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Abstract—Motion-controlled robotic systems would become
more and more popular in the future since they allow humans
to easily control robot to carry out various tasks. However,
current authentication methods rely on static credentials, such
as password, fingerprints, and faces, which are independent of
the robot control. Thus, they cannot guarantee that a robotic
is always under the control of its enrolled user. In this paper,
we build a motion-controlled robotic arm system and show that
a robotic arm’s motion inherits much of its user’s behavioral
information in interactive control scenarios. Based on that, we
propose a novel user authentication approach to verify the robotic
arm user. In particular, we log the angle readings of the robotic
arm’s joints to reconstruct the 3D movement trajectory of its
end effector. We then develop a learning-based algorithm to
identify the user. Extensive experiments show that our system
achieves 95% accuracy to verify users while preventing various
impersonation attacks.

Index Terms—interactive control, robot behavior, network
controlled robot, user authentication, cyber-physical security

I. INTRODUCTION

Motion-controlled robotic systems, in particular the robotic
arm systems, have been increasingly used for a multitude of
applications for providing augmented interactions [1], includ-
ing education, research, industrial control and social network.
A typical motion-controlled robotic arm system comprises two
end devices connected by a network. The client-end device
tracks the user’s motions and issues the corresponding control
commands. The robotic arm at the other end receives and
executes the commands. In the meanwhile, the user observes
the robotic arm’s movements and adjust his/her hand motions
accordingly for interactive control, which facilitates perform-
ing fine tasks.

To make sure the robot is under the control of enrolled
user(s), existing authentication approaches rely on passwords
or physiological biometrics (e.g., fingerprints and faces) for
system logins [2]. However, these authentication methods
based on static credentials are independent of the robot control.
They could hardly guarantee that the robotic arm is truly
under the control of the enrolled user(s). For example, an
adversary may substitute the user’s control commands with
malicious ones to bypass the above authentications. Moreover,

the static authentication inputs could be obtained or forged by
an adversary to fool the system.

The behavioral biometric authentication verifies a user via
human body motions. In particular, the behavioral characteris-
tics of the user’s 3D hand gestures can be captured and verified
by vision sensors [3], wearable inertial sensors [4] and radio
signal sensors [5]. However, these methods are based on the
user’s motion data captured at the user end. They are hard
to protect the robotic arm at the other end of the network.
More specifically, it is still hard to know whether the robot
control commands really come from its enrolled user and are
not altered before they reach the robot.

To the best of our knowledge, this is the first study on
user authentication for a motion-controlled robotic arm system,
where the robotic arm’s motion behaviors are leveraged to
verify the user. In this study, we first build up a real motion-
controlled robotic arm platform, consisting of a 7-Degree-Of-
Freedom (DOF) robotic arm at the robot end, six OptiTrack
motion capture sensors at the user end, and a local area
network connecting the two ends. In particular, we implement
a human-robot Kinematic mapping algorithm to enable real-
time robot control. Our experiment shows that the robotic
arm inherits its user’s unique behavioral characteristics in the
interactive control environment.

Based on this, we propose a novel user authentication
approach that embeds the robot control into user authen-
tication, which significantly enhances the system security.
Specifically, our approach first exploits the joint angle readings
read from the robotic arm to reconstruct its end-effector
trajectories. Then, we derive the unique features to capture
the user’s behavioral characteristics carried by the robotic arm.
Moreover, a machine learning algorithm is designed based on
weighted Dynamic Time Warping (DTW) to verify the identity
of the human controller (i.e., user). Our experiment results
demonstrate the promising authentication performance.

Our contributions are summarized as follows:
• We propose a robot behavior-based user authentication

approach to embed robot control into user authentica-
tion, which can effectively protect the access to motion-
controlled robotic arm systems.



Fig. 1: The motion-controlled robotic arm platform.

• We demonstrate that the robotic arm inherits its operator’s
behavioral biometric in the interactive control scenarios,
whose behaviors can thus be used for authentication.

• We build up a real motion-controlled robotic arm platform
to evaluate our authentication approach. The experiments
with 10 participants in practical control scenarios show
that our approach accurately verify users while preventing
the various impersonation attacks.

II. SYSTEM DESCRIPTION AND FEASIBILITY STUDY

In this section, we first introduce our motion-controlled
robotic arm platform, which consists of user-end devices,
robot-end devices, and a local area network. Then, we provide
the feasibility study to show that the robotic arm inherits
its user’s unique behavioral characteristics in the interactive
control environment. Finally, we introduce the brief system
flow of the proposed user authentication approach.

A. Motion-Controlled Robotic Arm Platform

In this work, we develop a motion-controlled robotic arm
platform to allow a user to interactively control a robotic arm
in real time. As shown in Fig 1, the platform consists of the
devices at two ends. The user-end devices capture the user’s
hand motions and generate the control commands based on the
human-robot kinematic mapping [6]. The control commands
are sent to the robot end via a local area network to control the
robotic arm in real time. In the meanwhile, the user observes
the robotic arm movements and adjust his/her hand motions
to achieve the interactive control.

1) User-end Devices: At the user end, six OptiTrack cam-
eras are deployed in a 4m by 4m square area to capture
the user’s hand movements. The user is required to wear
a 3D-printed glove with 7 passive markers, which allows
the OptiTrack system to obtain reliable measurements and
construct a rigid body of the user’s hand with less than 0.2
millimeter errors [7]. When the user moves the hand in the
air, the 3D hand coordinate is obtained and sampled at 120
Hz. Then, the personal computer (PC) performs robotic arm
inverse kinematics algorithm based on the Denavit–Hartenberg

Fig. 2: Comparison of the user’s motion behaviors under the
interactive control (int) and the non-control (non) scenarios.

parameters of the robot arm, mapping each user’s 3D hand
coordinates to 7 joint angles [6].

2) Robotic Arm-end Devices: At the robotic arm-end, a
Franka Emika Panda robot is used in the experiments [8].
A PC acts as the robotic arm controller for path planning.
This is achieved by the proportional–integral–derivative (PID)
control algorithm, converting the received joint angle values
into a series of robotic control angular velocity commands
within some trajectory limitations. Then, the angular velocity
commands can be directly executed by the application pro-
gramming interface (API) functions provided by libfranka,
which is C++ implementation of Franka Control Interface
(FCI) [9]. The interface allows the PC to update the target of
each joint position and read the robot state to get the sensor
data at 1 kHz. Since the updating rate of the angle data is 120
Hz, a new path planning is made at every 8 milliseconds.

3) Local Area Network: We use the commercial Ethernet to
connect the two ends and facilitate the data transmission from
the user-end PC to the robot-end PC. We utilize User Datagram
Protocol (UDP) to support the high packet delivery rate. This
protocol also reduces the queuing delay at the transmitter side
and improves the real-time tracking performance. The system
can also be easily deployed with the TCP/IP protocol. Accord-
ing to the specific application and performance requirements,
other high-speed networks, such as LTE and 5G, can be used
for our prototype.

B. Feasibility Study

1) Human Behaviors in Interactive Control Environments:
Based on the above platform, we first investigate whether
a user’s motions exhibit behavioral uniqueness in interactive
control environments and how it is correlated to the user’s
regular daily behaviors. In particular, we ask a participant to
repeatedly draw an “S” in the air 40 times while controlling
a robotic arm using the above platform. For comparison, the
participant also draws the same “S” freely as he regularly does
without operating a robotic arm. User’s hand motions in both
the interactive and non-control scenarios are captured by the
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Fig. 3: Comparison of the user’s hand and the robotic arm
end-effector trajectories of writing an “s”.

OptiTrack cameras and represented as the time series of 3D
coordinates. We then compare the user’s hand motions within
each scenario and across the two scenarios by calculating
their Euclidean distances. Fig. 2 presents the boxplots of the
comparisons. We find that the inter-class Euclidean distances
of int-non are much higher than that of the intra-class compar-
ison non-non. This result shows that the user’s motions under
the interactive control scenario are much different from his
regular behaviors. The reason is that the user has to adapt
to the movements of the robotic arm during the interactive
control, which changes the user’s behavioral characteristics.
Moreover, we find that the intra-class comparison int-int shows
the low Euclidean distances comparable to non-non. This
result indicates that the user’s behaviors in the interactive
control scenario are still consistent, which facilitates learning
the user’s interactive control behaviors for authentication.

2) Human Behavioral Biometrics Embedded in Robot Mo-
tions: We next investigate whether the robotic arm could
inherit the user’s behavioral biometrics. In particular, we
compare the 3D coordinates of the human hand and the
robotic arm end effector, which are captured by the OptiTrack
cameras. As the robotic arm has more joints and different arm
lengths and moves in a different coordinate, its motions could
not be directly compared with human arm motions. Thus, we
perform the interpolation, scaling and coordinate alignment
(introduced in Section III-B) to normalize the two trajectories.
The resulted trajectories are compared in Fig 3. We find that
both trajectories show the curve of an “S” in the 3D space.
Although the robotic arm follows the path of the user’s hand,
its movement trajectory does not completely replicate that
of the user’s hand. This is because the 7-joint robotic has
a different kinematic mechanism compared to the human arm.
Additionally, when following the user’s hand motions, the
sampling errors and the network traffic delays cause the robotic
arm to show much more additional movements. But the robotic
arm’s trajectory still exhibits a certain similarity to that of the
user’s hand, because both the user and the robotic arm tries to
adapt to each other’s motion in the interactive control scenario.
The result indicates that the robotic arm carries a portion of
the user’s behavioral biometrics, which can be used to verify
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Fig. 4: The flow of the proposed user authentication for
motion-controlled robotic arm.

its human operator and secure the robotic arm.

C. System Flow

The basic idea of our approach is to verify the user based
on the behaviors of the robotic arm under the interactive
control. The system flow of the proposed robot behavior-based
user authentication approach is shown in Figure 4, which
is deployed at the robotic arm end. After logging into the
platform from the user end using a password, the user can
operate the robotic arm with hand motions to perform tasks in
real time. During the control process, the control commands
are generated and sent to the robot end. In the meanwhile, the
user receives the visual feedback of the robotic arm’s gesture
for interactive control.

When the robotic arm executes the received control com-
mands, the sampled angle values of its joints are taken as
the input of our authentication approach. The joint readings
are first segmented and normalized to represent each hand
movement. Next, we reconstruct the moving trajectory of the
robotic arm’s end effector in the 3D space based on forward
kinematics. We then derive unique features to capture the
robotic arm’s behavioral characteristics associated with the
user’s behavioral biometric, which are fed into a machine
learning model. When enrolling the system and using the
robotic arm for the first time, the robotic arm’s behavior
template is obtained to create the user’s profile. When the user
accesses the robotic arm at a later time, the current robotic arm
behavior is compared with the user’s profile to verify whether
the user’s identity is as claimed. Based on the verification
result, the robotic arm would continue to operate or reject the
access and halt while requiring a re-login.
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III. USER AUTHENTICATION DESIGN

A. Reconstructing the Robotic Arm’s End-effector Trajectory

Our authentication approach utilizes the logged angle values
of the robotic arm’s seven joints to verify its user. To capture
how the robotic arm follows the user’s motion and inherits
the user’s behavior, we reconstruct the end-effector trajectory
of the robotic arm based on forward kinematics. The robotic
arm’s motion mechanism is modeled as shown in Fig 5. For
each joint such as Joint i, Zi is its rotation axis, and Xi and
Yi are on its rotation plane. Xi is defined to be in the same
direction of the arm link~li (towards Joint i+1) at the beginning
of the robotic arm control. When the robotic arm starts to
move, the coordinate of Joint i can be determined by all of
its i−1 prior joints. We then use the Denavit-Hartenberg [10]
parameters to describe the robot kinematics. In particular, the
link length |~li| is the distance between Joint i and Joint i+
1, while the link offset ~di is measured against the Zi-axis.
Figure 5 illustrates the joint status at time t, when the angle
between Zi and Zi+1 is αi, and the arm link ~li rotates with the
angle θi, The transformation matrix from Joint i to Joint i+1
can thus be expressed as:

iTi+1 = RX (αi)DX (|~li|)RZ(θi)Qi(~di)

=


1 0 0 0
0 cosαi −sinαi 0
0 sinαi cosαi 0
0 0 0 1




1 0 0 |~li|
0 1 0 0
0 0 1 0
0 0 0 1




cosθi −sinθi 0 0
sinθi cosθi 0 0

0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 ~di
0 0 0 1

=


cosθi −sinθi 0 |~li|

sinθi cosαi cosθi cosαi −sinαi −~di sinαi

sinθi sinαi cosθi sinαi cosαi ~di cosαi
0 0 0 1

 ,

(1)

where R represents the rotation matrix, and D and Q denote
the translation. The 3D coordinate of the end effector npos is
calculated based on the base point 0pos = (x0,y0,z0)

T , which
has a fixed location, as:

npos =


xn
yn
zn
1

=0 Tn


x0
y0
z0
1

=0 Tn


0
0
0
1

 , (2)

where the transformation matrix 0Tn is obtained by
0Tn =

0 T1
1T2

2T3...
n−1Tn. (3)

The derived 3D coordinate time series [npos0,
n pos1, ...,

n post ]
describe the movements of the robotic arm, based on which
we further extract the robotic arm’s unique behaviors.

B. Data Calibration and Normalization

Due to user’s varying hand movement speeds and scales,
orientations and distances to the motion capture device, the

Fig. 5: Kinematic model of the robotic arm.

derived robotic arm movement trajectories must be normalized
and calibrated before we distinguish the minute behavioral
differences among users. To address the above issues, we apply
re-scaling and axes alignment to the reconstructed end-effector
trajectory. In particular, the end-effector trajectory of each
movement is first segmented based on the short-time energy.
We then perform the interpolation to unify all end-effector
trajectories into the same length in time. Furthermore, The 3D
space that encloses a trajectory is scaled to a 1×1×1 bound-
ing box. Additionally, to unify the orientations of different
trajectories, we pre-define a reference direction and rotate all
the trajectories to align with it.

C. User Authentication

As the user could operate the robotic arm to perform
different tasks, we propose to exclude the impacts of the task
differences to focus better on the robot’s behaviors. Thus, we
first recognize which task the robotic arm is performing and
then utilize the user’s template of the identified task to verify
the user. To achieve the goal, we develop a weighted DTW-
based method to verify the user in two steps and derive unique
features to capture both the task differences and the individual
behaviors embedded on the robotic arm.

Feature Extraction. We derive six types of feature se-
quences from the end-effector trajectory of the robotic arm,
including 3D coordinates, coordinate differences, velocities,
accelerations, slope angles and curvatures. The resulted eleven
feature sequences fk, k = 1, ...,11 are used to train the robotic
arm task classification model and the user verification model
respectively.

Robotic Arm Task Recognition. During the training phase,
we construct the task templates fk,task based on a number of
users’ various task instances. Moreover, we assign weights
wk,task to the different task feature sequences according to their
independent performance [11] to distinguish the robotic arm
tasks. Given a robotic arm end-effector trajectory in the testing
phase, we compute its weighted DTW distance to each of the
task templates as

11

∑
k=1

DTW ( fk,test , fk,task)×wk,task. (4)
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Fig. 6: Confusion matrix of task classification.

The robotic task is recognized to be the class, which exhibits
the minimum weighted DTW distance.

User Verification. After the task is identified, we utilize the
user’s template of the task to verify the user’s identity. The
user’s template of a task is obtained based on the user’s mul-
tiple instances of performing the same task. The same types of
features are used but the weights wk,user are calculated based
on the performance of each feature sequence to distinguish the
users under the task. During the user verification, we compute
the weighted DTW distance using the user’s template as

11

∑
k=1

DTW ( fk,test , fk,user)×wk,user. (5)

If the result is less than a threshold, the robotic arm is believed
to be under the control of the legitimate user. Otherwise, the
verification fails, the robotic arm operation is aborted.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

To evaluate our authentication approach, we recruited 10
participants for the experiment, who were all first-time users
of our platform introduced in Section II-A. They were given
several minutes to get familiar with the platform before data
collection. We then asked them to perform five basic tasks
by operating the robotic arm, including moving the robotic
arm along straight lines and snake-like, wavy, zigzag and
circular curves (i.e., “–”, “S”, “W”, “Z” and “O”). Each type
of task was performed 40 times by each participant. The data
collection lasted for five months. The resulted data set is split
by half for training and testing respectively.

B. Robotic Arm Task Classification

We first present the performance of our approach to rec-
ognize different robotic arm tasks. The confusion matrix in
Figure 6 shows that our approach distinguishes five basic
tasks with 100% accuracy for all the participants. The result
indicates that the logged joint states precisely describe the
robotic arm’s motions when the user performs different tasks,
which enables us to further analyze the minute behavioral
differences of a robotic arm under each specific task.
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Fig. 7: Performance of user classification.
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Fig. 8: Performance of user verification.

C. User Authentication

1) Classification: We first present the performance of our
approach to distinguish users, which reflects how the robot
behaviors are distinct among users. The confusion matrix of
user classification based on the robot behaviors of all five tasks
is as shown in Figure 7. We observe that nine of the ten users
are classified with over 90% accuracy, and five users achieve
95% accuracies. The median classification accuracy is 92.5%
The results show that our approach accurately distinguish the
users based on the robot behavior.

2) Verification: In the practical scenario, the user must log
in the platform with credentials before using the robotic arm.
Thus, the user authentication becomes to verify whether the
user’s identity is as claimed by the login. We present the
verification accuracy for each user regarding all five types of
tasks in Figure 8. We observe that the verification accuracies
for all the participants are between 93.7% and 95%. The
median verification accuracy for each user is 94.8%. The result
confirms that our approach could accurately verify the robotic
arm user based on the robot behavior.

D. Impact of Training Data Size

We next study the impact of the training data size on our
approach performance. Figure 9 shows the user verification
performances when 5 to 20 instances are utilized for training

5



5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Training Data Size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c

c
u

ra
c

y

Fig. 9: Performance under different training size (verification).
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Fig. 10: ROC curves of defending attacks.

respectively. We observe that our approach achieves a good
performance with a small training data set. In particular.
Our approach achieves over 80% accuracy when the machine
learning model is trained with 5 or more task instances. The
user verification accuracy increases with the enlarged training
data size. When the 7 and 15 task instances are used for
training, the user verification performances are 84% and 91%
respectively. The accuracy reaches 95% when 17 task instances
are used. The results indicate that our approach is capable of
verifying the user without requiring much training effort.

E. Performance Under Attacks

At last, we evaluate our approach under two types of
attacks. We assume the attackers have gained the access to the
robotic arm platform with correct logins to operate the robotic
arm. Then, the adversary could use his/her own behavior to
control the robotic arm for random attack. A skilled adversary
who have the knowledge of the user’s behavior could further
imitate the user’s behavior while operating the robotic arm
for imitation attack. We asked six participants to act as
the attackers for both attacking scenarios, and each attacker
attempts to impersonate the other 9 participants. To perform
the imitation attack, the attackers learn the legitimate users’
behaviors from their robotic arm control videos.

The ROC curves of our approach to defend the two types
of attacks are shown in Figure 10. We find that our system
achieves high performances to prevent the two types of attacks.
In particular, our system achieves a 95% True Positive Rate
(TPR) to verify the legitimate users under random attack,
while the False Positive Rate (FPR) is 6%. The Equal Error
Rate (EER) is 6.3%. Under the imitation attack, our approach
achieves a 97% TPR and a 9% FPR. The EER is 8.9%. The
results indicate that it is hard for an adversary to imitate the
user’s interactive control behaviors, and the robot behaviors
can be used to effectively prevent impersonation attacks.

V. CONCLUSION

In this work, we demonstrated that the human behaviors in
the interactive robot control environment are distinguishable,
and the robotic arm inherits much of the user’s behaviors,
which can be leveraged for authentication. We proposed a
novel user authentication approach for the motion-controlled
robotic arm by examining the robotic arm’s joint status. In
particular, we reconstructed the robotic arm’s end-effector
trajectories from its joint angle values, and derived features to
capture the robot’s unique behaviors corresponding to its user’s
motions. Based on that, we designed a weighted DTW-based
algorithm, which first recognizes the robotic arm task and
then verifies the user who is controlling the robotic arm. We
built a real motion-controlled robotic arm platform to evaluate
our approach. Experiments showed that our authentication
approach verifies the user with 95% accuracy based on the
robot behavior.
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