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Abstract—Building a fault-tolerant edge system that can
quickly react to node overloads or failures is challenging due to
the unreliability of edge devices and the strict service deadlines of
modern applications. Moreover, unnecessary task migrations can
stress the system network, giving rise to the need for a smart and
parsimonious failure recovery scheme. Prior approaches often
fail to adapt to highly volatile workloads or accurately detect
and diagnose faults for optimal remediation. There is thus a
need for a robust and proactive fault-tolerance mechanism to
meet service level objectives. In this work, we propose PreGAN,
a composite AI model using a Generative Adversarial Network
(GAN) to predict preemptive migration decisions for proactive
fault-tolerance in containerized edge deployments. PreGAN uses
co-simulations in tandem with a GAN to learn a few-shot anomaly
classifier and proactively predict migration decisions for reliable
computing. Extensive experiments on a Raspberry-Pi based edge
environment show that PreGAN can outperform state-of-the-art
baseline methods in fault-detection, diagnosis and classification,
thus achieving high quality of service. PreGAN accomplishes this
by 5.1% more accurate fault detection, higher diagnosis scores
and 23.8% lower overheads compared to the best method among
the considered baselines.

Index Terms—Fault Tolerance; Preemptive Migrations; Edge
Computing; Generative Adversarial Networks.

I. INTRODUCTION

Edge computing is the processing of data close to the source
where it is produced to optimize the service performance
of such systems. This paradigm is closely integrated with
the sensors and actuators in the Internet of Things (IoT)
framework [[1]. With edge computing becoming ubiquitous,
it is essential to ensure that the edge nodes themselves do not
become a point-of-failure for the running applications, and
robust countermeasures are in place to incorporate network or
node overloads/failures. Modern application demands of low
latency task execution and resource constraints of the edge
devices further exacerbate the problem [2]. The increasing
volumes of the data requiring immediate processing and the
resource constraints at the edge are pushing the compute
resources to their limits, giving rise to a high chance of
resource contention and node downtimes [3]], [4]]. This leads
to resource unavailability and Service Level Objective (SLO)
violations that can lead to significant financial losses [5]]. Thus,
it is critical to develop a fault-tolerance mechanism for edge
computing to maintain low latency and high reliability.
Challenges. The problem of developing a robust fault-
tolerance framework is challenging. The first stage of solving
this is to be able to proactively predict faults before they

occur and diagnose the root-cause issues to be able to run
appropriate remediation steps. These steps should be carried
out in near real-time for such systems to be effective [6].
Moreover, for such systems to be within the strict specifica-
tions of modern industrial demands, they need to be able to
resolve diverse kinds of system or network related faults [[7].
This may entail establishing the type of fault at the time of
its prediction for a more informed recovery decision. The
volatile nature of the workloads and resources increases the
difficulty in the prediction of faults and their types by several
fold [8]]. Further, to avoid overlooking any fault that may cause
significant adverse effects later and to avoid the overhead of
false-positive predictions, such prediction models need to be
extremely accurate. To do this, some existing methods leverage
machine learning models due to their highly accuracy [9], [[10].
However, in such cases, the annotated log traces available to
brokers is limited, leading to restricted size of the labelled
fault classification data. This makes it hard to train supervised
machine learning models for fault detection and classification.

Existing solutions. Over the past few years, several fault-
tolerance approaches have been proposed to enhance the
service reliability of edge or cloud platforms [3]], [11]], [[12]].
A popular method is to provide node redundancy and network
contingencies to avoid the crippling downtime of an edge
element. However, with the increasing number of edge devices,
having redundancy for each node is not feasible, considering
the energy and cost implications of such a deployment [13]].
Another way is to replicate the running instance of a task
on a separate node [14]. This is not ideal for resource-
constrained edge devices as it makes them more susceptible
to resource contention and faults [15]. Yet another mechanism
is to periodically save the execution state of the running tasks
by checkpointing their corresponding containers. Containers
provide a virtualization layer that allows the running applica-
tions to be independent of the underlying hardware facilitating
efficient task restoration in the event of node failures [16].
When a node failure occurs, the system can transfer and
resume the task on a different device, commonly referred to
as “preemptive migration” [17]. However, when predicting the
faults and deciding the restoration node in advance, check-
pointing the containers periodically could lead to excessive
stress on the system and the network. Instead, we could
checkpoint only those containers that need to be restored. This
saves the excess overhead of periodically checkpointing all
running tasks. In recent years, many different methods have



been proposed to decide the appropriate migration decisions to
enhance service reliability. These range from Particle Swarm
Optimization (PSO) [3], Integer Linear Programming [11],
[18] and Bayesian Classification [9] to using Neural Network
and clustering algorithms like k-means [[10]. However, such
methods are often not generalizable or struggle to adapt in
volatile settings quickly, as discussed later in Section |II} Thus,
we propose a novel fault-tolerance model and demonstrate its
efficacy against state-of-the-art baselines [9]], [|10].

Background and new insights. To be able to predict an ap-
propriate preemptive migration decision, it is crucial to accu-
rately detect, diagnose and classify faults in an online fashion.
One way to achieve this is to create a deep generator model
that predicts such a decision. Generative Adversarial Networks
(GANSs) have been shown to be very successful in this as
they can reduce prediction errors and provide us with a robust
anomaly prediction framework [19]. To successfully train a
GAN, we need to efficiently model the temporal trends and
the cross-correlations of performance and resource utilization
metrics among different edge nodes. Recent developments in
graph machine learning allow both of these to be done together
efficiently [20], [21]. To minimize the total computational
complexity of each layer of the deep neural network and make
decision prediction time-efficient, we can use self-attention
operations [22]. However, just having a GAN is insufficient to
incorporate the fault types in the prediction framework. To be
able to execute classification with limited data and allow quick
adaptability, inspired from few-shot learning, we can extend
prototype networks that generate an embedding vector for each
class [23]]. Moreover, to test whether the preemptive migration
decision would improve the Quality of Service (QoS), co-
simulation techniques can be used [24]. Due to the lack of
integration interfaces, such advances have not been explored
in the scope of edge reliability. This work leverages these
concepts with necessary adaptations, to predict preemptive
migration decisions for fault-tolerant edge computing.

Our Contributions. In this work, we propose PreGAN:
Preemptive Migration Prediction GAN. PreGAN uses graph
attention and recurrent neural networks for feature extraction,
a prototype network for classification and generates an input
embedding for the GAN. The GAN-based prediction model
enables robust training and time-efficient inference. We per-
form extensive empirical experiments on real-life edge testbed
to compare and analyze PreGAN against the state-of-the-art
methods. Our experiments show that PreGAN performs best
in terms of QoS metrics, reducing the energy consumption,
response time and SLO violations by up to 8, 5 and 12 percent,
respectively. PreGAN achieves this by 5.1% more accurate
fault detection, 10.7% lower task migrations and 23.8% lower
overhead than the most accurate baseline.

The rest of the paper is organized as follows. Section
overviews related work. Section outlines the PreGAN
methodology for model training, preemptive migration predic-
tion and execution. A performance evaluation of the proposed
method is developed in Section Finally, Section [V] con-
cludes the paper and presents future directions.

II. RELATED WORK

Fault-tolerance deals with developing systems that have an
ability to withstand failures and faults in the workloads and
efficiently manage resources to maintain optimum QoS. Most
methods can be divided into two categories: reactive and
proactive. The former take action after observing a system fault
by typically checkpointing, replicating or resubmitting tasks
affected by the fault [25]]. The latter aim to avoid expensive
fault recovery by predicting failures in advance and taking
appropriate steps for remediation by preemptive migration or
fault-aware scheduling [25]]. As reactive schemes often lead to
poor QoS in highly dynamic setups [3], we focus on proactive
methods in this work.

Most contemporary state-of-the-art techniques employ some
form of specialized algorithms or machine learning models.
Dynamic Fault Tolerant Migration (DFTM) [[11]] is a recent
method that uses an integer linear programming (ILP) for-
mulation to analyze workload traffic, select the tasks running
on the hosts that should be migrated and the target hosts
for restoration. Methods like Multi-stage Coflow Scheduling
(MCS) [18]] also consider task co-dependencies to optimize
QoS. Another ILP based method proposes a preference based
fault management technique [26] that tries to balance between
the QoS improvement and the migration cost using a multi-
objective formulation. Such methods do not scale for real-time
operations, making them unsuitable for mission critical edge
applications. SFS [27] is a failover strategy that selects only
those tasks that are about to violate their deadlines to reduce
migration overheads. However, modeling the SLO deadlines
does not consider other QoS parameters while optimizing the
selection of the target hosts. This makes it often perform
poorly in heterogeneous setups.

The Proactive Coordinated Fault Tolerance (PCFT) [3]
method uses Particle Swarm Optimization (PSO) to reduce
the overall transmission overhead, network consumption and
total execution time for a set of tasks. This method first
predicts faults in the running host machines by anticipating
resource deterioration and uses PSO to find target hosts for
preemptive migration decision. This approach mainly focuses
on reducing transmission overheads in distributed cloud setups,
but often fails to improve the I/O performance of the compute
nodes [11]. The Energy-efficient Checkpointing and Load
Balancing (ECLB) [9] technique uses Bayesian methods and
neural networks to classify host machines into three categories:
overloaded, underloaded and normal execution. This classifi-
cation is used to decide appropriate task migrations to reduce
the number of overloaded hosts. However, this model only
considers computational overloads and does not consider other
fault types. CSAVM [28]] uses another evolutionary search
scheme to take live migration decisions for the task queues.
The method is used to optimize the power consumption
of a compute setup by preventing unnecessary migrations.
DDQP [29] uses double deep Q-networks to place services on
network nodes. However, such reinforcement learning schemes
are known to be slow to adapt in volatile settings [24].
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Figure 1: System Model.

A recent work, CMODLB [10], uses a clustering-based
multiple objective dynamic load balancing technique to avoid
resource contentions in cloud computing nodes. This method
uses k-means to cluster nodes and identify overloaded hosts,
PSO to select tasks and deep learning and fuzzy-logic opti-
mization to select target hosts. However, slow PSO optimiza-
tion leads to high recovery times that is often not helpful in
highly dynamic systems [24]. In our experiments, we compare
PreGAN against the state-of-the-art baselines DFTM, ECLB,
PCFT and CMODLB.

III. METHODOLOGY
A. System Model and Problem Formulation

In this work, we target a standard heterogeneous edge com-
puting environment where all nodes are in the same Local
Area Network (LAN); see Figure |l| for an overview. Tasks are
container instances generated from the sensors and actuators
in the IoT layer and communicated to the compute nodes
via gateway devices. The edge broker takes all scheduling,
management and preemptive migration decisions.

We assume that there are a m number of host machines in
the fog resource layer and denote them as H = {hy,..., hy,}.
We assume the paradigm of discrete time control, where we
take scheduling and migration decisions at periodic inter-
vals [2], [30[], [31]. We assume a scheduler is already present in
the broker. The ¢-th interval is denoted as I; and the scheduling
decision and host characteristics at this interval are denoted
as S; and z; € IR™*"™ (each host has n features). The time-
series {Zg, ..., xs_1} is denoted as T;. We divide the problem
of fault-tolerance into two sub-problems, defined as:

Fault Prediction: For an input multi-variate time-series
{zo,...,24_1}, we need to predict fault labels for each host
in I as y, € {0,1,...,c}™. Here, y;; denotes the output for
hi; ye; = 0 means no fault and y; ; = j means fault of class
j among the user-specified ¢ classes j € {1,...,c}.

Preemptive Migration Decision: For an input scheduling
decision S; (set of task and host pairs) and a solution of the
prediction problem y;, we wish to predict a migration decision
Ay. To model the dependence of a data point x; at a timestamp
t, we consider the sliding window of length k, denoted as

Wt = {.'L'tfk;, s 7:1;1571}7

as is done in prior work [32]]. Thus, in lieu of using just xy,
we use W; as it allows us to capture the local context. For
model robustness, we normalize the input windows. For the
sake of simplicity and without loss of generality, we drop the
t index whenever this is not ambiguous and use z, S, W, A.

B. PreGAN Model

Figure [2] provides an overview of the PreGAN model. The
multi-variate time-series has now become the host character-
istics . We form a graph using the schedule S, such that
there is an edge from h; to h; if there is a task migration
from h; to h; in S. The n characteristics of each host are
then used to populate the feature vectors of the nodes in the
graph. We then use a graph attention network (GAT) with
Gated Recurrent Units (GRUs). GAT allows us to extract the
multi-host feature correlations with the migration information
encoded as graph edges. GRU allows us to extract temporal
trends in time-series log data for prediction of faults in the
next interval. This, in conjunction with the migration decision
from the underlying scheduler, is used to detect the hosts
with a high chance of faults and predict the class prototypes
for each fault. The detection and classification results are
combined to create an embedding for the generator network
that predicts the preemptive migration decision to amend the
input schedule. The decision is forwarded to a discriminator
network to compare against the original scheduling decision.

We now describe the complete pipeline in detail. The input
time-series window W is first converted to a tensor of size
k x m x n. The scheduling decision for each task is converted
to a one-hot decision vector of size m. For p active tasks



in the system, these one-hot vectors are stacked to form a
matrix of size p X n. We divide our model in two parts: (1)
Fault Prototype Encoder (FPE) that aims to solve the first sub-
problem and (2) Preemptive Migration GAN for the second
sub-problem.

Fault Prototype Encoder. To infer over all hosts in the
graph, we create a new global node connected to each host
node [33]]. This gives the graph attention operation as

D

1

0O, = sigmoid (
n

ie{l,...,m}

QGATWi>a (D

where Ogar is the weight matrix for the GAT network. The
time-series is also passed through a GRU, with O, as the
output of the previous interval

O = GRU(W, 0y). @)

For any three input tensors (), K and V, we define Multi-Head
Self Attention [22] as passing it through h (number of heads)
feed-forward layers to get @Q;, K; and V; for i € {1,... h},
and then applying attention as
MultiHeadAtt(Q, K, V) = Concat(Hy, . .., Hy)
H; = Attention(Q;, K;, V;).
Here Attention(Q);, K;, V;) is the scaled-dot product attention

operation [22]. We apply this on the GRU and GAT outputs
(with task SLO requirements and host characteristics) to obtain

O = MultiHeadAtt(S, S, [O1; O2]). “4)

3)

The late-fusion of the two outputs allows the downstream
models to exploit them independently [33]]. The output O is a
collection of attention based encodings for each host. We pass
this encoding through two decoders for each host h;,

D#* = softmax(FeedForward(0;)), 5)

P; = sigmoid(FeedForward(O;)),
where D/ € TR? denotes the fault prediction. The model
predicts a fault in h; if DA[1] > DA[0]. P, € R is a
prototype embedding for each host corresponding to the fault
class, irrespective of whether a fault is detected or not. This
factored prediction for each host allows our model to be
agnostic to the number of hosts in the system. We define the
embedding for host h; as

P; if DA[1] > DA[0
Ef:{[o] it (1] > D [ ©
1xE’ otherwise.

We stack all host embeddings to generate E*'. This auto-
regressive style of using fault predictions allows us to generate
a representation of the fault prediction that only consists of
class prototypes for the hosts where a fault is detected.

Preemptive Migration GAN. The embedding output from
the FPE is passed through the Generator

A =tanh(LayerNorm(S + MultiHeadAtt(S, S, ET))), (7)

where the A € IRP*™ denotes the preemptive migration
decision. This is added to the original scheduling decision to

Algorithm 1 The FPE training algorithm
Require:
Fault Prototype Encoder E
Dataset used for training {W;, St, 9},
Step size a, Evolutionary hyperparameter e
Iteration limit L
1: Initialize weights in E. Set [ < 0
2: Randomly initialize class prototypes {Ff, ..., P°}
3: do
4: fort =1toT)

5: DA, P« E(S;,W;)

6: Ly =" (L9, = 0)log(DA[0])
+1(g,; > 0)log(DA[1]))

7: Ly =370 Ui >0)(HP1‘_PQ€JH2

~(Xj29, 1P = F7[12))
for(i =1 to m)

10: ngie(l—a)-P§7i+a~Pi
11: Update weights of E using L, Lo
12: a+—(l—€)

13: I+1+1

14: while [ < L

get N = S+A. The final decision for each task p is calculated
as argmax(NN,). The output of the generator is passed to a
discriminator decoder

D = softmax(FeedForward(N)), 8)

where D € IR? denotes predicted likelihood scores for using S
and N as schedules. The final scheduling decision of PreGAN
is defined as

N, if D[1] > D|0]
S, otherwise.

Final Schedule = { 9)

Summarizing, the FPE detects faults in hosts and generates
class prototype embeddings for each host. These embeddings
are stacked (E£¥) and sent to a generator network that outputs
a preemptive migration vector (A). The discriminator then
provides a likelihood score to the new (/N) and original (5)
scheduling decisions. The final output is then the decision with
the highest likelihood score.

C. Offline FPE Training

We now describe the training process for the FPE to detect
and classify faults, summarized in Algorithm [T} To train the
encoder, we first collect a dataset of input windows, scheduling
decisions and fault class labels {W;, S, 9:}~ ; by running
the system without any preemptive migration. Here, ¢ ; is
the class label for h;, with O indicating no fault. Now, the
FPE encoder (denoted as E) generates the outputs D? and
P from the inputs W; and S; (line [3 in Alg. [I). We use the
cross-entropy loss for fault detection (line [6] in Alg. [T). Here,
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Jt,i 1s used to generate the ground-truth labels and the loss is
summed over all hosts:
m

Li=) (ﬂ@t,z- =0)log(DA[0]) +1(§,; >0) log(DA[l])) .

= (10)
For fault-classification, we use a triplet loss. We first define
class prototype vectors for each fault class {P{,..., P},
that are randomly initialized from [0, 1]¥. Just like the means
in a k-means clustering approach, these vectors denote the
centroids of the embeddings of their respective classes [23]]. As
is common in prototypical networks used in few-shot learning,
the new embedding generated by the model belongs to the
class which has the least Euclidean distance from the class
prototypes. The triplet loss aims at reducing the distance of the
output embedding from the true class prototype and increasing
it from the false class ones (line[7]in Alg. [I). Thus, for all those
hosts with a true fault, the loss includes the L2-norm between
the output embedding and the true class prototype and negative
L2-norm between the output and false class prototypes:

La=> "1 >0) (1P = P o= S I1P =P l2). (1)
i=1 J# G,
Another step in the training process is to update the class
prototypes. If an output embedding belongs to the correct
class, we can update the prototype of that class as

PS¢ «—(1—a)-PS +a-P,

Yt,i Yt,i

12)

where « is the step-size. We exponentially decay our step-
size to ensure that the model learns class prototypes quickly
initially and converges to a stable prototype set (line [12] in
Alg. [T). The triplet loss in conjunction with the prototype
updates allow the prototypes to be distant from one another,
making each prototype a characteristic identifier for that class.

Visualization of Attention Scores. Figure [3| visualizes the
attention scores for the FPE encoder of the PreGAN model.
The model is trained on a dataset collected from a real-setup
(details in Section . We show the time-series, the average
attention weights for each window (averaged over multiple
heads and shown by the red heatmap) for the CPU utilization

Algorithm 2 The GAN training algorithm

Require:
Pretrained FPE Encoder E
Generator and Discriminator networks Gen, Disc
Co-Simulator Sim

1: Initialize weights in Gen, Disc.

2: fort =1toT)

3: DA,P%E(St,Wt)

4: Get EY by (6)

5: A= Gen(S;, EF) > Generative preemptive migration
6: N=S+A > Form new scheduling decision
7.
8
9

D = Disc(S;, N) > Compare the two decisions
Calculate Lp using (T3)
: Update weights of Disc using Lp
10.  Calculate L using
11: Update weights of Gen using Lq

of the first 3 hosts in the system. It is apparent that the attention
scores are highly correlated with the peaks in the data. This
allows the model to specifically detect faults in each host
individually. As shown in Figure [3| the faults are detected
in those hosts for which the attention scores are high.

D. Online GAN Training

We now describe how we use a pre-trained FPE encoder and
a co-simulation engine to train the GAN model, summarized
in Algorithm [2] Co-simulation is a technique in edge com-
puting that allows a framework to run multiple event-based
simulations with different parameters like scheduling decisions
to optimize the QoS of the system [24]]. As event-based co-
simulators can provide us QoS estimates quickly, they allow us
to avoid running decisions on the physical setup, saving time
and execution costs. Thus, unlike a traditional GAN model,
we train our discriminator in a self-supervised manner using
a co-simulator.

Our GAN training runs in an online fashion instead of using
a pre-collected dataset. For an input pair (S, W), we run the
PreGAN model to obtain N and S. We run the co-simulator
with the two scheduling decisions S and N and obtain the QoS
scores. These scores may be calculated using a combination
of metrics like energy consumption, response time and SLO
violations [31]], [34]. We denote the co-simulated QoS scores
by Sim(.S) and Sim (V). To make the likelihood score output
of the discriminator correspond to the co-simulated scores, we
use the binary cross-entropy loss as:

Lo :% >~ (1(Sim(N) > Sim(S)) (los(D[1]) + log(1 — D[0)))

+1(Sim(NV) < Sim(S)) (log(D[O]) +1log(1 — DI1] )))
(13)

where the loss does not propagate to the generator (fixing V).
This pushes the discriminator to give a higher likelihood score



Algorithm 3 The PreGAN testing algorithm
Require:
Pretrained models E, Gen, Disc

I: for¢t=1toT)

2: DA,P(—E(St,Wt)

3 Get ET by (6)
4: A = Gen(S;, EF) > Generative preemptive migration
5: N=5S+A > Form new scheduling decision
6:
7
8
9

D = Disc(S;, N) > Compare the two decisions

Execute final schedule obtained from (9)

if(D[1] > D[0])
return NV

: > Return new decision if higher score
10: return S

to the decision with a higher simulated QoS score. To train
the generator, we use the adversarial loss

1 m

Lo =3 Z} (rog(DI1)) + 10g(1 = DIO))),  (14)
where the loss propagates to the generator with the discrim-
inator weights kept fixed. This is equivalent to Eq. (I3) but
with Sim(N) > Sim(S), pushing the generator to output a
migration decision A which gives a schedule IV better than
the original schedule S. To do this, the generator gets fault
class labels from the FPE encoder.

This style of training a discriminator model has two benefits:
it allows us to (1) run our model inference without the co-
simulation at test time, eliminating the computationally expen-
sive generation of simulated traces, (2) train our preemptive
migration generator by backpropagating the adversarial loss to
the generator network.

E. Online Inference

We now describe the inference procedure using the trained
PreGAN model (summarized in Algorithm [3). For any input
time-series window and scheduling decision W, .S, the Pre-
GAN model outputs D, N. Based on the likelihood scores
of the discriminator D, PreGAN predicts if the preemptive
migration decision would improve QoS or not. If it does, i.e.,
D[1] > DJ0], N is executed, otherwise the original decision
S is executed (lines in Alg. [3).

Overall, the FPE in PreGAN allows us proactively predict
faults and guide the GAN model to generate a preemptive
migration decision over the schedule generated by a policy
oblivious to future system faults. The discriminator of the
GAN then performs a cost-benefit analysis over the original
scheduling decision to avoid excessive migration overheads.
This allows PreGAN to optimize scheduling decisions and cut
down execution costs.

IV. EXPERIMENTS

We compare the PreGAN method with the state-of-the-
art baselines: DFTM [11], ECLB [9], PCFT [3] and
CMODLB [10] (more details in Section [l). Other heuristic
based approaches have been omitted for brevity as these

baselines outperform those in all the metrics we consider
in our experiments. We use hyperparameters of the baseline
models as presented in their respective papers. We train all
deep learning models using the PyTorch-1.8.0 [35] librar

A. Evaluation Setup

Our evaluation testbed is a cluster with 16 Raspberry Pi 4B
nodes.Our cluster contains 8 nodes with 4-GB RAM and
another 8 but with 8-GB RAM. The power consumption
models are taken from the commonly-used SPEC benchmarks
repository [36]]. We run all experiments for 100 scheduling
intervals, with each interval being 300 seconds long, giving a
total experiment time of 8 hours 20 minutes. We average over
5 runs and use diverse workload types to ensure statistical
significance.

For our workloads, we consider the DeFog applications:
Yolo, PocketSphinx and Aeneas [37]]. DeFog is a fog com-
puting benchmark suite that consists of various real-world
application instances. The three specific applications used in
our experiments were considered due to their heterogeneous
resource requirements and volatile characteristics. At the be-
ginning of every scheduling interval, we create Poisson(\)
new workloads, sampled uniformly from the three applica-
tions. Poisson distribution is a natural choice for a bag-of-tasks
workload model, common in edge environments [2]], [31]], [38].

B. Evaluation Metrics

For fault detection, we consider detection accuracy, precision,
recall and F1 scores. For a test datapoint {W;, Sy, 4} with
the PreGAN outputs D and N, the predicted and ground-truth
labels are obtained as

/\ 1(D[1] > D[0]) and /\ (g > 0)

i=1 i=1
respectively. This ground-truth label is 1 when any of the edge
hosts has a fault and O otherwise.

For fault diagnosis, we consider two commonly used
metrics [39]: (1) HitRate@100% is the measure of how
many ground truth dimensions have been included in the
top candidates predicted by the model [40], (2) Normalized
Discounted Cumulative Gain (NDCG@100%) [41]. For fault
classification, we consider the classification accuracy. For test
time, we also consider an “improvement ratio”, which for an
execution of T intervals is calculated as:

T
1

Improvement Ratio = — Z 1(D[1] > DJ0)). (15)
=

This metric denotes the ratio of the times the model is able
to predict a better scheduling decision than the original. This
gives us an indication of the how well the preemptive migra-
tion prediction performs compared to the original scheduling
decision. Together with the detection accuracy this gives us a
complete picture on how well the model performs compared

'All model training and experiments were performed on a system with
configuration: Intel i7-10700K CPU, 64GB RAM, Nvidia RTX 3080 and
Windows 10 Pro OS. This was also the broker node in our setup.
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Figure 5: Training the Fault Prototype Encoder.

to the case where there is no preemptive migration. To explain
these metrics with a simple visualization example on 200
intervals, consider Figure [0(f)} The top heatmap denotes the
intervals at which the model predicted a fault (fault denoted
with black and yellow otherwise), specifically 38 intervals out
of 200. The second heatmap shows the fault class prediction
for each host (if any). The third heatmap shows the intervals
in which the likelihood score of N was higher than S (30
out of 38) and the fourth heatmap shows the hosts from
which there was a task migrated. Here, the improvement ratio
is 30/38 = 0.7895. Also, we observe a strong correlation
between the fault class predictions and the host selected for
task migration, thanks to the factored prediction in PreGAN.

We also consider standard QoS metrics including energy
consumption, response time, fraction of SLO violations, mi-
gration count and resource utilization.

C. Implementation and Training

To conduct our tests, we use the COSCO framework that sup-
ports container orchestration in distributed edge clusters [24]].
COSCO is at present the only framework that allows the
generation of QoS scores using co-simulated traces. For a

[ _rlll ; b L] ; b |::| ; “II ; i b n i ] ; l E

o : [} T Hil E

E :_ M f | I [} i

;E E_l TR I III“I“‘ e ) “‘E

- i | 1 oo [ oz

o _L ' o L s ”l" L0 (L e Je i v“l NI _E 1
0 50 100 150 200

< oy | R A O T R T

2 - L} n i i ] L} ] =

; = i I L w .0

c :_l Laan e ) IIII_&

=) Ju I | I ||““\ ju

O  Duimbing g g woZ

& oo “.m i m.“ W N g A A GUAAE
0] 50 100 150 200

Timestamp
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Figure 8: Training of the GAN network.

fair comparison, we use a common underlying scheduling
policy, GOBI [24], that generates scheduling decisions (S;)
by optimizing QoS scores using a deep neural network based
surrogate model.

To generate the ground-truth fault labels and classes, we
use the Anomaly Detection Engine for Linux Logs (ADE)
tool [42]]. The output anomaly classes for the tool are: CPU
over-utilization (CPUO), Abnormal disk utilization (ADU),
Memory leak (MEL), Abnormal memory allocation (AMA)
and Network overload (NOL). CPUO occurs when the CPU
utilization exceed 90%. When the disk controller of a system
throttles read/write operations, an ADU fault occurs. MEL
occurs when there is incremental allocation of 1 MB memory
every 3 seconds. When RAM 1/O utilization exceed 90%, it
causes an AMA fault. NOL fault occurs when network buffer
overloads and temporary disk space needs to be allocated for
file transfers. All faults events are raised when the above
conditions hold for at least 60 seconds. For simplicity, the
CPUO anomaly is classified as a CPU fault, NOL/ADU
are clubbed together as a Network fault (as network buffer



Table I: Performance scores of PreGAN and the baseline methods with standard deviation. The best scores are shown in bold.

Improvement
Ratio

Method Detection Diagnosis Overhead
Accuracy Precision Recall F1 Score HR@100 NDCG@100 Ratio
DFTM 0.8731 +0.0234 0.7713 +0.0823 0.8427 4+0.0199 0.8054 +0.0872 0.5129 +0.0212 0.4673 40.0019 0.0413 +0.0021
ECLB 0.9413 +0.0172 0.7812 +0.0711 0.8918 40.0203 0.8329 40.0901 0.4913 40.0010 0.5239 40.0024  0.1028 =+0.0009
PCFT 0.8913 +0.0108 0.8029 +0.0692  0.9018 +0.0165  0.8495 +0.0312  0.5982 +0.0094  0.5671 £0.0020  0.0913 +0.0014
CMODLB 09128 +0.0112  0.8158 £0.0343  0.9013 4+0.0091  0.8605 +0.0284  0.6309 +£0.0025  0.5432 +0.0031  0.2123 40.0003
PreGAN 0.9635 +0.00921  0.8723 +0.0221  0.9018 +0.0121  0.8868 +0.0629  0.6232 +0.0069  0.5898 +0.0080  0.1617 £0.0017
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Figure 9: Comparison of QoS parameters of PreGAN against baselines.

overloads almost always result in disk faults) and MEL/AMA
are clubbed together as a RAM fault (due to high correlation
between these two). Thus, we consider 3 fault types/classes.

To train the FPE and GAN models, we use the AdamW
optimizer [43]]. We train the FPE encoder and GAN using a
traces of lengths 1000 and 1200 scheduling intervals respec-
tively. These numbers were obtained using the early-stopping
convergence criterion. The QoS score obtained from the co-
simulations was a convex combination of the normalized
energy consumption and SLO violations [24]. The hyperpa-
rameter values used in our experiments for PreGAN were
obtained using grid search. We use the prototype embedding
size of 8, windows size of 5, initial value of o as 0.9 and
decay rate € as 0.05.

Figure [5] shows how the FPE encoder converges in offline
training using 80% of the dataset collected from traces of
1000 intervals (rest as test set). As the model is trained, its
fault detection and classification accuracies improve. Figure [6]
shows the predicted and ground-truth fault labels on the
test set, with hosts on the y-axis and intervals on the x-
axis. Figure [7(a)] shows a t-SNE plot of the class prototypes
predicted on the test set. Clearly, the prototype embeddings of
the same class are clustered together, demonstrating that the

model is able to distinguish among the different fault types.
Classification confusion matrix on the test set can be seen in
Figure [7(b)] The prototype embeddings generation allows the
model to generalize and accurately classify even previously
unseen time-series inputs into one of the three classes. After
training the FPE, we train the GAN. Figure [§] shows the
discriminator (Lp) and generator (L) loss values with the the
Improvement Ratio for the first 40 iterations, i.e., the intervals
with faults in the GAN training dataset.

D. Results

We now describe the results corresponding to 100 interval
runs on the testbed using the DeFog workloads. The ground-
truth labels are obtained offline, after the complete execution
to compare the detection and diagnosis performance of the
models. Table [I] shows the detection and diagnosis metrics
with the improvement ratios. It also shows the overhead ratio
in terms of the time it takes to run the preemptive migration
model relative to the scheduling model. The overhead ratio
is highest for CMODLB due to the several sequential steps
in its model like k-means clustering, ANN inference, and
PSO. On average, the accuracy, precision, recall and the F1
score of the PreGAN model are the highest. This is due to
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Figure 10: Sensitivity Analysis for all models with A (parameter of the discrete Poisson distribution).

the late-fusion of the embeddings obtained by the feature
(GAT) and temporal trend (GRU) extraction. This allows the
PreGAN model to not only exploit the correlations across host
devices, but also sudden deviations from the expected resource
utilization characteristics across time. Models like DFTM and
ECLB use a basic sinusoidal thermal trend for all models
and do not consider host heterogeneity. CMODLB uses k-
means clustering to identify a common utilization threshold,
irrespective of the running workloads or the host capacities.
This gives higher fault detection scores for the PreGAN model.
For fault-diagnosis, the CMODLB method has the highest
HitRate (0.6309) with the PreGAN being very close (0.6232).
The NDCG score of the PreGAN model is the highest. This
is due to the factored fault prediction in the PreGAN model.
Finally, the improvement ratio of the PreGAN model is the
highest, i.e., 0.7605 improving from 0.7283 of the CMODLB
model by 4.42%.

Figure [9] compares the QoS scores of all models, including
the vanilla GOBI approach without any preemptive migra-
tions. The PreGAN model has the lowest average energy
consumption of 9.0121 KW-hr, with DFTM being next at
9.4255 KW-hr. This is due to the relatively lower average
CPU and RAM utilizations (Figures[9(c) and O(d)). Figure O(b)
shows the average response times with response time being
defined as the time between the creation of a task from an
IoT sensor and the gateway receiving the response. Among
the baselines, the DFTM approach has the lowest response
time as it uses minimum-migration-time heuristic [44] for task
migrations (Fig.[9(e)). PreGAN avoids unnecessary migrations
to prevent avoidable use of network resources, improving
overall system reliability (Fig.[9(f)). Even with higher response
times, CMODLB and PreGAN achieve low SLO violation
rates as their migration decisions are SLO aware. Figure [9(h)
shows the SLO violation rates for each application. For all
models, Yolo has the highest violation rate due to its compute
heavy utilization characteristics. The migration decisions in
PreGAN use the fault class labels to decide the target hosts
in the migration decisions. The fine-grained classification in
PreGAN allows it to migrate CPU intensive tasks from a
compute constrained node to a node with low CPU utilization,
even if the target node is running at capacity on RAM and
Disk. Compared to the binary classification in CMODLB, this
gives PreGAN more choices for the target host, allowing lower
overheads in migration and more balanced resource utilization.

E. Sensitivity Analysis

Figure [I0] shows the variation of the energy consumption,
SLO violations, F1 score and improvement ratio with the
A parameter in our Poisson distribution used to model the
workloads. We vary A from 1 to 15 (A = 15 constantly gives
> 90% CPU utilization for all hosts). Under a higher A\ more
tasks are produced, making the fault prediction harder. This
is apparent from the drop in the F1 scores, leading to higher
SLO violations. Even the energy consumption increases due
to the increase in the average CPU utilization of the system.
Overall, PreGAN shows the least relative drop in F1 scores
and improvement ratio as we increase A giving the least SLO
violations even in workload heavy executions.

V. CONCLUSIONS

We have presented a preemptive migration prediction model
(PreGAN) that can detect, diagnose and classify faults in edge
computing environments. PreGAN uses GAT and GRU for
feature extraction with a Multi-Head-Attention and Prototype
prediction decoder to detect and classify faults. PreGAN lever-
ages a generator model to utilize the anomaly class prototypes
to output a delta scheduling decision (migrations) to rectify
the faults and improve QoS. The discriminator model with
co-simulations allow PreGAN to decide between the origi-
nal and modified scheduling decisions. Moreover, PreGAN’s
discriminator aids generator training using adversarial loss
and does not require it to run co-simulations at test time.
This allows PreGAN to have high detection and classification
accuracies that aid efficient fault recovery for optimal QoS.
Specifically, PreGAN achieves an improvement of 8%, 5%
and 12% for energy consumption, response times and SLO
violations respectively. It is also able to correctly identify
faults, giving an average F1 score of 0.8868, higher than the
state-of-the-art models. PreGAN is able to achieve this with
23.8% lower overheads compared to the baseline method with
the highest F1 score. This makes PreGAN an ideal choice for
reliable edge computing with time-critical applications.

We now present some future directions for this work. Due to
difficulty in obtaining labeled data for training, we propose to
extend PreGAN to utilize unsupervised models [45]. Finally,
the current model assumes a master-slave design and we plan
to explore extensions that allow us to deploy PreGAN in
federated or serverless platforms with streaming tasks [460].



SOFTWARE AVAILABILITY

The PreGAN code is available at https://github.com/
imperial—-gore/PreGAN under BSD-3 License. The
Docker images are available at https://hub.docker.
com/u/shreshthtuli.
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