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Abstract—Audio/visual recognition and retrieval applications
have recently garnered significant attention within Internet-
of-Things (IoT) oriented services, given that video camem
and audio processing chipsets are now ubiquitous even in
low-end embedded systems. In the most typical scenario for
such services, each device extracts audio/visual featuresmd
compacts them into feature descriptors, which comprise mad
queries. These queries are uploaded to a remote cloud com-
puting service that performs content matching for classifiation
or retrieval applications. Two of the most crucial aspects dér
such services are(i) controlling the device energy consumption
when using the service;(ii) reducing the billing cost incurred
from the cloud infrastructure provider. In this paper we der ive
analytic conditions for the optimal coupling between the deice
energy consumption and the incurred cloud infrastructure
billing. Our framework encapsulates: the energy consumptn
to produce and transmit audio/visual queries, the billing rates
of the cloud infrastructure, the number of devices concurretly
connected to the same cloud server, and the statistics of
the query data production volume per device. Our analytic
results are validated via a deployment with: (i) the device
side comprising compact image descriptors (queries) comped
on Beaglebone Linux embedded platforms and transmitted to
Amazon Web Services (AWS) Simple Storage Servicdii) the
cloud side carrying out image similarity detection via AWS
Elastic Compute Cloud (EC2) spot instances, with the AWS
Auto Scaling being used to control the number of instances
according to the demand.

|. INTRODUCTION

Most of the envisaged applications and services for wea
able sensors, smartphones, tablets or portable comput
in the next ten years will involve analysis of audio/visual
streams for event, action, object or user recognition, rec-
ommendation services and context awareness, [etc[ [1]-[7].
Examples of early commercial services in this domain
include Google Goggles, Google Glass object recognition
Facebook automatic face taggingl [8], Microsoft's Photo
Gallery face recognition, as well as technology describe

in recent publications from Google, Siemens and ofhers

1See “A Google Glass app knows what you're looking at” MIT Tech
Review (Sept. 30, 2013) and EU projects SecurePHdne[ [9] aiid MoBio
[0, [12].
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Figure 1. System hierarchy for a media search applicatighinvan loT
context. Low-power devices send query data to an loT aggregaing low-
power protocols for the application, network, medium ascesntrol and
physical layers, such as MQTT, 6LowPAN, and IEEE 802.15.4Qy2HY.
The loT aggregator sends aggregated query volumes to thd-climputing
service using TCP/IP.

Figure[1 presents an example of how such applications
can be deployed in practice within an Internet-of-Things
(IoT) context. Energy-constrained devices capture and ex-
tract audio/visual features from audio and/or image steeam
and compact such features into feature-descriptor vectors
rM’ [L3]-[15]. Such feature vectors can be seergaseries
in_a multimedia search application! [6], [13]. For example,

& rraet. al. [7] propose beat and tempo feature extraction

for cover song identification. A similar service is now wigel
eployed by Shazam. In the visual search domain, several
pproaches produce image salient points and then compact
their associated features into compact vectors of8892
elements [[14], [[15]. All such compacted feature vectors
an be matched to equivalent vectors of very large content
ibraries within a cloud-computing service within the cexit
of classification, retrieval and similarity identificaticior
so-called “big data” applications. Because devices of the
same type run the same application software for the query
extraction and transmission, they incur, on average, thesa
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energy consumption per bit of each type of query. Thereforederivations characterizing energy-constrained featunae-
they can be partitioned into “device clusters” that repnése tion are presented in Secti@nllll, where we also derive the
a multitude of identical devices (Figl 1). An 10T aggregatoroptimal coupling with the utilized cloud-computing semic
can be used to aggregate traffic from each device cluster anchder three widely-used statistical characterizatiomsttie
upload it to a remote cloud computing service that carriegjuery production rate. SectidnJIV presents experimental
out the search operations that provides for recognition andesults and Sectidn]V concludes the paper.
retneva_l purposeﬂl]E[S]l_Il6]. _ Il SYSTEM MODEL
In this paper, we consider the energy consumption and _ i ) _
billing costs incurred by such applications in a holistic, Within the system hierarchy of Figl 1, each mobile device
system-oriented, manner. Specifically, we derive a paramefonnects to a ‘“repository” service of a cloud provider,
ric model that allows for the coupling of the energy Con_Whic_h represents the collecting unit, .i.e. a cloud storage
sumption and cloud billing costs in function of the systemService like AWS Simple Storage Service (S3) or IBM loT
settings, under the assumption of identical devices priaguc Foundation. This is where all device queries are uploaded
data traffic with the same statistical characterization. A(€-g-, using an application-layer protocol like MQTT) in

key aspect of our model is the derivation of tbptimal order to be processed by the back-end search mechanism
balancingbetween: of the service. As shown in Fig] 1, an loT aggregator can

, . , ) be present in-between loT clusters of the same type and

1) idle time where device energy consumption or cloudyne “¢i6yd repository, in order to reshape the loT query
billing cost is incurred for no useful output (€.9., yaffic volume before uploading it to the cloud-computing
image acquisition and processing or buffer_mg on eacheryice and also carry out other device-specific and service
device that_ does not lead to query generat|0r_1, or Clpu%pecific operatioﬁs The figure shows that the essentials of
servers idling due to small volumes of queries beingi,e hroplem boil down to the analysis of the interaction

supm|tt_ed); , ) between each mobile device node and its corresponding loT
2) active time where, despite resource consumption be-,

aviy aggregator and cloud computing service.
ing incurred for useful output, one does not want to
exceed certain limits in order not to cause excessivé\. System Description

energy consumption in the device or excessive billing \we assume that the mobile application is running con-
costs from the cloud infrastructure provider. tinuously for a “monitoring” interval ofl” seconds. This

A key advantage of our work in comparison to previousinterval corresponds to the typical device usage per day, or
work on optimal energy management policiés][16-[19]in-between battery recharging periods, egs [60, 18000]

and resource prediction and analysis][20]-[23] (see als§€conds per day. The activation, processing and trangmissi
[24] and references therein), is that we provide closedfor is €ither triggered by the user, or by external events at
expressions for the minimum-required billing cost in orderirregular times throughout the application’s running time
for each mobile device to remain within the predetermined!. Examples are: user-triggered audio or visual feature
energy consumption constraints. In order to validate oug€xtraction by recording a particular content segment (asy.
analytic derivations, we utilize a proof-of-concept imagein the Shazam, Google Voice or Google Goggles services),
S|m||ar|ty identification app”cationi dep|oyed Vlﬁl) run- or event-driven activation within an audio/visual surlaiktce
ning the image feature extraction and query generation an@pPplication. We therefore assume that the query data pro-
transmission on a Beaglebone Linux embedded platféiim; duction volume durindgl” seconds is modeled as a random
implementing the back-end query processing for similarityvariable. Finally, we remark that the query data production
identification and retrieval on Amazon Web Services Elasticand transmission and the cloud billing are not strictly
Compute Cloud (AWS EC2) spot instances. Our results jl-continuous processes. However, given that we are focusing
lustrate how the proposed model can be applied to real-worl@n large monitoring intervals comprising tens or hundreds
loT-oriented query retrieval systems in order to establist?f seconds, they can be seen as continuous processes.
the desirgd operational_parameters wi_th respect to energy pafinitions

consumption and cloud infrastructure billing. More brgadl ) )

the experimental results reported in this paper exempiigy t 1) Query Data Production:The query data production
efficacy of our framework for feasibility studies on energy @nd fransmission by each device is a non-deterministic pro-
consumption and billing cost provisioning in cloud-based®€SS: because it depends on the frequency of the application

IOT_query processing appllcatlons prior to time-consuming 2Depending on the exact application, the IoT aggregator naagy @ut
testing and deployment. authentication or encryption of queries, reformattinghaf tetrieved results
The remainder of the paper is organized as follows. Inffom the cloud service so that they display correctly on taetigular

. . devices, application/collection of device metadata fovise statistics and
Section[l, we present the system model correspondlng thvertising, etc. We do not discuss these aspects as theguaref the
the application scenarios under consideration. The dnalyt scope of the present paper.



invocation (or on event-driven activation alerts), as vl search applicationg, would incorporate the energy con-
on the query size, which may vary, depending on the medigumption for the image acquisition, the processing to ektra
search application. Therefore, the query data volume {8) bi salient point descriptions, the compaction process toysed
for each time interval of’ seconds of each device is mod- a 256-element feature vector comprising 32-bit numbers
eled by random variable (RW, with probability density  (visual query) corresponding to each ima@el[15], and the
function (PDF)P (¢ ). A model for the marginal statistics application and transceiver-incurred energy consumpgton
of this data volume can be derived by observing the occurrettansmit this 8192-bit stream to the aggregator (e.g.,qusin
processing and analyzing the behavior of each device wheMIQTT and the IEEE 802.15.4e MAC/PHY). Assuming that
it captures image or audio data and produces query bits tthe entire process requires on average® J on the mobile
be transmitted to the 10T aggregator. Examples of systemdevice under consideration, this leadsgtax 1.2 x 1079 J/b.
with variable query data production and transmission rates On the other hand, given the time-varying nature of the
include visual sensor networks transmitting image featurequery data production per device, we also encounter the case
[25]-[28], as well as activity recognition networks where where the device is consuming energy to run the application
the data acquisition is irregular and depends on the even{and possibly capture images or audio) in the background
occurring in the monitored area [29]—=[31]. without producing any queries. This corresponds to “idle”
Beyond individual devices, the query volume uploadedenergy consumption by each device with rateJoule-per-
from each IoT aggregator to the cloud service is modelledit (i.e., i, Joule for the time interval corresponding to the
by random variablel,, with PDF P (¢1,). The distributions  production and transmission of one query bit). We assume
P (¢) and P (¢,) will be of the same type (the latter will that the application goes in idle mode during time intervals
be a scaled version of the former) if the IoT aggregatomwhere the amount of produced query bits is belo¥ [T, ]
shapes its uploaded traffic in the manner it receives it.rAlte bits, with E[¥.] the statistical expectation df,. The value
natively, if no traffic shaping is performed and the procagsi of ¢, depends on the processing and transmission capabilities
latency at the aggregator is fixed, for an aggregator. of of the device[[20],[[28], as well as on the specifics of the

devices: application [34]-[3B], e.g., the size of the feature vegter
P(¢y) = P (o) * ... % P(1e), (1)  Qquery, the manner in which query generation is activated,
etc. For instance, regular query generation (e.g., once per

n times second) will correspond to lower value of in compar-

wherex denotes the convolution operator, i.e., the PDF charison to motion-activated query generation, as the motion
acterizing the uploaded traffic is the result of simple addit ~detection requires continuous capturing and processing of
of the RVs modelling the data volumes received byrall data that corresponds to higher percentage of “idle” energy
devices. Note that, as the number of devieeincreases, consumption, i.e., energy consumption that does not lead to
the corresponding PDP (1,) can be approximated with in- query data generation.
creasing precision via the Half-Gaussian distribul@ince In order to control the overall energy consumption profile
the query data production volume may be non-stationary, wef the application, the expected energy consumption within
assume its marginal statistics f&r(z).) and P (z1,), which 7" seconds should be equal ., Joule and the expected
are derived starting from a doubly stochastic model forehesupper-sided deviation should not exceggl,q.. Joule. Both
processes as explained in related warkl [32]] [33]. of these values are provided by the application or device
2) Energy and Cloud Infrastructure Billing Parameters: developer in order to ensure the application does not de-
We assume that the production and transmission of ongrade the user quality-of-experience (e.g., sudden drop of
query bit incurs energy consumption rategofJoule-per-bit ~ battery life or device/battery overheating), or disrugtest
(J/b). This rate incorporates the audio or visual captyringconcurrently-running services on the device.
the feature extraction and compaction process to produce Analogously, when servers are reserved from the cloud
the compacted feature vector, and the transmission of thprovider in order to process the queries uploaded by an loT
feature vector to the 10T aggregator. Since we are considaggregator, this incurs billing costs. All cloud computing
ering prolonged periods of operation in our analysis andservices today use some form of autoscaling mechanism in
the utilized sensors, transceivers and embedded prosessarder to adjust the number of compute instances according
consume energy in a stable manner when handing datéy the demand. For example, in AWS Auto Scalingl[37]
ge can be calculated by averaging several “on” periodsone can set rules that scale the utilized compute instances
for sensing, processing and transmission for each devict®r every monitoring interval according to the average guer
under consideration and normalizing to the amount of bitssolume received during the previous monitoring interval. A
delivered to the 10T aggregator. For example, under a visudypical AWS Auto Scaling setup would ffhe

3The analysis associated to Half-Gaussian distributedyquaumes will 4The reported numbers of instances and instance types aréndidative
be carried out in future works. and can be adjusted per loT application.



« 3 single-core AWS EC218. nedi um spot instances over the monitoring period df’ seconds is:
when the average uploaded query volume is below a

. L ce B[ We]
certain “quota” ofc, query bits (“idle” case), Eoxp = E[Ve] gotie f (ce B [Pe] = o) Po (1) dipe,
« 30 spot instances when the query volume excegds 0 2)
bits (“active” case). where the integral of the second term expresses the expected

n8. medi umspot instance incurs infrastructure billing cost idlé mode. We can also express the one-sided variability of

of 0.01$ per hour. Assuming that a search operation witﬁhe energy consumption when the application switche; from
a 256 x 32-bit query requires 10ms of cloud service time idle to active state (i.e., when exceeding feeE [V ])-bit

and under the AWS Auto Scaling rules stated above, thi§luery volume):

corresponds to billing cost of (approximatel®3 x 1078 9

dollars-per-query under the “idle” case, @r= 1.0 x 107! Boar = ¢ [CCE[\I,C] (Ve = cE[Te])" P (ve) dipe. (3)
dollars-per-query-bit ($/b)p, = 1.0 x 107 $/b for the
“active” case. The quota ef, query bits can be set according
to the application or the number of devices,within each
loT aggregator.

Beyond the cost of the computing time, billing cost
proportional to the expected query volume per monitorin
interval, E[¥], must be accounted for, since all cloud
providers charge for data transfers and storage. Assumi
0.15$ per gigabyte of query volume (based on current AW
pricing), this leads to (approximately), = 1.9 x 107!
$/b. Finally, in order to remain competitive against other
solutions in the market, the service may wish to set an
expectation that each user should be billed Bf..,, $ on

average for each device and each monitoring time intervaynd the corresponding upper-side energy deviation
of T' seconds.

2

Evidently, the large number of system, data production, Evar = Epev: ©)
energy cons_umpuon, ar_1d cloud billing paramete_rs makeand we explore their impact on the system parameters and
the exhaustive exploration of the complete design spacg,, query data production volume
infeasible. Therefore, although not all parameters diesi '
the qverall system are controlled by the same entity, th%loud billing cost when receiving aggregated query vol-
creation of an analytic model that can establish closedfor umes fromn, devices. We can express this cost via
relationships between the different parameters, as well as '

optimal settings under specified conditions for device gyer B, = E[U i [C" o P d
consumption and billing cost is of the utmost importance. P [Pelgn =i 0 (e =v) P (Y) i

Under a given energy budget &%, Joule for the monitor-
ing time interval ofl" seconds, allowing for a large value for
Eyar Will incur significant drop in the device battery level
(and possibly other unintended consequences, such agdevic
overheating, battery degradation, etc.). On the other hand
Ymall value ofEy,, will limit the query production volume
handled by the device, or may require a very high value
r ¢, that may not be realistic for the utilized hardware.
herefore, in this paper we explore this tradeoff by impgsin
operational values for the mean energy

Eexp = Emean (4)

In a similar fashion, let us now consider the expected

This is the aim of the next section. + b foo (P, — b)) P (Up) didy, (6)
Ch
where: E [U}] g, corresponds to the data transfer/storage
1. CHARACTERIZATION OF ENERGY CONSUMPTION costs, the first integral corresponds to the partial moment
AND CLOUD BILLING COST expressing the “idle” billing cost, and the second integral

corresponds to the “active” billing.
We derive analytic expressions for the expected energy Adding and subtracting, ch (¢ — ) P (¢p) dipy, in
consumption of a device (and its upper-side deviate), ak We!BCXp, we get:
as the expected cloud billing for a grouprofievices on the

same |oT aggregator. This allows us to derive closed-form Bexp = E[Y](gb+pb) —Poeh
conditions that ensure the value Bf,.., Joule is met for v (i) be (e — ) P () dirn. (D)
each device, while also meeting the corresponding energy 0

upper-side deviation of7,,q.v Joule. We also derive the  Evidently, the expected billing cost depends on the cou-

conditions that minimize the incurred billing cost and e®su pling point,c;,, as well as on the PDF of the aggregate query

that the minimum value can be set to the expected billingjata reaching the cloud servicB,(v,), which is either of

of Bean PEr monitoring period of” seconds. the same form a#® (v.), or it is linked to it via [1). In the
The expected energy consumption of each mobile deviceemainder of this section:



« We consider different cases fd? (¢,) and P (¢,) to  active state as a function of the idle thresheldas
derive the conditions to match the energy consumption

. . 892E2 (2- Ce)3
expression of[{2) td¥,can in @) and allow parameter Boapy = 22— oxpU (12)
tuning that guarantees thdil (3) does not exceed the ’ 3(4ge +icc?)?

thresholdE,pdev in ().
« We derive the number of query bits (quotay), that
minimizes the corresponding billing cost @ (7) under

Therefore, by imposing the constraift (4) 8., v, we
can derive the value of that matches the expected energy
. consumption. Moreovel (12) offers a tool to efficiently éun
various PDFSP (1)y). ce S0 that the setting of[{5) foE,,, yv is met. In this

o In otrder for tr:e detswzd enetrgy consumﬁtlon and b'”'r_‘%way, one can carry out a detailed exploration of the mean
cost parameters 1o be met concurrently, we assocla auery production volumes and coupling data volumes per
the minimum billing cost with the desired value for

- ) device that satisfy anw-priori energy settings fol¥,, can
the expected billing,Bean, and the device query fy ang-p aqy g

. . and F, , as well as any ener arametegsand i,
production volumer, thereby establishing the number updev y 9y p geande

: . within the monitoring time interval".
ngrz\ggfjr'n' that should be admitted by each loT Alternatively, from [I0) we can derive the activation

threshold-, that guarantees the average energy consumption,

A. lllustrative Case: P (v,) and P (¢,) are Uniformly for a given average query volume ofbits, as

Distributed Eexp,u = ger
Co=2\] ————

When no knowledge of the underlying statistics of the ier
query generation process exists, one can assume that both

P(s) and P (j) are uniform over the interval.2r] L N IR S e T S educton of
and|[0,2rn], respectively: gy P

r bits within T'" seconds. We also note that the constraint

: (13)

QL, 0< e <2r ce < 2 implies in this case thaFe,, v < (ge + ic)r.
Py () = OT’ otherwise ’ (8) These two constraints provide the feasible range for the
expected energy consumption under Uniformly-distributed
and ) query volumes asEexp v € (gor, (go + ie)7).
Py (Yp) = { ?’ Oogt;i? 3.237(;” (9) ~ Based on[(I3), the one-side variability of energy consump-
) Twi tion can be expressed as a function of the average query

This corresponds to the case where the IoT aggregatorolumer:

upload query volume PDF matches the query generation 4 15 e 3
PDF of [8) and the aggregator merges query volumes of Eyar,v = ggfr2 (1 - M) . (14)
n devices. tel

The expected value ob. is Ey [V.] = r bits and the v (13), we can numerically determine the valuerofor
expected value oby, is Ey [Wy,] = rn bits. The cases where \yhich the corresponding one-sided variability of the egerg
ce > 2 Or ¢, > 2rn are of no practical relevance, becau@g: consumption agrees with the setting Bf (5).
the first inequality means each device would always be in ) pijiing parameter Tuning to Minimize the Cloud In-
idle mode, or(ii) the second inequality means the cloud gagirycture Billing Cost and Meet the Expected Billing
infrastructure would be constantly overprovisioned. ThusBmean: We can now turn our attention to the billing cost
we are only concerned with the case whebex ¢, < 2 Beyp in (@) for the n-device aggregate query production
and0 <cp, < 2rn. . _ volume over the monitoring time interval af s. We note

1) Energy Parameter Tuning to Meet the Settings@)f  that the first and the second derivative &, with respect
and (@): Starting from the device energy consumption, byiq the coupling point;, are given by

usin in , we obtain:
g[®)in2) iBo,

o2 AE, —— = —pp + (in + pp) Fi(cp) (15)
Eexpu=|9ge+ kel o p= —exp U (10) dey,
’ 4 4ge + ieC? d?Bexp
o . . . 5— = (ib +pb) Po(cn), (16)
In addition, by using[{8) in[{3), we obtain: dey,
) 3 where F}, (¢,) and P, () are the cumulative distribution
Eyarv = ggﬂﬁ’ (11)  function (CDF) and the PDF of the aggregated query volume
6 Vy,. Therefore, we can conclude thd.,, is a convex

and by substituting[{10) in(11), we can express the onefunction of ¢, when ¥}, obeys to a continuous distribution
side variability of the energy consumption between idle andvith given PDF and CDF. Moreover, the value @f that



minimizes the billing cost is obtained by solving the equa-settings in order to accommodate: particular types of mo-

tion df% =0, i.e., bile devices (with given energy consumption parameters),
" given average query production volume, or given number of
cp = F1 (L)’ (17)  devices per IoT cluster of Figl 1.
b+ Pb

where F-1(-) represents the inverse function of the CDF B. Energy-constrained Query Volume Production and Min-
of Wy,. Assuming any strictly-increasing CDE,, will be imum Billing Cost under Pareto and Exponential Distribu-

uniqu8. Therefore, in conjunction with the fact tha, :  tONS
2 . . .
d dBc;xp >0, Bexp has a unique minimum in function af,. We can now extend the previous calculation to other dis-
For the case of uniform distribution, by replaciig (9) in tributions expressing commonly observed data transnmissio
(@), we obtain the average billing cost as rates in practical applications. We consider two additiona

PDFs for ¥ that have been used to model the marginal
statistics of many real-world data transmission applicedi

2

C
Bexpu = (gb +Db) 710 = pep + (ib + b)) —=, 18 i i ! > )
o (g ) ( ) 4rn (18) and provide the obtained analytic results in this subsectio

and the optimal coupling point is The proofs follow the same process as for the uniform
S distribution. For each distribution, we cpuple |t§ p_armt
Ch,U = - ) (19) to the average query volume of the uniform distribution,
b+ P This facilitates comparisons of the energy consumption and
The corresponding minimum-possible billing cost gy € billing cost achievable under different statistical clueai-
(0,00) is achieved undety, = ¢, y, and it is: zations for the query volume.
9 1) Pareto distribution and fixed query volumethis
min { Bexp v} = (gb +pp — - )m (20) distribution has been used, amongst others, to model the
b+ Pb marginal data size distribution of data production proesss

The last equation shows that the minimum billing cost in-that result in substantial number of small data volumes and
creases linearly to the average query data production welunm@ few very large ones [38]L[39]. Considét (¢.) as the
of all n devices. If the minimum value is set to aaypriori ~ Pareto distribution with scale, and shapev. > 2 (a. € N),
determined expected billing, i.emin {Bexp v} = Bmeans

the corresponding device query volume becomes: Pr () = { Qe aerT ) whe > Ve (23)
¢ otherwise
r Bmean (21) 07
b,U = . . . .
v (gb +pp — ib’ib ) n The expected value o¥. is Ep [V.] = 5= bits. Thus, if
we set

3) Number of Devices in an loT Aggregator to Concur- g = e lr (24)

rently Satisfy Energy Consumption and Billing Cosdits:or- ¢ ae

der to meebothenergy and billing costs; Ercan; Eupdev }
and Bp,ean, We can match the derived query volume[of] (21)
with 7.y derived from [(ID) and, by tuning. via (13) and
settingcy, y to the value given by[(19), derive:

we obtain Ep [¥,.] = r bits, i.e., we match the expected
query volume per device to that of the Uniform distribution.
The characterization of the energy consumption for queries
with Pareto-distributed volumes is summarized in the fol-
lowing proposition.

Bmean
Tb,U = Te,U <= MU = 2 : (22) Proposition 1. The average energy consumption for Pareto-
(gb +tPb— ib+pb)T°=U distributed device query volumes is given by

The value ofny of (22) comprises the numbers of devices _ . o—1 o
that should be accommodated by an IoT aggregator that reEcxPP = [ge +ie [ (e ~1)*ee(aece) ™ +ce ~1]]r, (25)
ceives and transmits queries under the uniform distribstio and the one-sided variation of the energy consumption from
of (8) and [9) when each device meets the energy settings @fle mode to active mode is given by
(@) and [(5) and the loT-uploaded volume leads to minimum
billing cost of Bean-

Overall, via the energy-constrained analysis that derived
(I0) and[(I2) and the cloud-billing optimization that dedv
(@I9)-[22), one can explore different energy and billing N

(e =1)* 12 ,

ag® (e —2)

2
Evarp = 29; (26)
Proof: See Appendix. [ |
ote that Proposition 1 assumes that> ”a—‘l since,
5Even if the CDF is monotonically increasing, all candidaté@ma are otherwise, the device will never SWItCh from active to idle
equivalent with respect to the derived billing cost. state. Moreover, froni(25), we can derive the average query



volume corresponding to any given values ., p and  and the one-sided energy variation associated &s

. as
C E _ 2g§exp(_ce)E3xp,E ( 5)
Ecxp,P var,E = i PR
r= - P - ) (27) [ge + e (ce +exp(—ce) — 1)]
Jo + e [(ae = 1)¥ Leo(@ece) ™ + co — 1] . .
] ] ) In addition, for any given values af.., r andr, we can
and the one-sided energy variance associatedas also derive the threshold, as ’
o -1 ae—1 2—-ce — X B
Evar,P _ gg (Oé . ) Ce Co = WO (_exp (_Eexp,E + 1eT ger))+Eexp,E + leT ger’
ae®(ae —2) T T
x _ oxp.P 5. (28) where Wy(-) is the main branch of the standard Lambert
[ge + ie [(cre = 1)@ ce(@ece) ™ + ce = 1]] W function. The corresponding one-sided energy variabilit

A particular case of interest for the Pareto distributioses ~ associated te. is given by

when Qe — +oo! in this limit case, _the query vqlume 5 T BEoxp | + el = geT 37
per device converges to the expectatibp [¥.] = r, i.e., var,B = —2g.7"Wo | —exp (- e - (37)
to fixed-volumequery production per monitoring interval.

Then, sincec, > 21, the average energy consumption

3) Billing Cost under Pareto and Exponential Distribu-

e tion: We now consider the billing cost for the processing
converges to : . )
of queries uploaded from devices via an I0T aggregator.
Eexpp = [ge +ic(ce —1)]r, (29) Letus first consider the aggregate query volume distrilbutio
modeled via a Pareto distribution with me&p[¥y,] = rn,

asae — oo, and the one-side energy variation from idle to ie.
active mode converges to zero (the device is in idle mode o S
for a portion of the time of every monitoring interval). Then Pp (1) = { b T Py 2 Ub ’ (38)
the average query volume that meets the expected energy 0 otherwise

consumption constrainte., p is simply given by

b

)

1

whereay, > 2 (ap € N) and v, = 22=rn.

Qb
r:&, (30)  Proposition 3. The average billing cost incurred from
ge +ie(ce = 1) processing Pareto-distributed query volumes is given by
2) Exponential distribution:This distribution is relevant (ap, — 1)1
to our application context since the marginal statistics 0fBexp,p = (gb—ib)rn+(ib+pb) ——ao—— (rn) *> " +ipcp,.
compressed image and video traffic have often been modeled b (39)
as exponentially decayind [40]. Considé¥ (v.) as the

S e ; The minimum billing cost is obtained when
Exponential distribution with rate parametrér

1

b+ oy ap — 1

Cb,P = (Zb - pb) v b ™, (40)
b Qap

Po(tr) = T exp (—%wc) , (31)

for ¥, > 0. In this case, the expected value @ is
Eg [V,.] = r bits. The characterization of the energy con-
sumption for queries with exponentially distributed vokesn
is summarized in the following proposition.

and it is given by

. 1
min{ Bexp,p} = [gb —ip +ip (lb Py ) " ] rn.  (41)
(4
Proof: The proof stems from the evaluation of the
Proposition 2. The average energy consumption for general solution expressed in{17) under the usage of the
Exponentially-distributed device query volumes is givgn b Pareto PDF. [ ]
. e In order to ensure that the average billing cosBigcan
Eexpp = [ge +ic (co + ™™ = 1)]r, (32)  and average query volume per device risp, the loT
and the one-sided variation of the energy consumption fronggregator must handle
idle mode to active mode is given by

Bmcan
, , np = — (42)
Bvarp = 2gcexp(~ce)r™. (33) Tep [Qb — b +ip (lb:%) h ]
Proof: See Appendix. ) o ) o )
From [32), it is straightforward to derive the average queryd€vices. This is derived by settingin{ Bexp,p} = Bmean IN-
volume corresponding to any given valuesfg,, r; andc, (@1) and solving for. We also note that, when assuming
as ’ that the aggregate query volume is Pareto distributed, by
letting o, — +o00, we can analyze the case when the

Eexp,E
" aggregate query volume at the 10T is fixed and equatito

- Je + ie [Ce + exp(—ce) - 1] ’

(34)



In this case, ifey, > rn, the average billing cost is simply A. System Specification

given by We utilized a visual sensor network composed of multiple
Bexp.p = (gb — ib)7rn + inch, (43) BeagleBone Linux embedded platfornis[41],1[42]. Each
BeagleBone is equipped with a RadiumBoard CameraCape
which is minimized by setting:, equal to the mean, i.e., poard to provide for the video frame acquisition. For energy
Cb,p =T1N. efficient processing, we downsampled all input images to
Finally, let us consider the aggregate query volume distri-QVGA (320x240) resolution. Further, our deployment in-
bution modeled via an Exponential distribution with meanyolved:

Ep[WUp]=1n, ie., 1) a portable computer acting as the 10T aggregator, i.e.,
1 1 collecting all bitstreams via a star topology with=
Pg (i) = o exp (—%%), (44) 10 nodes and the recently-proposed (and available as
open source) TFDMA protoco[ [43] for contention-
for ¢y, > 0. free MAC-layer coordination;

2) an AWS S3 bucket where the 10T aggregator uploads
all queries via a TCP/IP connection using script code
running on the AWS Command Line Interface;

Proposition 4. The average billing cost incurred from
processing Exponentially-distributed query volumes \&qgi

by 3) One reserved AWS instance running as the control
_ . . . ey server and assigning query volumes from S3 to AWS
Bexp E = - + + + nr, 45 . i -
p.E = (9o = db)rn+ dve, + (ip + po)nre (45) EC2 spot instances that serve as compute units; via
The minimum billing cost is obtained when AWS Auto Scaling, within each m.onitoring instance
_ of T' seconds, the number of spot instances are set to:
ChE =TT In 7P (46) « 3 when the query volume is below; bits (“idle”
b case).
and it is given by . ?0 Yvhen ;he guery volume exceeds bits (“ac-
ive” case).
min{Bexp, g} = (gb +ip1n i .+pb)m. (47) Under our deployment and the utilized application,
(3 the uploaded query vectors are matched with the fea-

ture vectors extracted fro®0, 000 images of similar
content. The corresponding billing rates per query
bit for this matching operation were found to be
i, = 6.27 x 1071 $/b andp, = 6.27 x 10710 $/b.
Regarding query traffic upload and storage costs, the
corresponding billing rate per query bit was found to
be g, = 2.09 x 1071° $/b,

Proof: The proof stems from the evaluation of the
general solution expressed in {17) under the usage of the
Exponential PDF. |

In order to ensure that the average billing cosBigcan
and average query volume per device risp, the loT
aggregator must handle

— Biean (48) We note that no WiFi or other IEEE802.15.4 networks were

TeE(gb +iy lnM) concurrently operating in the utilized channels of the 2.4

’ v GHz band. However, even if IEEE 802.11 or other IEEE

devices. This is derived by settingin{Beyp £} = Bmean in ~ 802.15.4 networks coexist with the proposed deployment,
@7) and solving fom. well-known channel hopping schemes like TSCHI[44] can

be used at the MAC layer to mitigate such external in-

terference. Moreover, experiments have shown that such

protocols can scale to hundreds or even thousands of nodes
To validate the proposed analytic modeling framework[44]. Therefore, our evaluation is pertinent to such scesar

of Propositions 1-4, we performed a series of experimentthat may be deployed in the next few years within an loT

based on a visual sensor network connected to an loparadigm[[45].

aggregator, and eventually to an AWS S3 plus EC2 cluster of o o

spot instances. The following subsections present the-hard®: Visual Similarity Identification Based on the Vector of

ware and application specifications, as well as the achieveb©cally Aggregated Descriptors (VLAD)

results. Beyond our specific experimental results, we ensur Each BeagleBone runs a basic motion detection algorithm

to retain our description as broad as possible in order tgbased on successive frame differencing) that generates a

indicate ways to carry out similar experiments within othervisual query only when sufficient motion is detected between

loT-oriented platforms, such as IBM loT Foundation andthe captured video frames. The query vectors were generated

Bluemix, AWS loT, Cisco OpensStack, etc. using the state-of-the-art VLAD algorithm of Jegai.

IV. EVALUATION OF THE ANALYTIC RESULTS



al. [15], which is based on SIFT feature extraction and
compaction using local feature centers and a PCA projectio
matrix, both of which are derived offline via training with
representative video data [15]. The VLAD descriptor (i.e.,
query) size was set to 256 coefficients of 32 bits each.
With respect to the visual feature extraction, dedicatec
energy-measurement tests were performed with the Be:
glebone following the energy measurement setup of ou
previous work [[41] (repeated tests with a resistor in serie:
to the Beaglebone board and a high-frequency oscilloscog
to capture the power consumption profile across repeate
monitoring intervals). Under the utilized setup, we meadur
the average energy cost to produce and transmit a quel
bit, as well as the average initialization cost per frame for
both application scenarios. The resulting energy rategwer
ge = 1.78x107% J/b andi. = 6.10x10~7 J/b. Moreover, under
the utilized applicatior_l, the _Beaglebone can process up to ,;igure 2. Average energy consumptidi., vs. ce. The average query
frame per second while being constantly active. Thereforeyolume was set to- = 81,920 b. For the case of Pareto distribution, we
the maximum query rate is 1 query per second, B&92 usedae = 4. Lines with markers: Monte Carlo experiments; Lines withou

b/s. By setting mean query rates such ti§ty,] < 2043 ~ Markers: theoretical predictions.

bits per second, this theoretically allows for “idle” engrg
—+—Uniform
—&—Pareto b
—7— Exponential

consumption withec, < 3. In practice, we only utilized
ce € (0,2) for “idle” energy consumption (i.e., up to twice
the number of frames captured and processed with no quel 0.04f
generation), as higher values caused system instability.

0.045

0.035f

C. Results with Controlled Query Generation that Matches 0.03k

the Marginal PDFs Considered in the Theoretical Analysis _ 0025
Under the settings described previously, our first goal <2 |

to validate the analytic expressions of Secfiah Ill thanfor W 002r
the mathematical foundation for Propositions 1-2. To this g5+
end, we create a controlled query data production proces

var

on each node by(i) artificially setting several sets of query o.o1r

volumes according to the marginal PDFs of Sectiom Il o.005f

via rejection sampling[46], a.k.a., Monte Carlo sampling; 0 , , , , , : .

(i) setting the mean query volume size per monitoring 0 02 04 06 08 1 12 14 16 18
interval, », to predetermined values. The sets containing Ce

guery volume sizes are preloaded onto the memory of each _ _
. . Figure 3. One-sided energy consumptiBi., Vs. ce. The average query
sensor node during the setup phase. At run time, each no lume was set to- = 81,920 b. For the case of Pareto distribution, we
runs a special routine, which, per monitoring interva(i) useda. = 4. Lines with markers: Monte Carlo experiments; Lines withou
reads the corresponding query volume siz@,), from the  markers: theoretical predictions.
preloaded setii) captures and processé% frames,(iii)
transmits the producedt) query bits to the lIoT aggregator;
(iv) if v(t) < ccE[V.], captures and processés%ig”m r=81,920 b. It is evident that the theoretical results match
additional frames without transmitting queries. In thisywa the Monte Carlo experiments regarding energy consumption
we emulate the actual operation of the node under varioufor all the tested distributions, with all the* values (coef-
query volumes that match the statistical models considereficients of determination) between the experimental and the
by our analysis and various thresholdsfor switching be-  model points being above998. We have observed the same
tween “idle” and “active” states. This controlled experime level of accuracy for the proposed model under a variety of
is designed to confirm the validity of our analytic derivaso ~ data sizesr( and active time interval durationg’), but omit
when the operating conditions match the model assumptiori§iese repetitive experiments for brevity of exposition.
precisely. Similar experiments have been carried out in order to
Indicative experimental results for monitoring time in- validate the analytic expressions of Propositions 3 and 4

terval of T = 60 s are reported in Fid.]2 and Figl 3 for regarding the average billing cost. Specifically, we have
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=
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Figure 4. Average billing cosBexp Vs. c,. The average query volume Figure 5. Probability histogram of query volume fér= 60 s and the
per device was set to = 163,840 b and the experiment corresponds to best fit obtained via the Exponential distribution.

n =10 devices. For the case of Pareto distribution, we used 4. Lines

with markers: Monte Carlo experiments; Lines without meskéheoretical

predictions. The circles indicate minimum billing valuespaedicted by the . . L .
analysis in Sectiofr . experiment was carried out within several offices of the

Electronic and Electrical Engineering Department of Uni-

versity College London, and activation of query generation
submitted indicative queries to the cloud-computing srvi transmission and processing was triggered when people
with volumes that have been generated according to thpassed (or moved) in front of the device cameras. Back-
marginal PDFs of Sectiopn]ll via rejection sampling underend query similarity identification was done using presdore
various numbers of devices per loT cluste) énd various VLAD signatures o0, 000 images of similar content based
average query volumes. The aggregated queries are uploaded the AWS setup described in the previous subsection.
to the dedicated S3 bucket for the service and are processedOnce data has been collected, we flftee query pro-
by a number of instances that is controlled by the AWS Autoduction volumes to one of the distributions used in Section
Scaling rules stated in the previous subsection. In thig,casllll In the performed experiment and under monitoring
we usedT” = 600 s and varied the value af, in order to interval of T' = 60 s for the devices, we found that the
see the incurred infrastructure billing costs under a warie query volume histogram agreed best with the Exponential
of Auto Scaling thresholds. distribution with » = 82,616 b. For ' = {600,1200} s,

Fig. @ presents indicative results under this setup. Evthe best fit was found to be the Pareto distribution with:
idently, the theoretical results follow the trends of ther = 816,250 b anda = 3.89, andr = 1,569,700 b and
experimental data, wittkR? coefficients being abov@9983  « = 3.95, respectively. An example for the fit obtained with
for all the distributions under consideration. Howevee th the Exponential distribution is given in Figl 5. Moreover,
theoretical predictions always tend to underestimate thavith respect ta-., we found that, for all cases of monitoring
experimental values. This underestimation is due to the fagntervals under consideration, the system switched betwee
that our analysis does not take into account some practicaldle” and “active” states at. = 0.5. Therefore, our analytic
latency and cost aspects of the service, for example thdgsults utilized this value for all results of this subseti
switching between “idle”, “active” states is not instargans Under this setup and with the fitted values for Exponential
and other cost overheads (such as the cost of the contrénd Pareto PDFs, Talle | presents the obtained experimental
server) are not taken into account by our analysis. Similand theoretical values (via Proposions 1 and 2) for the
results to Figl# have been obtained for a variety of averagéxpected energy and the upper-sided energy variance for
query volumes and monitoring intervals, but are omitted fortwo monitoring intervals. It is observed that the theostic

brevity of exposition. predictions are always within 10% of the experimentally-
. derived values. As such, the proposed energy-consumption
D. Results with User Generated Data model can be used for early-stage testing of plausible appli

We now present system tuning results when repeatingation deployments with respect to their energy efficiency
the visual query generation, transmission and cloud-based
q y 9 bFitting is performed by matching the average data sizef each

processing for 25 monitoring mterv_als ba_sed on real videQjsipytion to the average data size of the JPEG comprefsaetes or
captures and VLAD query generation using real data. Thehe set of visual features.



Table |

EXPECTED ENERGY CONSUMPTION AND UPPEfSIDED VARIATION. f:essed by a back-end cloud computing SerVice: Our analysis
EXPERIMENTAL RESULTS AND THEORETICAL PREDICTIONFOR ALL incorporates energy consumption and cloud infrastructure
CASES WE SETce = 0.5. billing rates when the devices and the cloud computing

| Theoretical Experimental system adapt their resource consumptlpn according t_o the

, volume of generated queries by switching between “idle”

Bexp = 01679 J  Eexp = 0.1538 J o3 _ ) _

T=60s| p 1=003162  Eya=0.0317 2 and “active” states. Experiments with Beaglebone Linux
100 Forp = 2.7955 3 Forp — 2.8053 J embedded platforms and_ Amazon_ Web Services (AWS)

= S| Foar =2.9276 B Eyar = 2.8411 22 based back-end processing for visual query generation,

transmission and similarity detection demonstrate that th
Table I proposed model forms a framework that accurately incorpo-
aple . N

EXPECTED BILLING COST. THE AD-HOC SOLUTION CORRESPONDS TO rates the effect of vgrlous SyStem p_arameters with respect

SETTINGcyp, = 7n. THE PROPOSED SOLUTION IS OBTAINED WITH:y, SET to energy consumption and cloud billing costs. Therefore,

ACCORDING TOPROPOSITIONS|. variations of the proposed analytic modeling can be used
for early-stage analysis of possible deployments, or limit
| Ad-hoc Proposition 3 | saving studies of the expected performance under a wide range
T =600 S | Bexp=582-104$ Bexp=470-10"1 $ ‘ 19 0% qf parameter settings, prior to costly deplpyments in the
n =10 ¢p =1.54 Mb cp =2.51 Mb field. Our framework could be expanded in future work
T =1200S | Bexp=7.70-10%$ Bexp =6.25-1074 $ ‘ 19 % by: (i) expgnd.ing_our analytic results beyond the specific
n=10 cp, = 1.88 Mb cp = 3.09 Mb cases of distributions used to characterize the query data

volumes; (ii) considering the case of simple aggregation
of the IoT devices’ traffic by the loT aggregator (Fig.
] ) ) ) ) ) [@); (iii) extending the experimental validation to different
in order to determine the impact of various options, prior t0astheds and applications, e.g., within IBM loT Foundation

more detailed experimentation in the fie!d. - _and Bluemix, AWS loT, Cisco OpenStack, etc.
To present a further example of this capability, with
the Pareto-distributed query volume statistics fbr = ACKNOWLEDGEMENTS

{600,1200} s and under the use of = 10 devices, we FR, JD, and YA were supported by EPSRC, grants
determined the Auto Scaling threshotdl, that is expected EP/K033166/1, EP/M00113X/1. VG was supported by In-
to lead to the minimum cloud infrastructure billing cost novate UK, project ACAME, grant no. 131983.

based on Proposition 3. Then, we benchmarked the obtained
cost of the system under this threshold against the intuitiv
(albeitad-hog setting ofc;, = nr, which corresponds to the A. Energy Consumption?(¢.) Is Pareto Distributed

Auto Scaling threshold being set to match the average query In this case U, is drawn from a Pareto distribution with
volume of alln devices. The results, given in Talplé I, show scalev, and shapex., with o, > 2, as in [2ZB8). Note that the
that the obtained billing cost is 19% lower than the case okxpected value o¥, is given byEp[¥,] = Sete. Therefore,
the same query volume processing under the ad-hoc Aut@e setv, = %=L in order to be consistent with the analysis

Scaling threshold. In terms of practical deployments, it iscarried out for the case of uniformly distributd..
important to emphasize again that not all the system param- |f ., < v, the device is never in idle state, and

eters can be tuned by the same entity. For examplés  the corresponding expected energy consumption is simply

controlled by the cloud provider, whereasdepends on the Eexp.p = gor. Underc,r > v, and by using[(23) in{2), we
specific device and the processing task performed. Howevegptain

the proposed framework provides an analytic link between . o Y

such parameters and the energy and billing costs, that cafiexp.P = (ge +ie (e = 1) co(@ece) ™ +ce = 1)) 7 (49)

be used by the different stakeholders in a variety of waysThys, the value of the average query volume that meets the
Moreov_er, the experimental example reporte_d demons_trateeg(pected energy consumption constraint is

that tuning the system based on the theoretical analysis can

APPENDIX

lead to important cost savings under real-world conditions = Bexp.p ) (50)
for cloud-based processing of loT-generated queries. ge +ic (e = 1) ee(@rece) ™ + ¢ — 1)
Similarly, by using [2B) in[(B), and undegr > v., we can
V. CONCLUSIONS write the upper-sided variability of the energy consumptio

We propose a novel theoretical framework for establishingVhen the application switches from “idle” to “active” state
trade-offs in the energy consumption and infrastructurés
billing cost of Internet-of-Things (10T) oriented deplogmts
comprising mobile devices generating queries that are pro-

o — 1 ae—1 2—a,
Eyarp = 293 (a o ) Ce T2. (51)
’ ag (e —2)
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