithm is federated averaging (FedAvg),
which performs multiple local iterations in parallel on a subset
of devices in each round. A system-level FL framework was
presented in [8], which demonstrates the empirical success of
FedAvg in mobile devices using TensorFlow [18]. Recently, a
convergence bound of FedAvg was established in [11]. Other
related distributed optimization algorithms are mostly for i.i.d.
datasets [19]–[21] and full client participation [9], [22], [23],
which do not capture the essence of on-device FL. Some
extensions of FedAvg considered aspects such as adding a
proximal term [10] and using accelerated gradient descent
methods [24]. These works did not consider optimization for
cost/resource efficiency.

Literature in FL cost optimization mainly focused on
learning time and on-device energy consumption. The op-
timization of learning time was studied in [25]–[32], and
joint optimization for learning time and energy consumption
was considered in [33]–[35]. These works considered cost-
aware client scheduling [25]–[28], task offloading [36] and
resource (e.g., transmission power, communication bandwidth,
and CPU frequency) allocation [12], [29], [30], [33]–[35] for
pre-specified (i.e., non-optimized) design parameters (K and
E in our case) of the FL algorithm.

The optimization of a single design parameter E or the
amount of information exchange, in general, was studied
in [12]–[14], [31], [37], [38], most of which assume full client
participation and can be infeasible for large-scale on-device
FL. A very recent work in [39] considered the optimization
of both E and client selection for additive per-client costs.
However, the cost related to learning time in our problem is
non-additive on a per-client basis, because different clients
perform local model updates in parallel. In addition, the
convergence bound used in [39] (and also [12]) is for a
primal-dual optimization algorithm, which is different from
the commonly used FedAvg algorithm and does not reflect
the impact of key FL characteristics such as partial client
participation. The challenge in optimizing both K and E for
cost minimization of FedAvg that takes into account all the
aforementioned FL characteristics, which also distinguishes
our work from the above, is the need to analytically connect
the total cost with multiple control variables as well as with
the convergence rate.

In addition, most existing work on FL are based on sim-
ulations, whereas we implement our algorithm in an actual
hardware prototype with resource-constrained devices.

Roadmap: We present the system model and problem
formulation in Section III. In Section IV, we analyze the cost



minimization problem and present an algorithm to solve it.
We provide theoretical analysis on the solution properties in
Section V. Experimentation results are given in Section VI
and the conclusion is presented in Section VII.

III. SYSTEM MODEL

We start by summarizing the basics of FL and its de facto
algorithm FedAvg. Then, we present the cost model for a given
FL task, and introduce our optimization problem formulation.

A. Federated Learning

Consider a scenario with a large population of mobile clients
that have data for training a machine learning model. Due
to data privacy and bandwidth limitation concerns, it is not
desirable for clients to disclose and send their raw data to a
high-performance data center. FL is a decentralized learning
framework that aims to resolve this problem. Mathematically,
FL is the following distributed optimization problem:

min
w

F (w) :=
∑N

k=1
pkFk (w) (1)

where the objective F (w) is also known as the global loss
function, w is the model parameter vector, N is the total
number of devices, and pk is the weight of the k-th device
such that

∑N
k=1 pk = 1. Suppose the k-th device has nk

training data samples (xk,1, · · · ,xk,nk
), and the total number

of training data samples across N devices is n :=
∑N
k=1 nk,

then we have pk = nk

n . The local loss function of client k is

Fk (w) :=
1

nk

nk∑
j=1

f (w;xk,j), (2)

where f(·) represents a per-sample loss function, e.g., mean
square error and cross entropy applied to the output of a model
with parameter w and input data sample xk,j [13].

FedAvg (Algorithm 1) was proposed in [2] to solve (1).
In each round r, a subset of randomly selected clients K(r)

run E steps2 of stochastic gradient decent (SGD) on (2) in
parallel, where K(r) ⊆ {1, 2, ..., N}. Then, the updated model
parameters of these

∣∣K(r)
∣∣ clients are sent to and aggregated

by the server. This process repeats for many rounds until the
global loss converges. Let R be the total number of rounds,
then the total number of iterations for each device is ER.

While FL has demonstrated its effectiveness in many appli-
cation scenarios, practitioners also need to take into account
the cost that is incurred for completing a given task.

B. Cost Analysis of Federated Learning

The total cost of FL, according to Algorithm 1, involves
learning time and energy consumption, both of which are
consumed during local computation (Line 3) and global com-
munication (Lines 2 and 4) in each round. Before presenting
each cost model, we first give the system assumptions.

System assumptions: Similar to existing works [2], [10],
[11], we sample K clients in each round r (i.e., K :=

∣∣K(r)
∣∣)

2E is originally defined as epochs of SGD in [2]. In this paper we denote
E as the number of local iteration for theoretically analysis.

Algorithm 1: Federated Learning Algorithm
Input: K, E, precision ε, initial model w0

Output: Final model parameter wR

1 for r = 0, 1, 2, ..., R do
2 Server randomly selects a subset of clients K(r) and

sends the current global model parameter wr to the
selected clients; // Communication

3 Each selected client k ∈ K(r) in parallel updates wr by
running E steps of SGD on (2) to compute a new
model w(k)

r ; // Computation
4 Each selected client k ∈ K(r) sends back the updated

model w(k)
r to the server; // Communication

5 Server computes the new global model parameter

wr+1 ←
∑

k∈K(r) pkw
(k)
r∑

k∈K(r) pk
; // Aggregation

6 r ← r + 1;

where the sampling is uniform (without replacement) out of
all N clients. We assume the communication and computation
cost for a particular device in each round is the same, but
varies among devices due to system heterogeneity. We do not
consider the cost for model aggregation in Line 5, because it
only needs to compute the average that is much less complex
than local model updates.

1) Time Cost: For general heterogeneous systems, each
client can have different communication and computation
capabilities (see Fig. 1). Let tk denote the per-round time for
client k to complete computation and communication. We have

tk = tk,pE + tk,m ∀k ∈ {1, . . . , N}, (3)

where tk,p is the computation time for client k to perform one
local iteration, and tk,m is the per-round communication time
for a client to upload/download the model parameter.

Because the clients compute and communicate in parallel,
for each round r, the per-round time t(r) depends on the
slowest participating client (also known as straggler).3 Hence,

t(r) = max
k∈K(r)

{tk} . (4)

Therefore, the total learning time ttot after R rounds is

ttot(K,E,R) =
∑R

r=1
max
k∈K(r)

{tk} . (5)

2) Energy Cost: Similarly, by denoting ek as the per-round
energy cost for client k to complete the computation and
communication, we have

ek = ek,pE + ek,m, (6)

where ek,p and ek,m are respectively the energy costs for client
k to perform a local iteration and a round of communication.

Unlike the straggling effect in time cost (4), the energy cost
e(r) in each round r depends on the sum energy consumption
of the selected clients K(r). Therefore, the total energy cost
etot after R rounds can be expressed as

etot(K,E,R) =
∑R

r=1

∑
k∈K(r)

ek. (7)

3This is because in synchronized FL systems, the server needs to collect
all updates from the sampled clients before performing global aggregation.



C. Problem Formulation

Considering the difference of the two cost metrics, the
optimal solutions of E, K and R generally do not achieve
the common goal for minimizing both ttot and etot. To strike
the balance of learning time and energy consumption, we
introduce a weight γ ∈ [0, 1] and optimize the balanced cost
function in the following form:

Ctot(K,E,R) = (1− γ) ttot(K,E,R) + γetot(K,E,R), (8)

where 1− γ and γ can be interpreted as the normalized price
of the two costs, i.e., how much monetary cost for one unit of
time and one unit of energy, respectively. The value of γ can
be adjusted for different preferences. For example, we can set
γ = 0 when all clients are plugged in and energy consumption
is not a major concern, whereas γ = 1 when devices are solar-
based sensors where saving the devices’ energy is the priority.

Our goal is to minimize the expected total cost while
ensuring convergence, which translates into this problem:

P1: minE,K,R E[Ctot(E,K,R)]
s.t. E[F (wR)]− F ∗ ≤ ε,

K,E,R ∈ Z+, and 1 ≤ K ≤ N.
(9)

where E[F (wR)] is the expected loss after R rounds, F ∗ is
the (true and unknown) minimum value of F , and ε is the
desired precision. We note that the expectation in P1 is due to
the randomness of SGD and client sampling in each round.

Solving P1 is challenging in two aspects. First, it is difficult
to find an exact analytical expression to relate E, K and R
with Ctot, especially due to the non-linear maximum function
in ttot. Second, it is generally impossible to obtain an exact
analytical relationship to connect E, K and R with the
convergence constraint. In the following section, we propose
an algorithm that approximately solves P1, which we later
show with extensive experiments that the proposed solution
can achieve a near-optimal performance of P1.

IV. COST-EFFECTIVE OPTIMIZATION ALGORITHM

This section shows how to approximately solve P1. We first
formulate an alternative problem that includes an approximate
analytical relationship between the expected cost E[Ctot], the
convergence constraint, and the control variables E, K and
R. Then, we show that this new optimization problem can
be efficiently solved after estimating unknown parameters
associated with the convergence bound, and we propose a
sampling-based algorithm to learn these unknown parameters.

A. Approximate Solution to P1

1) Analytical Expression of E[etot]: We first analytically
establish the expected energy cost E[etot] with K and E.

Lemma 1. The expectation of etot in (7) can be expressed as

E[etot(K,E,R)] = K (epE + em)R, (10)

where ep :=
∑N

k=1 ek,p

N and em :=
∑N

k=1 ek,m

N denote the
average per-device energy consumption for one local iteration
and one round of communication, respectively.

Proof. Since all devices are sampled uniformly at random in
each round, for R rounds, each device will be sampled in
KR
N rounds in expectation. Given that each device k consumes
ek,pE+ ek,m energy in each round as shown in (6), summing
up KR

N (ek,pE + ek,m) over all N clients leads to (10).

2) Analytical Expression of E[ttot]: Next, we show how to
tackle the straggling effect to establish the expected time cost
E[ttot] with the control variables. Without loss of generality,
we reorder {tk : ∀k ∈ {1, 2, ..., N}}, such that

t1 ≤ t2 ≤ . . . ≤ tk ≤ . . . ≤ tN . (11)

Lemma 2. With the reordered tk as in (11), the expectation
of ttot in (5) can be expressed as4

E[ttot(K,E,R)] =
∑N

i=K CK−1
i−1 ti

CK
N

R. (12)

Proof. We omit the full proof due to page limitation. The idea
is to show that the expectation of the per-round time in (4) is

E[t(r)] = 1
CK

N

∑N
i=K C

K−1
i−1 ti. (13)

We first use the recursive property of Cnm+ Cn−1
m =Cnm+1 to

show that the number of total combinations for choosing K
out of N devices CKN can be extended as CKN =

∑N
i=K C

K−1
i−1 .

Then, each combination (e.g., CK−1
N−1 ) corresponds to the

number of a certain device (e.g., N ) being the slowest one
(e.g., tN ). Since all devices are sampled uniformly at random,
taking the expectation of all combinations gives (13).

3) Analytical Relationship Between E[Ctot] and Conver-
gence: Based on E[etot] in (10) and E[ttot] in (12), the objective
function E[Ctot] in P1 can be expressed as

E[Ctot]=

(
(1−γ)

∑N
i=K CK−1

i−1 ti

CK
N

+γK (epE + em)

)
R. (14)

To connect E[Ctot] with the ε-convergence constraint in (9),
we utilize the convergence result [11]:

E[F (wR)]− F ∗ ≤ 1
ER

(
A0 +B0

(
1 + N−K

K(N−1)

)
E2
)
,

(15)
where A0 and B0 are loss function related constants character-
izing the statistical heterogeneity of non-i.i.d. data. By letting
the upper bound satisfy the convergence constraint,5 and using
(14) and Lemmas 1 and 2, we approximate P1 as

P2: minE,K,R

(
(1−γ)

∑N
i=K CK−1

i−1 ti

CK
N

+γK (epE + em)

)
R

s.t. 1
ER

(
A0 +B0

(
1 + N−K

K(N−1)

)
E2
)
≤ ε

K,E,R ∈ Z+, and 1 ≤ K ≤ N.
(16)

Combining with (15), we can see that P2 is more constrained
than P1, i.e., any feasible solution of P2 is also feasible for P1.

4The notation of CK
N is also noted as

(N
K

)
which represents the combination

number of choosing K out of N without replacement.
5We note that optimization using upper bound as an approximation has

also been adopted in [13] and resource allocation based literature [12], [30],
[35]. Although the convergence bound is valid for strongly convex problems,
our experiments demonstrate that the proposed method also works well for
non-convex learning problems empirically.



Problem P2, however, is still hard to optimize because
it requires to compute various combinatorial numbers with
respect to K. Moreover, even for a fixed value of K, the
combinatorial term is based on the reordering of tk in (3),
which is uncertain as the order of tk changes with E. For
analytical tractability, we further approximate P2 as follows.

4) Approximate Optimization Problem of P2: To address
the complexity involved with computing the combinatorial
term in (14), similar to how we derive (10), we define an
approximation of E[ttot] as

Ẽ[ttot(E,R)] := (tpE + tm)R, (17)

where tp :=
∑N

k=1 tk,p

N and tm :=
∑N

k=1 tk,m

N are the average
per-device time cost for one local iteration and one round
of communication, respectively. The approximation Ẽ[ttot] is
equivalent to E[ttot] in the following two cases.

Case 1: For homogeneous systems, where tp = tk,p and
tm = tk,m,∀k ∈ {1, . . . , N}, we have

E[ttot(K,E,R)] = (tpE + tm)
∑N

i=K CK−1
i−1

CK
N

R

= (tpE + tm)R

= Ẽ[ttot(E,R)].

Case 2: For heterogeneous systems with K=1, we have

E[ttot(K = 1, E,R)] =
(
t1+t2...+tN

N

)
R

=
(∑N

k=1 tk,pE+
∑N

k=1 tk,m

N

)
R

= (tpE + tm)R

= Ẽ[ttot(E,R)].

Based on the approximation Ẽ[ttot(E,R)] in (17), we for-
mulate an approximate objective function of P2 as

Ẽ[Ctot(K,E,R)] = (1− γ) Ẽ[ttot(E,R)] + γE[etot(K,E,R)].
(18)

Now, we relax K, E and R as continuous variables for the-
oretical analysis, which are rounded back to integer variables
later. For the relaxed problem, if any feasible solution E′,K ′,
and R′ satisfies the ε-constraint in P2 with inequality, we can
always decrease this R′ to some R′′ < R′ which satisfies
the constraint with equality but reduces the objective function
value. Hence, for optimal R, the ε-constraint is always satisfied
with equality, and we can obtain R from this equality as

R = 1
εE

(
A0 +B0

(
1 + N−K

K(N−1)

)
E2
)
. (19)

By using Ẽ[Ctot] to approximate E[Ctot] and substituting (19)
into its expression, we obtain

P3:

minE,K
((1−γ)(tpE+tm)+γK(epE+em))·(A0+B0(1+ N−K

K(N−1))E
2)

εE

s.t. E ≥ 1, and 1 ≤ K ≤ N,
(20)

where we note that the objective function of P3 is equal to
Ẽ[Ctot]. P3 is an approximation of P2 due to the use of Ẽ[Ctot]
to approximate the original objective E[Ctot].

In the following, we solve P3 as an approximation of the
original P1. Our empirical results in Section VI demonstrate

Algorithm 2: Cost-effective design of K and E
Input: N , γ, tp, tm, ep, em, loss Fa and Fb, w0, number

of sampled pairs M , stopping condition ε0
Output: K∗ and E∗

1 for i = 1, 2, . . . ,M do
2 Empirically choose (Ki, Ei) and run Algorithm 1;
3 Record Ri,a and Ri,b when Fa and Fb are reached;
4 Calculate average A0

B0
using (25);

5 Choose a feasible z0 ← (K0, E0) and set j ← 0;
6 while ‖zj − zj−1‖ > ε0 do
7 Substitute Ej , A0

B0
, N , γ, tp, tm, ep, em into (21) and

derive K′;
8 Kj+1 ← argminK∈[1,N ] |K −K′|;
9 Substitute Kj+1, A0

B0
, N , γ, tp, tm, ep, em into (22) and

derive E′;
10 Ej+1 ← argminE≥1 |E − E′|;
11 zj+1 ← (Kj+1, Ej+1) and j ← j + 1;
12 Substitute four rounding combinations of (dKje , dEje),

(dKje , bEjc), (bKjc , dEje), and (bKjc , bEjc) into the
objective function of P3, and set the pair with the
minimum value as (K∗, E∗)

13 return (K∗, E∗)

that the solution obtained from solving P3 achieves near-
optimal performance of the original problem P1. For ease of
analysis, we incorporate ε in the constants A0 and B0 next.

B. Solving the Approximate Optimization Problem P3
In this subsection, we first characterize some properties of

the optimization problem P3. Then, we propose a sampling-
based algorithm to learn the problem-related unknown param-
eters A0 and B0, based on which the solution K∗ and E∗

(of P3) can be efficiently computed. The overall algorithm for
obtaining K∗ and E∗ is given in Algorithm 2.

1) Characterizing P3: The objective function of P3
is non-convex because the determinant of its Hessian
∂2Ẽ[Ctot]
∂2K

∂2Ẽ[Ctot]
∂2E − (∂

2Ẽ[Ctot]
∂K∂E )2 is not always non-negative in

the feasible set. However, the problem is biconvex [40].

Theorem 1. Problem P3 is strictly biconvex.

Proof. For any E ≥ 1, we have

∂2Ẽ[Ctot]

∂2K
=

2(1− γ)B0N
(
tpE

2 + tmE
)

(N − 1)K3
> 0.

Similarly, for any 1 ≤ K ≤ N , we have

∂2Ẽ[Ctot]

∂2E
= 2 ((1−γ) tp + γKep)B0

(
1 + N−K

K(N−1)

)
+
2A0 [(1−γ)tm + γKem]

E3
> 0

Since the domain of K and E is convex as well, we conclude
that P3 is strictly biconvex.

The biconvex property allows many efficient algorithms,
such as Alternate Convex Search (ACS) approach, to a achieve
a guaranteed local optima [40]. Nevertheless, by analyzing the
stationary point of ∂Ẽ[Ctot]

∂K = 0 and ∂Ẽ[Ctot]
∂E =0, we show that

the optimal solution can be found more efficiently. This is
because from ∂Ẽ[Ctot]

∂K =0 we have K in closed-form of E as

K =
√

(1−γ)B0N(tpE3+tmE2)
γ[B0(N−2)E2+A0(N−1)](epE+em) . (21)



By letting ∂Ẽ[Ctot]
∂E = 0, we derive the cubic equation of E as

2(1−γ)tp+γKep
2(1−γ)tm+γKem

E3 + E2 − A0

B0(1+ N−K
K(N−1) )

=0, (22)

which can be analytically solved in closed-form of K via
Cardano formula [41]. Therefore, for any fixed value of K,
due to biconvexity (Theorem 1), we have a unique real solution
of E from (22) in closed form. Then, with ACS method we
iteratively calculate (21) and (22) which keeps decreasing the
objective function until we achieve the converged K∗ and
E∗. This optimization process corresponds to Lines 5–13 of
Algorithm 2, where Lines 8 and 10 ensure that the solution
is taken within the feasibility region, and Line 12 rounds the
continuous values of K and E to integer values.

2) Estimation of Parameters A0

B0
: Equations (21) and (22)

include unknown parameters A0 and B0, which can only be
determined during the learning process.6 In fact, K in (21) and
E in (22) only depend on the value of A0

B0
. In the following,

we propose a sampling-based algorithm to estimate A0

B0
, and

show that the overhead for estimation is marginal.
The basic idea is to sample different combinations of (K,E)

and use the upper bound in (15) to approximate F (wR)−F ∗.
Specifically, we empirically sample7 a pair (Ki, Ei) and run
Algorithm 1 with an initial model w0 = 0 until it reaches
two pre-defined global losses Fa := F (wRi,a

) and Fb :=
F (wRi,b

) (Fb < Fa), where Ri,a and Ri,b are the executed
round numbers for reaching losses Fa and Fb. The pre-defined
losses Fa and Fb can be set to a relatively high value, to keep
a small estimation overhead, but they cannot be too high either
as it would cause low estimation accuracy. Then, we haveRi,a ≈ d+

A0+B0

(
1+

N−Ki
Ki(N−1)

)
E2

i

Ei(Fa−F∗) ,

Ri,b ≈ d+
A0+B0

(
1+

N−Ki
Ki(N−1)

)
E2

i

Ei(Fb−F∗) .

(23)

from (15), where d captures a constant error of using the upper
bound to approximate F (wR)−F ∗. Based on (23), we have

Ri,b −Ri,a ≈ ∆
Ei

(
A0+B0

(
1+ N−Ki

Ki(N−1)

)
E2
i

)
, (24)

where ∆ := 1
Fb−F∗ −

1
Fa−F∗ . Similarly, sampling another pair

of (Kj , Ej) and performing the above process gives us another
executed round numbers Rj,a and Rj,b. Thus, we have

Ei(Ri,b−Ri,a)
Ej(Rj,b−Rj,a) ≈

A0+B0

(
1+

N−Ki
Ki(N−1)

)
E2

i

A0+B0

(
1+

N−Kj
Kj(N−1)

)
E2

j

. (25)

We can obtain A0

B0
from (25) (note that the variables except for

A0

B0
are known). In practice, we may sample several different

pairs of (Ki, Ei) to obtain an averaged estimation of A0

B0
. This

estimation process is given in Lines 1–4 of Algorithm 2.
Estimation overhead: The main overhead for estimation

comes from the additional iterations for the estimation of A0

B0
.

For M sampling pairs, the total number of iterations used
for estimation is

∑M
i=1Ri,bEi, where Ri,b is the number of

rounds for sampling pair (Ki, Ei) to reach Fb. If the target loss

6We assume that tp, tm, tm and em can be measured offline.
7Our sampling criteria is to cover diverse combinations of (K,E).

is FR with the required number of rounds R, then according
to (15), the overhead ratio can be written as∑M

i=1 Ri,bEi

RE∗ ≈
∑M

i=1 Ri,bEi(FR−F∗)
A0+B0

(
1+ N−K∗

K∗(N−1)

)
·(E∗)2

, (26)

where K∗ and E∗ are obtained from Algorithm 2. For a high
precision with FR − F ∗ → 0, the overhead ratio is marginal.

V. SOLUTION PROPERTY FOR COST MINIMIZATION

We theoretically analyze the solution properties for different
metric preferences, which not only provide insightful design
principles but also give alternative ways of solving P3 to more
efficiently. Our empirical results show that these properties
derived for P3 are still valid for the original P1. In the
following, we discuss the properties for γ = 0 and γ = 1,
respectively. For ease of presentation, we consider continuous
K, K∗, E, and E∗ (i.e., before rounding) in this section.

A. Properties for Minimizing Ẽ[Ctot] when γ = 0

When the design goal is to minimize learning time (γ = 0),
the objective of P3 can be rewritten as

minE,K
(
tm
E + tp

)
·
(
A0 +B0

(
1 + N−K

K(N−1)

)
E2
)

(27)

We present the following insightful results to characterize the
properties of E∗ and K∗.

Theorem 2. When γ = 0, Ẽ[Ctot] is a strictly decreasing
function in K for any given E, hence K∗ = N .

Proof. The proof is straightforward, as we are able to show
for any E, ∂Ẽ[Ctot]

∂K < 0. Since K ≤ N , we have K∗ = N . The
same result can also be obtained by letting γ → 0 in (21).

Remark: In practical FL applications, N can be very large,
and thus, full participation (K = N ) is usually intractable.
However, since the objective function in (27) is strictly convex
and decreasing with K, as K increases, the marginal learning
time decrease becomes smaller as well. Therefore, when N is
very large, sampling a small portion of devices can achieve
a relative good learning time. Our later real-data experiment
shows that sampling K=20 out of N=100 devices achieves
a similar performance as sampling all devices.

Based on the above finding, it is important to analyze the
property of E when K is chosen sub-optimally. In line with
this, we present the following two corollaries.

Corollary 1. When γ = 0, for any fixed value of K, as E
increases, Ẽ[Ctot] first decreases and then increases.

Proof. Taking the first order derivative of Ẽ[Ctot] over E,
∂Ẽ[Ctot]
∂E = B0 (2tpE + tm)

(
1 + N−K

K(N−1)

)
− tmA0

E2 . (28)

Since 0 ≤ N−K
K(N−1) ≤ 1 for any feasible K, (28) is negative

when E is small and positive when E is large.

Corollary 1 shows that for any given K, E should not be
set too small nor too large for saving learning time.

Corollary 2. When γ = 0, for any fixed value of K, E∗

increases as tm
tp

increases.



We omit the proof of Corollary 2 due to page limitation.
Intuitively, Corollary 2 says that for any given K, when
tm increases or tp decreases, the optimal strategy to reduce
learning time is to perform more steps of iterations (i.e.,
increase E) before aggregation, which matches the empirical
observations for communication efficiency in [2], [19], [20].

B. Properties for Minimizing Ẽ[Ctot] when γ = 1

When the design goal is to minimize energy consumption
(γ = 1), the objective of P3 can be rewritten as

minE,K
(
emK
E +epK

) (
A0+B0

(
1+ N−K

K(N−1)

)
E2
)
. (29)

Besides the different metrics of em and ep, the key difference
between (27) and (29) is the multiplication of K. Therefore,
the main difference between γ = 1 and γ = 0 is in the
properties related to K, whereas the properties related to E
remain similar, which we show in the following.

Theorem 3. When γ = 1, Ẽ[Ctot] is a strictly increasing
function in K for any given E, hence K∗ = 1.

Proof. It is easy to show that ∂Ẽ[Ctot]
∂K > 0 for any given E.

Since K ≥ 1, we have K∗ = 1. This conclusion can also be
obtained when we let γ = 1 in (21) since 1 ≤ K ≤ N .

Remark: Theorem 3 shows that sampling fewer devices
can reduce the total energy consumption, whereas according
to Theorem 2, this results in a longer learning time. While this
may seem contradictory at the first glance, we note that this
result is correct because the total energy is the sum energy
consumption of all selected clients. Although it takes longer
time to reach the desired precision ε with a smaller K, there
are also less number of clients participating in each round, so
the total energy consumption can be smaller.

Corollary 3. When γ = 1, for any fixed value of K, as E
increases, Ẽ[Ctot] first decreases and then increases.

Corollary 4. When γ = 1, for any fixed value of K, E∗

increases as em
ep

increases.

The proofs and intuitions for Corollaries 3 and 4 are similar
to Corollaries 1 and 2, which we omit due to page limitation.

C. Trade-off Between Learning Time and Energy Consumption

In the above analysis, we derived a trade-off design principle
for K, with a larger K favoring learning time reduction, while
a smaller K favoring energy saving. For a given γ, the optimal
K achieves the right balance between reducing learning time
and energy consumption.

Theorem 4. Assume that the power used for computation and
communication are the same (i.e., emtm =

ep
tp

), then K∗ and E∗

both decrease as γ increases.

We omit the full proof due to page limitation. Intuitively,
em
tm

=
ep
tp

yields tp
tm

=
ep
em

. Hence, the quantities tpE+tm
epE+em

and 2(1−γ)tp+γKep
2(1−γ)tm+γKem

in (21) and (22), respectively, remain
unchanged regardless of the values of K, E, and γ. By some
algebraic manipulations, we can see from (21) and (22) that

Fig. 2. Hardware prototype with the laptop being central server, 20 Raspberry
Pi being devices. During the FL experiments, the wireless router is placed 5
meters away from all the devices.

when γ increases or E decreases, the value of K according
to (21) decreases; when K decreases, the solution of E from
(22) also decreases (note that this solution remains unchanged
regardless of γ). Therefore, whenever γ increases, K will
decrease, then E will decrease, and so on, until converging
to a new (K∗, E∗) that is smaller than before, and vice versa.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of our proposed
cost-effective FL algorithm and verify our derived solution
properties. We start by presenting the evaluation setup, and
then show the experimental results.

A. Experimental Setup

1) Platforms: We conducted experiments both on a net-
worked hardware prototype system and in a simulated envi-
ronment. Our prototype system, as illustrated in Fig. 2, consists
of N = 20 Raspberry Pis (version 4) serving as devices and
a laptop computer serving as the central server. All devices
are interconnected via an enterprise Wi-Fi router, and we
developed a TCP-based socket interface for the peer-to-peer
connection. In the simulation system, we simulated N = 100
virtual devices and a virtual central server.

2) Datasets and Models: We evaluate our results both on
a real dataset and a synthetic dataset. For the real dataset, we
adopted the widely used MNIST dataset [42], which contains
square 28×28 = 784 pixel gray-scale images of 70, 000 hand-
written digits (60, 000 for training and 10, 000 for testing). For
the synthetic dataset, we follow a similar setup to that in [10],
which generates 60-dimensional random vectors as input data.
The synthetic data is denoted by Synthetic (α, β) with α and
β representing the statistical heterogeneity (i.e., how non-i.i.d.
the data are). We adopt both the convex multinomial logistic
regression model [11] and the non-convex deep convolutional
neural network (CNN) model with LeNet-5 architecture [42].

3) Implementation: Based on the above, we consider the
following three experimental setups.

Setup 1: We conduct the first experiment on the prototype
system using logistic regression and MNIST dataset, where
we divide 6, 000 data samples (randomly sampled one-tenth
of the total samples) among N = 20 Raspberry Pis in a non-
i.i.d. fashion with each device containing a balanced number
of 300 samples of only 2 digits labels.



TABLE I
NUMBER OF ROUNDS FOR REACHING ESTIMATION LOSS Fa AND Fb FOR ESTIMATION OF A0

B0
FOR THREE SETUPS

Setup 1
Estimation loss
Fa = 0.6
Fb = 0.5

Samples of (K,E) (10, 50) (15, 150) (20, 100) (10, 200) (20, 300) - - Estimated
A0
B0

=73,560Rounds to achieve Fa 48 28 32 27 20 - -
Rounds to achieve Fb 82 46 56 43 35 - -

Setup 2
Estimation loss
Fa = 0.3
Fb = 0.2

Samples of (K,E) (10, 10) (20, 20) (30, 30) (40, 40) (50, 50) (60, 60) (80, 80) Estimated
A0
B0

=3,140Rounds to achieve Fa 67 37 25 22 18 17 16
Rounds to achieve Fb 100 60 39 34 28 25 24

Setup 3
Estimation loss
Fa = 1.5
Fb = 1.3

Samples of (K,E) (10, 10) (20, 20) (30, 30) (40, 40) (50, 50) (60, 60) (80, 80) Estimated
A0
B0

=3,750Rounds to achieve Fa 52 39 34 31 30 30 29
Rounds to achieve Fb 106 68 57 52 49 48 48

0 100 200 300

Time (s)

0.365

0.5

1

G
lo

b
a
l 
L
o
s
s

K
OPT

=20, E
OPT

=125

K =20, E =141

K=20, E=300

K=20, E=50

Target Loss

120 160 200

0.365

(a) Loss with different E

0 50 100 150

Time (s)

0.365

0.5

1

G
lo

b
a
l 
L
o
s
s

K
OPT

=20, E
OPT

=125

K =20, E =141

K=10, E=141

K=5, E=141

Target Loss

130 150 170

0.365

(b) Loss with different K

50 100 150 200
E

140

160

180

200

220

240

t to
t 
(s

)

Optimal: K
OPT

=20, E
OPT

=125

Ours: K =20, E =141

K=5

K=10

K=15

K=20

(c) ttot with different (K,E)

0 50 100 150 200 250

Time (s)

0.5

0.6

0.7

0.8

0.9

T
e
s
t 
A

c
c
u
ra

c
y

K
OPT

=20, E
OPT

=125

K =20, E =141

K=20, E=50

K=20, E=300

100 120 140 160 180 200 220
0.89

0.894

(d) Accuracy with different E

0 50 100 150 200 250

Time (s)

0.5

0.6

0.7

0.8

0.9

T
e
s
t 
A

c
c
u
ra

c
y

K
OPT

=20, E
OPT

=125

K =20, E =141

K=15, E=141

K=10, E=141

100 120 140 160 180 200
0.89

0.894

(e) Accuracy with different K

Fig. 3. Training performance of Setup 1 with logistic regression and MNIST for γ =0. (a)-(c): Our solution achieves the target loss 0.365 using 145.2s
compared to the optimum 141.5s with optimality error rate 2.61%, but faster than those with E being too small or too large and those with K being small.
(d)-(e): Our solution achieves 89.4% test accuracy slightly longer than the optimal solution, but faster than the non-optimal values of (K,E) in (a) and (b).

Setup 2: We conduct the second experiment in the simulated
system using CNN and MNIST dataset, where we divide all
60, 000 data samples among N = 100 devices in the same
non-i.i.d fashion as in Setup 1, but the amount of data in each
device follows the inherent unbalanced digit label distribution
of MNIST, where the number of samples in each device has
a mean of 600 and standard deviation of 20.1.

Setup 3: We conduct the third experiment in the simulated
system using logistic regression and Synthetic (1, 1) dataset
for statistical heterogeneity, where we generate 24, 517 data
samples and distribute them among N = 100 devices in
an unbalanced power law distribution, where the number of
samples in each device has a mean of 245 and standard
deviation of 362.

4) Training Parameters: For all experiments, we initialize
our model with w0 = 0 and SGD batch size b = 64. In each
round, we uniformly sample K devices at random, which run
E steps of SGD in parallel. For the prototype system, we
use an initial learning rate η0 = 0.01 with a fixed decay rate
of 0.996. For the simulation system, we use decay rate η0

1+r ,
where η0 = 0.1 and r is communication round index. We
evaluate the aggregated model in each round on the global
loss function. Each result is averaged over 50 experiments.

5) Heterogeneous System Parameters: The prototype sys-
tem allows us to capture real system heterogeneity in terms of
communication and computation time, which we measured the
average tp=3.1× 10−3s with standard deviation 2.3× 10−4s
and tm=0.34s with standard deviation 1.56× 10−3s. We do
not capture the energy cost in the prototype system because it
is difficult to measure. For the simulation system, we generate
the learning time and energy consumption for each client k
using a normal distribution with mean tp = 0.1s, tm = 2s,

ep=10−3J, and em=2× 10−2J and standard deviation of the
mean divided by 3. According to the definition of γ, we unify
the time and energy costs such that one second is equivalent
to 1−γ dollars ($) and one Joule is equivalent to γ dollars ($).

B. Performance Results

We first validate the optimality of our proposed solution
with estimated value of A0

B0
. Then, we show the impact of the

trade-off factor γ, followed by the verification of our derived
theoretical properties.

1) Estimation of A0

B0
: We summarize the estimation process

and results of A0

B0
for all three experiment setups in Table I.

Specifically, using Algorithm 2, we empirically8 set two
relatively high target losses Fa and Fb with a few sampling
pairs of (K,E). Then, we record the corresponding number of
rounds for reaching Fa and Fb, based on which we calculate
the averaged estimation value of A0

B0
using (25). The proposed

solution K∗ and E∗ is then obtained from Algorithm 2.
For comparison, we denote KOPT and EOPT as the empirical
optimal solution achieved by exhaustive search on (K,E).

2) Convergence and Optimality: Figs. 3 and 4 show the
learning time cost for reaching the target loss under different
(K,E) for Setups 1 and 2, respectively.9 In both setups, our
proposed solutions achieve near-optimal performance com-
pared to the empirical optimal solution, with optimality error
of 2.61% and 8.49%, respectively. We highlight that our
approach works well with the non-convex CNN model in
Setup 2. Although the error rate in Setup 2 is higher than that

8Due to the different learning rates, the sampling range of E in Setup 1 is
larger than those in Setup 2 and Setup 3.

9For ease of presentation, we only show the convergence performance with
ttot for γ=0.
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Fig. 4. Training performance of Setup 2 with CNN and MNIST for γ = 0. (a)-(c): Our solution achieves the target loss 0.06 using 856.8s compared to
the optimum 789.0s with optimality error rate 8.49%, but faster than those with E being too small or too large and those with K being small. (d)-(e): Our
solution achieves 98.2% test accuracy with almost the same time as the optimal solution, but faster than the non-optimal values of (K,E) in (a) and (b).
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Fig. 5. Performance of Ctot for reaching the target loss 1.05 for Setup 3 with logistic regression and Synthetic (1,1). (a)-(d) When γ increases from 0 to 1,
our solutions reaches the target loss using the similar cost as the corresponding optimal ones, with average optimality error rate 4.85% and maximum rate
10.23%. (e) For different γ, our proposed solutions are able to balance the metric preferences between ttot and etot while approaching the optimal trade-off.

in Setup 1, note that non-optimal values of (K,E) without
optimization may increase the learning time by several folds.

Fig. 5 depicts the performance of Ctot for achieving the
target loss with γ under different (K,E) in Setup 3, where
our proposed solutions achieve near-optimal performance for
all values of γ. Particularly, Fig. 5(d) shows that, throughout
the range of γ, our approach has the maximum optimality error
of 10.23% and an average error of 4.85%.

3) Impact of Weight γ: Figs. 5(a) – 5(c) show that when the
weight γ increases from 0 to 1 (corresponding to the design
preference varying from reducing learning time to saving
energy consumption), both the optimal and our proposed
solutions of K decrease from N=100 to 1. At the same time,
both the optimal and our proposed solutions of E, although
with a small difference, decrease slightly as γ increases. We
give the explanations of these observations in Section VI-B4
below. By iterating through the entire range of γ, Fig. 5(e)
depicts the trade-off curve between the learning time cost and
energy consumption cost, where our algorithm is capable of
balancing the two metrics as well as approaching the optimal.

4) Property Validation: We highlight that our derived the-
oretical properties of K and E in Section V can be validated
empirically, which we summarize as follows.10

• Figs. 3(c), 4(c), and 5(a) demonstrate that for any fixed
value E, the learning time cost (γ=0) strictly decreases
in K, which confirms the claim in Theorem 2 that
sampling more clients can speed up learning. Moreover,

10The property of Corollaries 2 and 4 can also be validated, which we do
not show in this paper due to page limitation.

we observe in these figures that sampling fewer clients
(15 out of 20 for Setup 1 and 20 out of 100 for Setups
2 and 3) does not affect the learning time much, which
confirms our Remark. Nevertheless, Fig. 5(c) shows that
for any fixed value E, the energy consumption cost
(γ=1) strictly increases in K, which confirms Theorem 3
that sampling fewer clients reduces energy consumption.

• Figs. 3(c), 4(c), 5(a)–5(c) demonstrate that, for any fixed
value of K, the corresponding cost first decreases and
then increases as E increases, which confirms Corollar-
ies 1 and 3 as well as the biconvex property in Theorem 1.
Since em

tm
=

ep
tp

= 10−2 in our simulation system, we
observe from Figs. 3(c), 4(c), and 5(a) that both K∗ and
E∗ decrease as γ increases, which confirms Theorem 4.

VII. CONCLUSION

In this work, we have studied the cost-effective design for
FL. We analyzed how to optimally choose the number of
participating clients (K) and the number of local iterations
(E), which are two essential control variables in FL, to mini-
mize the total cost while ensuring convergence. We proposed
a sampling-based control algorithm which efficiently solves
the optimization problem with marginal overhead. We also
derived insightful solution properties which helps identify the
design principles for different optimization goals, e.g., reduc-
ing learning time or saving energy. Extensive experimentation
results validated our theoretical analysis and demonstrated
the effectiveness and efficiency of our control algorithm. Our
optimization design is orthogonal to most works on resource



allocation for FL systems, and can be used together with those
techniques to further reduce the cost.
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