

Effective and Efficient Communication in Grid Computing

with an Extension of ProActive Groups

 Laurent Baduel Francoise Baude Nadia Ranaldo Eugenio Zimeo
OASIS –INRIA RCOST -Department of Engineering

University of Nice Sophia Antipolis – France University of Sannio – Benevento – Italy
 {lbaduel, fbaude}@sophia.inria.fr {ranaldo, zimeo}@unisannio.it

Abstract

Grid applications typically deal with huge amount of

data and often the same data have to be transferred and

processed on many resources. Nevertheless, the majority

of existing middleware platforms for Grid computing do

not provide suitable programming and communication

models to make easy software development and to

improve communication performances when a large set of

receivers is involved. Some middlewares for wide area

network computing, such as ProActive, provide the group

abstraction to transparently deal with a number of similar

receivers. We propose an extension of such a mechanism

in order to improve its features for Grid environments. In

particular, ProActive native groups have been extended

both at programming and communication levels in order

to support both different internal behaviors and high

performance communication based on IP multicast. A

case study shows the effectiveness of the new mechanism

and its efficiency compared with the original one.

1. Introduction

 Many Grid applications (such as simulations applied to

scientific and engineering fields, or data acquisition and

analysis from distributed measurement instrumentations

and sensors) deal with intensive computations and

management of huge amount of data and often the same

data have to be transferred and processed on multiple

resources in order to improve the performance.

 In recent years, many Grid middleware platforms and

toolkits have been developed (Globus [1], Legionz [2],

Unicore [3], Condor-G [4], HiMM [5], etc.). These

middleware platforms, typically, adopt unicast

communication mechanisms implemented atop unicast

reliable protocols. However, Grid systems could strongly

benefit in many applications of a one-to-many or many-

to-many communication mechanisms [6] [7].

 Providing a middleware for Grid computing with an

effective and efficient implementation of the group

abstraction at programming level could ease software

development and reduce the communication overhead

both in a small scale and in a large scale.

 According to the Object Group design pattern [8], a

group is a local surrogate for a group of objects

distributed across networked machines to which can be

assigned the execution of a task. The object group pattern

specifies that when a method is invoked on a group, the

runtime system sends the method invocation request to

the group members, waits for one or more member-

replies on the basis of a policy, and returns the result back

to the client. Groups are usually dynamic, i.e. the set of

group members can continuously change.

 At programming level, groups can ease software

development since they simplify the implementation of

some high-level computing models, such as master-slave,

master-worker, pipeline and work-stealing.

 At communication level, groups can reduce the

communication overhead for several reasons. First, the

delivery of the same content to a collection of receivers

can benefit of the group abstraction since specific

optimizations can be applied even if the underlying

transport layer is based on unicast communication [9].

For instance, the network transfer of objects requires

serialization before sending them. Since serialization

takes a significant processing time, sending the same

object to the members of the group is easily improved if

the same serialized copy of the object is used for a unicast

transfer towards each member. Second, group

communication can be implemented (only for some

internal behaviors) through its mapping on a multicast

transport layer. In this case, differently from real-time

multimedia distributed systems, which tolerate unreliable

data streaming to reduce latency, Grid systems often

require reliable multicast protocols to deliver replicated

application data without losses and errors.

 These considerations have motivated an intense

research activity which has led to many protocol

definitions for implementing reliability in multicast

communication. The paper in [10] proposes an interesting

solution integrated in a Java framework, JRMS (Java

Reliable Multicast Service) [11], that provides several

reliable multicast protocols.

 In this paper, an extension of the groups provided by

ProActive [12] is proposed. The ProActive API was

modified in order to (1) support the definition of specific

semantics for groups; (2) dynamically install defined

semantics in running groups; (3) establish a mapping with

a transport layer; (4) select IP multicasting when the

group semantics require members to be clones and

methods arguments to be delivered to all replicas. The

paper presents also the integration of a transport layer

based on IP multicast with ProActive and discusses,

through the implementation of a case study, the benefits

that the above extensions introduce in some computing

models.

 The rest of the paper is organized as follows. Section 2

describes the typed groups provided by ProActive and the

current limitations as concerns the internal behavior and

communication layer. Section 3 introduces some possible

semantics for groups. Section 4 proposes a new ProActive

API and the integration of a specific transport layer based

on IP multicast. Section 5 discusses a case study, which is

an application based on the master/slave computing

model implemented through ProActive groups.

2. ProActive Groups

 The basic unit of activity and distribution used by

ProActive to build concurrent applications is the Active

Object. An active object is remotely created on a host

involved in the computation. Methods calls sent to active

objects are always asynchronous with transparent future

objects and the synchronization is handled by a

mechanism known as wait-by-necessity [13].

 In addition to simple active objects, ProActive offers a

group communication mechanism that allows for method

invocations on sets of active objects, grouped together

and referenced by a single collective name. A ProActive

group is also called typed group since it is composed of

objects belonging to classes inheriting from the same

superclass or implementing the same interface. Typed

group is the "clonation" of an active object on a set of

nodes and a group communication is the "replication" of a

remote method invocation on them. Each member can be

an instance of a different class but all the members must

have the same ancestor.

 While many libraries and programming frameworks

delivering group abstraction impose specific constraints

on programmers, thanks to the use of a Meta-Object

Protocol (MOP) [14], ProActive delivers a more

transparent and flexible mechanism. ProActive MOP,

through the reification of method invocation and

constructor call, makes it possible to initiate group

communication invoking a method of the group object.

As a consequence a typed group takes exactly the same

form as using only one active object. When a method call

is invoked towards a group, the semantics of

communications are implemented on an asynchronous

underlying communication system which internally

handles execution requests as sequences of events related

to request transmissions, request dispatching, failure

notifications, result collecting, etc. Such communication

system asynchronously and efficiently propagates the call

to all members of the group using multithreading. A

method call on a group is asynchronous and provides a

transparent future object to collect the results.

 Currently, ProActive groups provide the programmer

with some mechanisms for the management of input

parameters, such as broadcasting and scattering. By

adopting the broadcasting, the same parameter is sent to

all the members. On the other hand, by adopting the

scattering, a part of the overall parameter is transferred to

the members. In this case, the parameter has to be

explicitly passed as a group, which is built splitting the

original parameter in several parts. The default behavior

is the broadcasting, while in order to scatter a parameter

the programmer has to invoke the static method

setScatterGroup of the ProActiveGroup class to the
input parameter group. So, the scatter policy is tied only

to a specific input parameter instance.

 Some synchronization policies can also be adopted to

block the caller when a return parameter is used. The

limitation of this approach is that synchronization policies

can be associated to the returned group but not to the

group instance which invokes the method. The result of a

typed group communication is also a group, requiring so

an explicit management of its group members when an

aggregation policy has to be adopted. The result will be

dynamically updated with the incoming partial results.

Thanks to the wait-by-necessity synchronization

mechanism, a result can be immediately used to execute a

method call, even if all the results are not available.

In order to simplify distributed programming, more

abstractions and high-level distributed models should be

delivered by a group communication mechanism at

programming level, in order to free the programmer from

the implementation details of system aspects of

programming such as object distribution, mapping and

load balancing mechanisms. This leads also to a

performance improvement, thanks to the possibility to

automatically and transparently adapt the application to

the system configuration.

 We propose to extend the syntax of group creation and

to change the syntax and semantics of group

management. To this end, we introduce a dynamic

internal behavior, called Group Behavior, for each

ProActive group, so as to define the semantics adopted by

the group for a method invocation. Through the definition

of a behavior and its dynamic assignment to a group, this

one can change its internal behavior at run-time and new

policies can be easily implemented and attached without

interventions on the library or even on the application

code. In fact, through the Java reflection, a newly created

group behavior can be loaded during the program

execution to install a different behavior in a running

group. This way, a group can transparently adapt its

behavior to the context in which it operates.

3. Group semantics and communication

 In recent years, several group semantics have been

defined. Each of them contributes to specify the behavior

of a group. In particular, from the point of view of the

method invocation the following semantics can be

individuated:

� Request mapping: it handles the mapping of each

request to the group members. Some examples are (1)

One, the request is assigned to only one group member,

selected with a scheduling policy (for example random,

round-robin, more sophisticated policies based on QoS)

[15]; (2) Fixed, the request is scheduled for a defined

number of group members; (3) All, the request is

propagated to all the group members.

� Input parameters distribution: it allows for splitting

the input parameter of each group method before sending

the request to the group members selected for the request

mapping. Examples are: (1) Broadcast, an input

parameter of the method invocation is sent to all the

scheduled group members; (2) Scatter, a group that

receives the invocation of a method could be able to split

the value, received as parameter, in a number of chunks

and to pass each one to the same method of each member.

� Output parameters collection: it handles the return

value replied to the caller. Examples are (1) Gather, the

output parameter is obtained collecting the partial results

of the group members; (2) Merging, the output parameter

is obtained by assembling the partial results of the group

members.

� Synchronization: it specifies the condition that blocks

the caller when a return parameter of a group method

invocation is used. (1) All, the totality of the scheduled

group members execute the request, and all the results are

to be collected and returned to the caller; (2) Majority, the

execution request is active until the majority of the

scheduled group members have executed the request and

replied the results; (3) One, in this case, groups can be

used to improve the reactivity related to the processing

triggered by a method of the group by moving the

invocation to all the scheduled members and collecting

the result coming from the more reactive or nearer

member; (4) Fixed, a number of executions specified by

the user are required.

From the point of view of communication inside a group,

the following schemes can be adopted:

- Unicast, a point-to-point communication. In this case

each member is contacted separately in order to receive

different input data.

- Multicast, a point-to-multi-point communication. In

this case the group is subdivided in two or more

subgroups and, for each one, input data are delivered to

all the members.

- Broadcast, all the members receive the same input.

 Communication semantics have to be selected

according to the behavior chosen for the group. For

example the multicast semantic is adopted when a request

execution is sent to a part of the group members and the

input parameters are sent with the broadcast semantic,

etc., whereas the unicast semantic is adopted for a request

execution when an input parameter is scattered and each

part has to be sent to a different group member.

 For each one of the semantics reported above, a

reliable or unreliable schema can be adopted, depending

on the selected semantics of the group.
 Some group semantics for the creation phase can also

be individuated. Examples are the policy for the selection

of host nodes on which allocate the group nodes, the

management of each constructor parameter of the group

members and also the semantic that determines the

condition of success of a group creation. In this paper

only the method invocation semantics are analyzed,

whereas those related to the group creation phase are

currently under study.

4. Extended ProActive Groups

 To ensure flexibility and extensibility the

configuration and customization of a behavior for a group

is obtained through GroupBehavior. Such class specifies

the behavior of a group in response to the method

invocation request and is the composition of the four

semantics defined above. Each semantic has a default

implementation and can be modified at run-time.

 A semantic is associated to an instance of one of the

following interfaces:

- RequestMappingSemantic

- InputDistributionSemantic

- SinchronizationSemantic

- OutputCollectionSemantic

 Each interface has some methods that have to be

implemented to define a specific semantic. Such methods

are invoked by a component of the framework, called

GroupBehaviorEnactor.

RequestMappingSemantic The implementation of the

method:
 Vector getMembers(MethodCall mc, Vector

memberList) specifies the group members at which the

request has to be sent. It receives an instance of the

MethodCall class, which contains information on the

current method invocation on the group (opportunely

captured at run-time by the MOP), in particular on the

method signature and the effective arguments. The other

input parameter is a list of the current group members.

InputDistributionSemantic The implementation of the

method Vector manageInputs(MethodCall mc,
Vector memberList, Communicator comm)
specifies how the input parameters have to be distributed

to the group members for a method invocation request. It

receives the MethodCall instance which represents the

current method invocation request, the list of the group

members chosen for the request execution by the

RequestMappingSemantic. The last input

parameter represents a component responsible for the

implementation of the logical communication semantic to

use for data transmission inside a group. Such class has

the method setLogicalCommunication(String

commSchema, Parameters qos) which permits a user

to configure a logical communication semantic for a

method execution request. The method uses a string

representing a communication schema supported by the

middleware and some parameters of QoS which have to

be satisfied. Parameters is a class that contains instances

of Parameter, which is a couple of attribute-value.

Currently, we consider only a parameter, which

represents the reliability level defined by the attribute

“reliability” and can assume the values “reliable” and

“unreliable”. The communication schemas currently

supported by the middleware are: “unicast”, “multicast”

and “broadcast”.

 From the programming point of view the possibility to

specify the logical communication semantic inside a

group is delivered without any awareness on the

leveraged transport layers supported by the physical

networks. For example, although unicast group

communication could be implemented by employing a

unicast transport protocol such as TCP or UDP, multicast

and broadcast group communication could be

implemented both by using a unicast transport protocol

and a multicast one, depending on the availability of the

underlying transport layers.

 Finally the return parameter is a vector which contains

the result of the distribution semantic applied to each

effective argument, obtained by the MethodCall instance,

corresponding to the input parameter identified by its

index in the parameter list.

SynchronizationSemantic Through the implementation

of the method:
void waitFor(MethodCall mc, Vector futures)

it is possible to specify the synchronization policy when a

result of a group method invocation is used for another

method call. Such method is invoked on a vector of future

objects, each of which is associated to the asynchronous

call on a group member scheduled for the execution.

 This method can be easily implemented leveraging the

static methods of ProActive related to the synchronization

on a future object or a vector of future objects.

OutputCollectionSemantic determines how to reply to

the caller the final return parameter of a group method

invocation through the following method:
Object manageOutput(MethodCall mc, Vector
futures)

It receives an instance of MethodCall and a vector of
future objects, containing the stubs of the results of the

group members scheduled for the request execution.

 The extension of the ProActive group requires only
few modification to the syntax of the current version. In

particular the client application creates an instance of a

group specifying the GroupBehavior to apply. As a

Figure 1. Extended Proactive Group
organization

1. method1(input)

:Stub_A

:ProxyForGroup

node 1:Proxy

:Proxy

:Proxy

:Proxy

node 2

node 3

node 4

:Stub_C

:Stub_C

:Stub_C

:Stub_C

stub of the group

stub of the result

:Stub_C :Proxy

:A

:A

:FutureProxy

:FutureProxy

:FutureProxy

:FutureProxy

2. reify(mc)

Group Behavior

Enactor

5. * for each input

manageInput()
11. manageOutput()4. getMembers()

9. collect()

futures

7: anotherMethod()

3. enact()

10. waitFor()

:CommunicatorImpl
b:B

6. sendExecRequest()

UnicastProxy

: MulticastProxy

ExtendedProxyForGroup

8. reify()

:GroupCompositor

GroupBehavior

Stubs

 :Stub_A

:Stub_A

:Stub_A

:Stub_A
:A

:A

12. collectResults()

Grid Middleware
C

o
m

m
u
n
ic

a
ti
o
n

S
e
rv

ic
es

R
es

o
u
r
ce

 M
a
n

a
g
e
m

e
n
t

S
er

v
ic

e
s

:RequestMapping

Semantic

:InputDistribution

Semantic
:Synchronization

Semantic

:OutputCollection

Semantic

input:Object

consequence, the static methods of the ProActiveGroup

class have been modified to include this parameter. See

the example reported below that shows the creation of an

empty group of class A. The code shows also how it is

possible to build an object of GroupBehavior class
specifying the instances of the semantic objects to adopt,

and as it is possible to change at run-time one or more of

them.

public class A{
 public A(){}
 public C method1(Object input) {...}
 public C method2(Object input) {...} }

public class AllScheduler implements
RequestMappingSemantic{
 public Vector getMembers(Vector memberList, Method Call
mc) { return memberList; } }

public class ScatterSemantic
 implements InputDistributionSemanti c{
public Vector manageInput(MethodCall mc,
 Vector memberList, Communicator com m) {
 Vector inputs = new Vector();
 for (int i=0; i<mc.getNumberOfParameter(); i++){
 Vector parts=new Vector();
 Object par = mc.getParameter(i);
 if (par.getClass().isArray()) { //default scatte r
 Object[] o = (Object[])par;
 Class c = par.getClass().getComponentType();
 Object part = null ;
 int size = memberList.size();
 int elemNum = o.length/size;
 for (int k=0 ; k< size ; k++) {
 part = Array.newInstance(c,elemNum);
 for (int j=0;j< Array.getLength(part); j++)
 Array.set(part, j, o[(k*elemNum)+j]);
 parts.add(k,part);
 }
 } else if
 inputs.add(i, parts); }
 Parameters pars= new Parameters();
 Parameter p =new Parameter(“reliability”, “reliabl e”);
 pars.addParameter(p);
 comm.setLogicalCommunication(“unicast”, pars);
 return inputs; } }

public class MyInputSemantic extends ScatterSemanti c {
Vector manageInputs(MethodCall mc, Vector memberLis t
Communicator comm)
{ Vector inputs = new Vector();
 if (mc.getName().equals(“method1”)) {
 //method1 with scatter semantic
 inputs = super.manageInputs(mc, memberList, com m);
 } else if (mc.getName().equals(“method2”)){
 . . .// method2: broadcast sem. and multicast co mm.
 }
 return inputs; } }

public class OutputAssembler implements
OutputCollectionSemantic {
 // return par. is replied assembling partial resu lts
 Object manageOutput(MethodCall mc, Vector futures){
 . . . } }

public class AllSynchronizator implements
SyncronizationSemantic {
 // synchr. on all parzial results
 public void waitFor(MethodCall mc, Vector futures){
 ProActive.waitForAll(futures);
 } }

public class Main{
 public static void main(String[] s){
 Node [] nodes = …;
 RequestMappingSemantic r = new AllScheduler();

 InputDistributionSemantic in = new ScatterSemanti c();
 SynchronizationSemantic s = new AllSynchronizator ();
 OutputCollectionSemantic out = new OutputAssemble r();
 GroupBehavior beh = new GroupBehavior(r,in,s,out) ;
 A a = (A) ProActiveGroup.newGroup("A", null, node s,
beh);
 . . . // creation of the parameter input
 C c = a.method1(input);
 in = new MyInputSemantic();
 beh.setInputDistributionSemantic(in);
 Group g = ProActiveGroup.getGroup(a);
 g.setBehavior(beh);
 c = a.method2(input);
 c.anotherMethod(); } }

 Group creation is performed through the method

newGroup which specifies the group class, the

constructor parameters, the nodes and the group behavior.

In the current implementation, the broadcast semantic,

and the multicast communication schema are adopted for

the constructor parameters. The reference created by the

newGroup method is an instance of the class A, and more

precisely, an instance of Stub_A, that is a subclass of A

automatically and dynamically built by the MOP.

 Thanks to the reification, the semantic related to the

management of method invocations on groups can be

intercepted and customized at run-time in order to

logically show a specific behavior. In particular, when a

method is invoked on a group instance, the MOP

mechanism is enacted to start the reification of the

method call (see fig. 1): (1) an object of MethodCall class

is built and passed by the group stub to the group proxy to

execute the method reify(MethodCall); (2) the group

proxy invokes the method enact of the Group Behavior
Enactor; (3) the Group Behavior Enactor perform the

execution request adopting the semantics specified in the

GroupBehavior object received as parameter.

 When a result is used for the invocation of a method

the following steps are executed: (1) the proxy of the

result invokes the method collect of the Group

Behavior Enactor; (2) the Group Behavior Enactor

executes the synchronization semantic and builds the final

result adopting the semantics specified by the

GroupBehavior object received as parameter.

 From the point of view of the communication inside a

group, some improvements can be made. The idea is to

perform the data transmission leveraging the potentialities

of the network connections effectively available at the

moment. For example some network information can be

used in order to adopt, when it is possible, as an

alternative to the commonly used unicast transport

communication based on TCP/IP, a transport layer based

on multicast protocols.

 ProActive is particularly suitable to implement such a

mechanism, thanks to its high modularity and

customization mechanisms related to the mapping of

logical application data communication to the real

services available at transport level for data transmission

on physical networks.

 Our solution is based on the definition of a new

ProActive component, the Communicator, which has the

main task to manage the data transmission inside a group

for each method execution request. Such component is

the only component to be aware of the communication

services delivered by the physical networks and so to be

able to map the logical communication semantic onto an

available transport layer, that is the most suitable one.

 For unicast communication, the Communicator can

access to the Proxy, one for each member scheduled for

the request execution, which is able to handle the

transmission on the network of a request adopting one

among the available unicast transport layers. For

multicast communication, the Communicator can access

to the MulticastProxy, a completely new component, able

to handle the transmission of a request adopting a

multicast mechanism.

 The default middleware in ProActive adopted for

group communications, that is based on RMI, limits the

possibility to improve the performances of an application

written using the group communication mechanism. In

fact RMI is currently implemented on TCP which

requires a group method invocation to be implemented as

the sequential invocation of a remote method call on each

active object. For this aspect, we propose an

implementation of ProActive groups atop a transport

layer based on IP multicast.

 Integrating reliable multicast inside a middleware for

Grid computing is still an open issue. Some solutions aim

at easily porting existing applications to multi-destination

environments by enriching TCP with multicast

capabilities [6]. To efficiently exploit a multicast

protocol, the Grid computing middleware should be able

to manage the sub-parts of the Grid infrastructure in

which the multicast communication is supported at data-

link or network layers. This is the case of a cluster in

which the resources are connected through a common

LAN which supports broadcast communication at data-

link layer, or a set of workstations directly connected to

an IP multicast-enabled router.

node 1

:Proxy

:Proxy

:Proxy

:Proxy

node 2

node 3

node 4

:A

:A

:A

:A

Group Behavior

Enactor

:CommunicatorImpl

sendExecRequest()

UnicastProxy

mp: MulticastProxy

IP multicast group

Unrielable

Rielable

MulticastTransport

Unrielable

Rielable

UnicastTransport

Grid Middleware

Communication

Services

Figure 2. Logical communication mapping on
real transport layers

 Unreliable multicast typically provide scalability up to

tens of thousands of nodes, but its semantics are generally

too weak for application developers to depend upon.

Messages are subject to long and unpredictable

transmission delays, message loss, and out of order

delivery. Processes may crash and network links may fail;

such failures are hard to detect when the communication

delays are unpredictable and messages can be lost. To

avoid this, we can use a reliable multicast service to

integrate into the transport layer of ProActive to ensure

that a message from a correct process reaches all the

correct participants.

5. A case study: the implementation of the

master/slave model

 The master-slave pattern [16] for distributed

programming was implemented to test our proposal. Two

implementations of this programming model are shown

and compared, the first one adopts the native group

mechanism and the second one adopts the extended group

mechanism. A slave object is implemented by means of a

group member, each of which is opportunely distributed

onto remote machines.

 The four semantics described above have to be

specialized in order to define the specific behavior of a

group of objects which has to implicitly implement such

programming model.

RequestMappingSemantic. The request execution has to

be sent to all the slaves, in order to leverage all the

computational power of the distributed resources on

which them are instanced, so the already defined

AllScheduler class can be used to set such semantic.

InputDistributionSemantic. For the master/slave pattern it

has to be defined how the initial workload is divided

among the slaves. The decomposition mechanism on

input parameters is delivered by the already defined class

ScatterSemantic.

SynchronizationSemantic. The result of a master/slave

computation is obtained combining all the results of the

slaves, so the synchronization policy has to be a wait for

all the results, already implemented by the class

AllSynchronizator.

OutputCollectionSemantic. The reconstruction of
the final result from the partial results of the slaves is

defined by the default output collection semantic defined

by the already defined class OutputAssembler.

 In the following, the class MSGroupBehavior is

shown. Such class represents the group behavior for the

master/slave pattern, built adopting the semantics defined

above.

public class MSGroupBehavior extends GroupBehavior {
 public MSGroupBehavior() {
 RequestMappingSemantic r = new AllScheduler();
 InputDistributionSemantic in = new ScatterSemanti c();
 SynchronizationSemantic s = new AllSynchronizator ();
 OutputCollectionSemantic out = new OutputAssemble r();
 super(r,in,s,out); } }

 The canonical matrix multiplication is used as case

study. Class Matrix is used to represent the abstract

data-type matrix, and delivers the methods necessary to

perform the row-for-column multiplication. In particular

Matrix delivers a constructor Matrix (float[][] m)

where the parameter m is a two-dimensional array of

float, and the method Matrix multiply (float[][]

a) , that performs the multiplication algorithm where the

current instance represents the right matrix and the matrix

passed as parameter the left matrix. Such matrix has to be

split in equivalent sub-parts, using a row-based

decomposition, each of that has to be sent to a different

group member that represents a slave object. On the other

hand, the constructor parameter will be the overall right

matrix, which so will be the same for each of them.

5.1. Native vs Extended Groups: code writing

 The implementation adopting the native Proactive

group mechanism is the following:

public class Main1 {
 public static void main (String args[]) {
 Matrix mDxGroup, mSxGroup result;
 Node[] nodes = null; // nodes list for slaves
 float[][] a, b;
 // def. of the left mat. b and right mat. a
 int totalRows = b.length;
 Object[] po = new Object[1]= {a};
 mDxGroup = (Matrix)
 ProActiveGroup.newGroup("Matrix", po, nodes) ;
 Object[] parts = createSubMatrices(b, nodes.lengt h);
 Object[][] pars = new Object[nodeList.length][];
 for (int i=0 ; i < nodeList.length ; i++) {
 po = new Object[1] {parts[i]};
 pars[i] = po; }
 mSxGroup =
(Matrix)ProActiveGroup.newGroup("Matrix", pars, nod es);
 ProActiveGroup.setScatter(mSxGroup);
 Matrix gResult = mDxGroup.multiply(mSxGroup);
 Matrix result = reconstruction(gResult, totalRo ws);
 } }

public Object[] createSubMatrices(float[][] m, int n){
 Object[] parts = new Object[n];
 int widthSubMatrix = m.length / n;
 for (int i=0 ; i < n ; i++) {
 float[][] d = new float[widthSubMatrix][];
 for (int j=0 ; j < d.length ; j++)
 d[j] = m[(i*widthSubMatrix)+j];
 parts[I]=d;
 }
 return parts; }

public Matrix reconstruction(Matrix group, int rows) {
 int index = 0;
 Matrix partial = null;
 int size = ProActiveGroup.size(group);

 float[][] d = new float[rows][];
 for (int i=0 ; i < size ; i++) {
 partial = ((Matrix)(ProActiveGroup.get(group,i)));
 int widthTmp = partial.getWidth();
 for (int j=0 ; j < widthTmp ; j++) {
 d[index] = partial.getRow(j); index++;
 } }
 return new Matrix(d); }

 As it is possible to note, it is necessary to define a

ProActive group which will used to perform the

distributed multiplication. The tasks related to the

master/slave pattern implementation, are explicitly

provided by the programmer. Such tasks are essentially

those performed by the master object, that are the

configuration of the input parameter for each group

member and the collection of the results and their

assembling in order to deliver the final result matrix to the

user. In particular, in order to perform the multiplication

algorithm on a part of the left matrix, this has to be

explicitly split, and the obtained sub-parts have to be used

to build a group of Matrix objects to use with the scatter

semantic. The result parameter is a group of Matrix

objects, so an assembling algorithm has to be written in

order to extract each group member and to merge the

partial matrices in the final one. Such implementation of

the master/slave pattern requires so to the programmer

many tasks, and the group mechanism doesn’t permit to

effectively simplify the distributed programming.

 The implementation adopting the extended Proactive

group mechanism is the following:

public class Main2 {
 public static void main (String args[]) {
 Matrix mDxGroup, result;
 Node[] nodesList = null;// nodes list for slave s
 float[][] a, b;// … def.left mat. B, right mat. a
 GroupBehavior msbeh = new MSGroupBehavior();
 Object[] po = new Object[1] {a};
 mDx = (Matrix) ProActiveGroup.newGroup("Matrix" ,
 po, nodesList, msbeh);
 result = mDx.multiply(b);
 . . . // use of the result matrix } }

 It is possible to note as the distributed programming is

really simplified adopting the extended group mechanism

and the group behavior for the master/slave pattern,

thanks to the fact that it maintains completely transparent

to the programmer the details of its implementation.

5.2 Native vs Extended Groups: performance

evaluation

 A performance evaluation of the proposed approach

was conducted by comparing the performances obtained

with two different implementations of the case-study. An

implementation was based on the original groups and

unicast communication, the other one was based on

extended ProActive groups and multicast communication.

For the first case, the default ProActive implementation

based on Java RMI was adopted, while for the second one

a prototypical version of the ProActive group mechanism

was implemented and a reliable multicast protocol

(TRAM), included in JRMS 1.1, was used.

The testbed was a cluster of eight nodes, each one

equipped with Intel Pentium II 350 Mhz, 128 MB of

RAM and 10/100 Mbps network card, and a machine

equipped with Intel Pentium IV 2.4 Ghz, 256 MB of

RAM and 10/100 Mbps network card.

Fig. 3 Performance evaluation

 Fig. 3 shows the execution times of the application

matrix multiply, considering a fixed matrix dimension to

1000x1000 float number, and a varying number of slaves.

As it is possible to note, the implementation based on

reliable multicast exhibits better performances, mainly

due to the reduced traffic on the network. The adopted

implementation in fact employs multicast communication

for the creation group members, each of which receives

the right matrix with the broadcast semantic, so strongly

reducing the network utilization compared to repeated

unicast communication adopted by the original ProActive

groups.

6. Conclusions

 The paper presented and discussed an extension of

ProActive groups in order to improve their features for

Grid environments. The extension regards both the

programming interface and communication. This way,

programmers can define specific semantics for groups

and dynamically install them in each group instance.

These semantics specify the internal behaviour of a group

and create a binding with a desired communication layer

and protocol.

A case study shows both the flexibility of the proposed

approach and the improvement of performance when IP

multicast can be adopted for communication.

In the future, configurable semantics will be associated

also to the creation phase of each group and resource

management services provided by low-level Grid

middlewares will be used to define dynamic mappings

between group members and computational resources.

References

[1] The Globus Project. http://www.globus.org/.

[2] A. Natrajan, A. Nguyen-Tuong, M.A. Humphrey et al,

“The Legion Grid Portal”, Concurrency and Computation:

Practice and Experience, 2002, 14(13-15), pp. 1365-1394.
[3] Unicore. http://unicore.sourceforge.net/.

[4] J. Frey, T. Tannenbaum, I. Foster, M. Livny, S. Tuecke,

"Condor-G: A Computation Management Agent for Multi-

Institutional Grids", in proc. of the Tenth IEEE Symposium

on HPDC, California, August, 2001.

[5] M. Di Santo, N. Ranaldo, E. Zimeo, "A Broker

Architecture for Object-Oriented Master/Slave computing

in a Hierarchical Grid System", Parallel Computing,

Germany, Sept 2003.

[6] K. Jeacle, J. Crowcroft, “Reliable High-speed Grid Data

Delivery Using IP Multicast”, in proc. of e-Science All

Hands Meeting, Hottingham (UK), September, 2003.

[7] M. Miamour, C. Pham, “An Active Reliable Multicast

Framework fro the Grids”, in proc. of the ICCS 2002, April

2002, Amsterdam, The Nederlands, pp. 588-597.

[8] S. Maffeis, "The Object Group Design Pattern", in proc. of

the Second USENIX Conference on Object-Oriented

Technologies, Toronto, Canada, 1996.

[9] Laurent Baduel, Francoise Baude, Denis Caromel,

“Efficient, Flexible, and Typed Group Communication in

Java”. JGI'02, November 3-5, USA, 2002.

[10] D. M. Chiu, S. Hurst, M. Kadansky, J. Wesley, “TRAM: A

Tree-based Reliable Multicast Protocol”, Sun Microsystems

Laboratories, SML TR-98-66, July, 1998.

[11] S. Hanna, M. Kadansky, P. Rosenzweig, “Java Reliable

Multicast Service Overview”, Sun Microsystems

Laboratories, SMLI TR-98-68, September 1998.

[12] D. Caromel, W. Klauser, J. Vayssiere, "Towards Seamless

Computing and Metacomputing in Java", Concurrency:

Pract &Exp., 1998, 10(11-13), pp.1043-1061.

[13] D. Caromel, “Towards a Method of Object-Oriented

Concurrent Programming”, Communications of the ACM,

36(9), September 1993, pp. 90-102.

[14] G. Kiczales, J. des Rivires, and D. G. Bobrow, The Art of
the Metaobject Protocol, MIT Press, 1991.

[15] Andrew A. Chien and William J. Dally, Concurrent

Aggregates (CA) , in proc. of the Second ACM SIGPLAN

Symposium on Principles and Practice of Parallel

Programming, Seattle, WA, 1990.

[16] F. Bushmann et al., Pattern-Oriented Software

Architecture: A System of Patterns. J. Wiley and Sons,

1996.

