
FPGA Implementation of a Lattice Quantum Chromodynamics
Algorithm Using Logarithmic Arithmetic

Owen Callanan†, Andy Nisbet‡, Emre Özer†, James Sexton� and David Gregg†.

†Dept.of Computer Science,
Trinity College, Dublin,

Ireland.
{Owen.Callanan, Emre.Ozer

David.Gregg} @cs.tcd.ie

‡Dept. of Computing and
Mathematics,

Manchester Metropolitan
University, UK.

A.Nisbet@mmu.ac.uk

�Dept. of Mathematics,
Trinity College, Dublin

sexton@maths.tcd.ie

Abstract

In this paper, we discuss the implementation of a lattice
Quantum Chromodynamics (QCD) application to a Xilinx
VirtexII FPGA device on an Alpha Data ADM-XRC-II
board using Handel-C and logarithmic arithmetic. The
specific algorithm implemented is the Wilson Dirac
Fermion Vector times Matrix Product operation. QCD is
the scientific theory that describes the interactions of
various types of sub-atomic particles. Lattice QCD is the
use of computer simulations to prove aspects of this
theory. The research described in this paper aims to
investigate whether FPGAs and logarithmic arithmetic
are a viable compute-platform for high performance
computing by implementing lattice QCD for this platform.
We have achieved competitive performance of at least 936
MFlops per node, executing 14.2 floating point equivalent
operations per cycle, which is far higher than the previous
solutions proposed for lattice QCD simulations.

1. Motivation

We aim here to evaluate the viability of using FPGAs
and logarithmic arithmetic [1] to accelerate high
performance computing applications by implementing a
specific application, lattice QCD, on this platform. FPGAs
have considerable potential to accelerate computationally
intensive applications and particularly those with
exploitable instruction level parallelism such as lattice
QCD. Traditionally floating point arithmetic units have
been too large to fit in an FPGA; logarithmic arithmetic
units provide a resource efficient alternative to these units.
Logarithmic arithmetic has several advantages over
conventional floating point systems and the most important
is that multiplication, division and square root operations
are very fast and require few resources as part of an FPGA

design. Thus logarithmic arithmetic and FPGAs have the
potential to provide a viable platform for many
computationally intensive applications.

Lattice QCD [4] is a simulation of sub-atomic particle
interactions and is used to verify theories about the Strong
Force of Nature, which is described by QCD theory.
Computer simulations must be used to verify QCD
theories since it is impossible to observe these interactions
experimentally. Thus, since QCD describes the very
nature of matter, lattice QCD is a grand challenge high
performance computing application. First, lattice QCD is
converted into logarithmic floating-point domain [2], and
then ported to a high-level hardware description language,
Handel-C [3]. Handel-C describes behaviour at an
algorithmic level rather than at a logical level, as is the
case with conventional Hardware Description Languages
(HDLs) such as VHDL and Verilog. This high-level
approach eases the modelling of complex systems and
reduces the time required to specify and implement an
FPGA system

In this paper, we discuss the implementation of a
custom processor for the lattice QCD application
discussed in Section 2. Section 3 describes the logarithmic
arithmetic cores used in this work and compares them
with conventional IEEE floating point arithmetic. Section
4 describes how the application was implemented in
hardware using FPGAs. Section 5 shows the experimental
results. Section 6 discusses related work. Section 7 gives
the conclusions and details of possible future work.

2. QCD and Lattice QCD

2.1. QCD

We know that all matter is made of atoms of one type
or another. We also know that these atoms are constructed
out of many different combinations of protons, neutrons
and electrons. Protons and neutrons are examples of a

class of particle called hadrons which we now know to be
constructed from quarks and gluons. However we do not
know whether quarks and gluons are indivisible or
whether they can be sub-divided further, answering this
question will require experimental analysis. Quarks and
gluons are bound together by the Strong force of nature
and QCD is the scientific theory that describes this force
[11]. QCD predicts that quarks can never be individually
seen and that they can only ever be seen bound with
gluons and other quarks to form a hadron. Thus in order to
obtain information about quarks QCD theory must be
solved. Currently the best way to do this is through the use
of computer simulations referred to as lattice QCD.

2.2. Lattice QCD

There are many aspects of lattice QCD that can be
simulated using computer simulations. In this study, the
aspect of lattice QCD implemented is a Wilson Fermion
Vector times Matrix Product. Lattice QCD simulates a
finite portion of space and time at a sub-atomic level. This
portion of space and time is represented by a four
dimensional grid of points, or sites, called a lattice. The
data for each site in the lattice is held in a large matrix
composed of groups of four small matrices of complex
numbers. These small matrices are called gl3 matrices.
Data is also stored for the links between sites in the lattice.
This data is stored in another large matrix composed of
another type of small complex number matrices which are
called wfv matrices. One wfv matrix is used per point in
the lattice.

A lattice QCD calculation consists of a very large
number of sweeps of the lattice. A sweep is performed by
updating the wfv matrices for each point of the lattice
once, with each update taking the result of the previous
update as the input wfv value for the current update. The
update of each site is independent of the update of any
other site, allowing a single sweep to be performed by
multiple computing nodes. The data held in the gl3
matrices is not changed.

A site update is performed by the following steps:
1. The wfv matrix for each of the neighbouring sites is
put through a Gamma operation. This operation consists
of twelve additions or subtractions and so is very simple.
There are 8 matrices upon which this calculation is
performed.
2. The result of step 1 is then multiplied by one of the
gl3 matrices for the current site resulting in a wfv matrix.
Each site has eight neighbours (one in each dimension) so
eight versions of this calculation (referred to here as Mul
calculations) are performed.
3. The next step is to add together all 8 wfv matrices
produced by step 1. The resulting wfv matrix is then
multiplied by a scaling factor called kappa.

4. The result of step 2 is then subtracted from the
existing value for the current point.

The Mul operations are the most computationally
demanding part of the application since they require two
complex number matrices to be multiplied. In comparison
the calculations of stages 1, 3 and 4 are all variations on
matrix additions and so are less computationally
demanding. Each of the 8 Gamma operations in stage 1
are paired with a Mul operation from stage 2 and these
pairs may be considered as one operation referred to here
as GammaMul operations. All 8 versions of the
GammaMul operations are independent and may be
performed in parallel given sufficient functional units. The
additions of the results of stage 2 may also be parallelised,
but to a lesser extent, by performing the additions in 3
stages with 4 matrix additions in the first stage, 2 in the
second and 1 in the third, with each stage not beginning
until the results of the previous stage are available. It is
also possible to exploit parallelism internally within the
components of each stage by using multiple functional
units to perform a single matrix operation. Since most of
the operations are performed on small complex number
matrices there is considerable exploitable parallelism
within these steps, given sufficient availability of
functional units.

A very important issue with a lattice QCD simulation is
how many points the lattice contains. The total number of
points in the lattice, N, is the product of each of the four
dimensions in the lattice as follows;

N = NX × NY × NZ × NT.

Where NX, NY, NZ and NT are the number of points the

lattice has in each of its four dimensions. N is important
because calculations performed at higher values of N are
more scientifically interesting than those performed with
lower values for N; however since there are more points in
the lattice the calculation takes longer to complete.
Scientifically valuable results are now being obtained
from very large problem sizes with upwards of 244 lattice
points. Consequently it is unacceptably slow to complete a
lattice QCD calculation on a single compute node; many
nodes are needed for such calculations. To update a single
lattice point requires approximately 2420 floating point
operations thus a sweep of a 244 lattice requires over 800
million floating point operations and given that many
millions of sweeps are required for a solution it can be
seen that the computational requirements for a full lattice
QCD simulation are vast.

3. Logarithmic Arithmetic

We aim here to explore the usefulness of logarithmic
arithmetic and FPGAs as a platform for performing
floating point based applications. We do this by

implementing a specific floating point based application,
lattice QCD, for FPGAs using logarithmic arithmetic.
Conventional floating point does not translate well to
FPGAs since some of the structures required for a floating
point calculation, such as the multiplier tree used in the
multiplier units, require considerable resources.
Logarithmic arithmetic offers an alternative approach to
such systems and it is the viability of this alternative that
we aim to evaluate here.

Logarithmic arithmetic is an alternative approach to the
IEEE standard for performing floating point arithmetic
calculations. The main advantage of the Logarithmic
Number System (LNS) lies in the simplicity and speed of
the multiplication, division and square root operations.
These operations are largely reduced to the complexity of
an integer addition and consequently the hardware
required to perform them is very small and fast. They are
implemented in the package used here as 2 cycle latency
pipelines which require only about 80 slices on an FPGA
for each unit.

LNS addition, and consequently subtraction, uses the
block RAMs available on Virtex II FPGAs to store look-
up tables that are used to perform addition and subtraction
operations. The Xilinx Virtex II includes a significant
amount of on-chip RAM, called block RAM, which can
be used for data storage in a design. This block RAM has
two ports allowing two accesses to be made to the RAM
in a single cycle. The Virtex II also includes 18 by 18 bit
multipliers that can multiply two numbers each 18 bits
wide without using any LUTs to perform the operation.

The hardware implementation of LNS addition and
subtraction involves the use of look-up tables to calculate
the result and these look-up tables require significant
amounts of on-chip storage. The process of performing the
addition involves several look-up operations and
consequently the adder pipelines have a 9-cycle latency.
The implementation of the LNS adder for Virtex II
FPGAs used here uses the dual ported on-chip block RAM
incorporated into the Virtex II design to store these look
up tables. This dual porting allows two adder pipelines to
share the same set of look up tables and for this reason the
LNS adder pipelines are always instantiated in pairs.

With IEEE floating point, the situation is somewhat
reversed with multiplication being the more complex
operation and requiring the greater amount of resources to
implement when compared to IEEE addition. Complexity
in IEEE addition primarily arises in the addition of the
mantissas and in the normalisation of the additions result.
In comparison, the IEEE multipliers principle source of
logic complexity is the multiplication of the mantissas
with the rest of the operation being relatively simple.

Table 1 shows resource requirements for fully

pipelined implementations of the LNS multiplier along
with the requirements for two different IEEE format

multiplier units. The Clemson units [12] are the result of
work published in 1998 and do not make use of the
hardware multipliers available in Virtex II FPGAs. The
USC multiplier [13] is the result of work published in
2004 makes use of the hardware multipliers. It can be seen
that the LNS format multiplier is over an order of
magnitude smaller than the Clemson multiplier. In
addition the LNS multiplier requires significantly fewer
flip flops and fewer LUTs than the USC multiplier and it
also requires no hardware multipliers. The small size of
the LNS multipliers along with their low pipeline latency
of two cycles makes the LNS multipliers a viable
alternative to IEEE format floating point multipliers
including those that use the Virtex II hardware multipliers.

Table 1. Resource requirements for LNS
multiplier and comparable units

Resource Type LNS Clemson USC

Flip flops 67 1017 249

LUTs 159 759 196

Block RAM 0 0 0
On-Chip
Multipliers 0 0 4

Table 2. Resource Requirements for LNS adder
and comparable units

Resource Type LNS Clemson USC

Flip flops 1778 1342 1040

LUTs 2539 1248 1096

Block RAM 28 0 0
On-Chip
Multipliers 8 0 0

Table 2 shows the resource requirements of the LNS

adder used in this work, the Clemson adder [12] and the
USC adder [13]. LNS adder pipes can only be instantiated
in pairs; this ensures that the pipes make efficient use of
block RAM. It can be seen that whilst the resource
requirements for the LNS adder are greater than those for
either IEEE format adder, they are nonetheless reasonably
comparable. This combined with the low pipeline latency
and small size of the LNS multipliers makes the LNS
arithmetic units a competitive solution for performing
floating point calculations on FPGAs.

The lattice QCD application described here involves
nearly equal numbers of floating point additions and
multiplications, making it well suited to take advantage of
the small size and high speed of the LNS multipliers.

4. Implementation

4.1. Conversion of Floating Point Numbers to
LNS Format

The LNS functional units will only operate on operands
that have already been converted to the LNS system; the
operands are not converted on the fly. So when a design is
implemented in LNS all floating point data are transferred
to the chip and stored on chip in the LNS format. The host
performs all necessary conversion prior to sending the
data to the FPGA. This means that there is no conversion
overhead to using the LNS system.

4.2. Porting Applications to Logarithmic
Arithmetic

Included with the logarithmic ALUs are C-level
logarithmic emulation libraries, which allow a C program
to be converted to perform all its calculations in
logarithmic arithmetic. Also included are Handel-C
simulation libraries which allow Handel-C code that uses
logarithmic arithmetic to be run simulated correctly.
Conversion functions to/from the logarithmic/real domain
are also provided. The approach taken here in converting a
C application to Handel-C using logarithmic arithmetic is:
1) incrementally port functions to logarithmic arithmetic
using ANSI-C emulation libraries, 2) verify that no error
has been introduced by calling the converted function
from the application inside a wrapper function which
converts the operands into log format and the results back
to IEEE format. The results will not be identical since the
FPGA is running single precision and the original version
is performed at double precision. 3) Convert the log
ANSI-C application to simulated Handel-C incrementally,
and verify the results produced are correct. Handel-C
allows the calling of ANSI-C functions and this facilitates
incremental porting, 4) add hardware-specific
functionality to the Handel-C design using the ADM
XRC-II board support package, 5) generate an EDIF
netlist with the Handel-C compiler and finally 6) place
and route the netlist using Xilinx tools and run it using the
ADM-XRC II board.

4.3. Handel-C

Handel-C is a C level hardware description language. It
is similar to C but it has several extensions to support the
instruction level parallelism available in FPGA
architectures. The principle difference between Handel-C
and conventional HDLs, such as VHDL or Verilog, is that
conventional HDLs are good for describing the behaviour
at a logical level, whereas Handel-C describes behaviour
at an algorithmic level. As a result of this Handel-C hides

much of the complexity that is inherent in the use of
conventional HDLs. Thus for small designs Handel-C is
often not an ideal choice since it can prevent a designer
from constructing precisely the right circuit, however for
large designs, such as the one described in this paper, it is
much more suitable since by hiding much of the detail it
makes large designs much more tractable.

Handel-C was chosen for this project since the original
application was written in C and by using a C based
hardware design tool it was possible to significantly
simplify the process of converting the application to an
FPGA-based implementation. Handel-C includes
functionality to allow a design consisting of part ANSI C
and part Handel-C to be simulated. The facility allows the
process of porting a C application to Handel-C to be
performed incrementally, one function at a time. The
feature is a considerable advantage for the work described
here. Also given that the design is significant in terms of
size and complexity the level of abstraction offered by
Handel-C was very attractive.

4.4. Optimisation and Parallelisation Strategy

The key to obtaining good performance with this
application is to maximise the number of floating point
operations that are performed per cycle. The first priority
is to include as many floating point units as possible in the
design, this maximises the potential peak floating point
performance. Analysis of the resource requirements of the
two types of floating point units required, adders (which
can also perform subtractions) and multipliers, reveals that
a maximum of 5 pairs of adder pipes will fit on the
available chip at one time, giving a total of ten adder
pipes. The reason for this limit is that each pair of adders
requires 28 block RAMs and there are a total of 144 block
RAMs available on the device available. The multipliers
meanwhile require few resources and consequently a large
number can be instantiated in a design. Thus it is
important to maximise the use of the adders in the design
in order to obtain good performance.

Analysis of the application reveals that there is good
match between the number of available adders and the
number of functions in the application. The application
contains 8 pairs of functions (steps 1 and 2 described in
Section 2.2) which will be referred to as the GammaMul
functions and each pair has identical requirements for
floating point functional units. The 8 functions are all
independent of each other and thus can be performed in
parallel. Each function involves 144 multiplications and
156 additions. The remainder of the application consists
mainly of matrix additions and a matrix scale operation
where each element in the matrix is multiplied by a
constant. This section of the application requires 192
additions and 24 multiplications to be performed. We
determined that if a single adder pipe is devoted to each of

the GammaMul functions and a pair is devoted to the set
of matrix addition functions then the GammaMul
functions require a similar number of cycles to the set of
addition functions to complete.

This approach allows the 8 GammaMul functions to be
performed in parallel. Each of the GammaMul functions is
then internally optimised using pipelining techniques and
by performing other calculations, such as loop counter
increments, in parallel with the floating point calculations
so as to make best use of the adder pipes assigned to it.
Sufficient multiplier units are instantiated for each
function to ensure that the adder pipes never have to stall
whilst waiting for multiplications to complete. The
collection of addition and subtraction functions is
integrated into one function so as to make best use of the
allocated adders by minimising pipeline flushes.

Figure 1 - Structure of pipelined optimized
application

Also since the addition functions cannot be performed
until the GammaMul functions are complete it was
decided that the best approach would be to convert the
application itself into a pipelined design. Thus operand
retrieval, the GammaMul functions and the matrix
addition functions are parallelised by performing each set
of operations on its own pipeline stage. Figure 1 shows

the structure of the fully optimised and pipelined
application. This approach allows very high overall
utilisation levels for the adder units. The allocation of the
functional units is important since the scheme chosen
means that each of the pipeline stages requires a similar
number of cycles to complete creating a well balanced
pipeline. It is important to note that Handel-C is a
synchronous language in which each statement takes
exactly one cycle. Thus no explicit synchronisation is
needed.

An important aspect of the application structure shown
in Figure 1 is that since each function only uses of a small
number of functional units nearly all data storage are
implemented by using distributed RAM. Distributed RAM
is constructed using the Look Up Table (LUT) elements of
the FPGA. LUTs are normally used for synthesising logic
within the FPGA however they may also be used to
construct RAMs for data storage. Distributed RAMs
require fewer resources than arrays of registers, which are
constructed using the flip flop elements of the FPGA.
However distributed RAMs, unlike register arrays, only
allow a maximum of two parallel accesses to be made to a
single RAM in a single cycle. The data access pattern
created by the chosen distribution of the functional units
does not require more than two parallel accesses to any
bar one set of arrays; consequently distributed RAM is
ideally suited for storing most of the application data.
Using distributed RAM significantly reduces both the
resource requirements and the routing complexity of the
design.

Once the structural optimisations outlined above were
completed optimisation aimed at maximising clock rate
began. The original clock speed of the design was about
30 MHz which was much slower than the maximum clock
rate of the arithmetic cores. Consequently we felt that
there was much scope for improving this figure. This was
done by placing and routing the design and then running
the result through the Xilinx Timing Analyser tool.
Timing Analyser can be used to find the paths in the
design with the longest delays, which are the paths that are
limiting clock rate. The names of all the nets in the placed
and routed design contain the name and line number of the
Handel-C source file that generated them. Tracing back to
the Handel-C source allows the source delay to be found
so that logic with a shorter delay can be used instead. This
process was then repeated several times until no more
clock rate improvements could be made. Examples of long
delays removed are complex condition checks in if
statements and while loops, complex arithmetic operators
such as modulus and nested if then else statements. The
clock rate of the design was improved from about 30 MHz
to 66 MHz by this process.

Gamma/Mul
Stage

Storage 1

Storage 2

Add Wfv
Stage

Operand Retrieval

Write Result

Stage
1

Stage
2

Stage 3

5. Experimental Results

The design described here is implemented on a six
million gate equivalent Xilinx Virtex II FPGA. The
specific FPGA used is a Xilinx VirtexII xc2v6000-ff1152-
4. This FPGA is part of an Alpha Data ADM XRC-II
development board. This board has 6 banks of external
RAM with 2MByte of storage per bank. Both the host
computer and the FPGA can access these RAMs using an
Alpha Data board support package. FPGA access to
RAMs is fully pipelined. In this paper, the host PC is used
to initialize data and convert it to the logarithmic domain,
the data is then transferred to the RAM and the FPGA
performs the lattice QCD calculation; writing the result
back to the RAMs. The host computer then retrieves the
results from the RAMs and checks them for correctness.

5.1. Performance and Area Results

Table 3 presents performance results for an FPGA
implementation of lattice QCD using single precision
logarithmic arithmetic running at 66 MHz. All
measurements are lattices of the dimensions N4. The clock
rate of 66 MHz was the best clock rate obtained after
aggressive timing analysis aimed at reducing long logic
and routing delays in the design along with maximum
effort place and routing. Results are presented for a fully
pipelined version of the design described in Section 4.4.
We have achieved very good results with no degradation
for increasing values of N. Hence our solution is scalable
with increasing problem size and suffers no degradation.

Table 3. FPGA lattice QCD implementation

performance results in MFLOPS

Lattice
Dimension, N

Performance
(MFlops) FP-IPC

4 936.6 14.2
5 936.9 14.2
6 937.1 14.2
7 937.3 14.2
8 937.5 14.2
9 937.6 14.2

10 937.6 14.2

Also we can achieve 14.2 floating point instructions per

cycle (FP-IPC) for all values of N. Floating point
instructions per cycle is an excellent indicator of the level
of parallelism that a design achieves and a high figure
indicates that the functional units in a parallel processor
are heavily utilised. FP-IPC is calculated by dividing the
number of floating point instructions performed per
second by the clock rate of the processor.

Table 4 presents resource requirement data for the
design implemented on a Xilinx VirtexII XC2V6000. As
can be seen from the data in the table the design uses
nearly all (97%) of the available block RAM along with a
substantial number of LUTs (55%). Comparatively few
flip flops are used (24%) since registers are not used
extensively for data storage. The reason for the high
utilisation of block RAM in the device is due to the
substantial number of block RAMs required by each pair
of adders. It can be seen that the design fit easily into the
available FPGA barring the high requirement for block
RAM.

Table 4. Resource requirement data for complete

design

Resource
Type

Total
Used

Percentage
Used

Total
Available

LUTs 37,752 55% 67,584
Flip Flops 16,276 24% 67,584
Block RAM 141 97% 144
Multipliers 40 28% 144

6. Related Work

There are two existing approaches to performing lattice
QCD calculations that are relevant for comparison to the
work described here. These are PC based clusters and
specialised lattice QCD machines based around
customised ASIC processors. Table 5 shows per node
performance data in MFLOPS for the two types of
relevant lattice QCD platforms. The PC cluster solution
described here is the result of work described in [7] [8].
This solution uses a cluster of 128 PCs connected using
Gigabit Ethernet and makes use of the SSE2 capabilities
of the Pentium 4 processor to improve the floating point
performance of the design. These systems use single
precision floating point. It also makes use of the pre-fetch
instruction included in the Pentium 4 instruction set to
reduce cache misses in the design. PC based solutions can
show extremely high performance, where a single node is
used for a very small problem size. Under these conditions
nearly 2 GFlops is possible for a 1.7 GHz Pentium 4 in [7]
[8]. However this performance drops away dramatically to
about 1.5 GFlops as the problem size increases. This is
because the application dataset no longer fits in the
processor’s cache and the cache misses that this causes
degrade performance. Also once communication is turned
on so that more than one node can be used the
performance degrades even further to 1 GFlops for a 4
node system down to 750 MFlops for a 64 node system.
This is because the processor must stop calculating in
order to perform the inter-node communication. Results
presented in [8] show a per node problem size of 84 is the

minimum size that each node can calculate without inter-
node communication dominating the calculation and thus
degrading performance. Obviously this is not ideal since
the PC nodes return their best performance at very small
problem sizes and this minimum problem size contributes
to the limited scalability of PC based clusters. These
figures for a PC based system are all for single precision
arithmetic, the figures for double precision are roughly
half those for single.

The ApeNEXT [9] and QCDOC [10] systems both
have ASIC processors designed specifically for
performing lattice QCD calculations. Both of these
systems use double precision floating point arithmetic.
Being custom designs they have been tailored to the
demands of lattice QCD calculations so that their inter-
node communication has a very low latency and is
performed in parallel with the calculation. This means that
whilst these systems return similar per node performance
to PC cluster nodes they allow clusters of many more
nodes can be constructed, up to 4000 nodes compared to
128 for the PC clusters. Also the minimum per node
problem size is much smaller due to the low latency of the
communication and that it is performed in parallel with
calculation. The sustained figures presented for these
systems here are the measured performance of the chips
performing real lattice QCD calculations at double
precision; these systems are ASIC based and consequently
only double precision floating point hardware is included
on chip. Table 5 shows the sustained per node
performance in MFLOPS, clock-rate in MHz and IPC
number of these studies.

Table 5. Performance of existing lattice QCD

machines

 Single
Node

Multiple
Node

Clock
Rate IPC

PC Cluster 1500 750 1700 0.88/
0.44

QCDOC - 535 500 1.07

ApeNEXT - 800 200 4

FPGA 936 - 66 14.2

Comparison between the performance data in Table 3

and Table 5 shows that the single node sustained
performance of our FPGA implementation compares very
well with each of the relevant systems discussed here.
Whilst our single node performance is not as good as that
of the single node PC it is still compares well.
Unfortunately no single node performance data is
available for either the QCDOC or ApeNEXT systems.
However both systems use very low latency interconnects
and both scale to very large numbers of nodes. This gives

us reason to believe that the single node performance of
either system would be quite close to the multiple node
performance. Once again our performance compares well
with the performance figures for either of the two
solutions.

It is possible to connect multiple FPGAs using a low
latency high bandwidth inter-connect in a similar fashion
to either the QCDOC or ApeNEXT systems to perform
lattice QCD calculations. The performance of FPGAs
running lattice QCD interconnected in such a way would
not cause a significant degradation of per-node
performance relative to a single node system. Also the
customisable nature of an FPGA design would allow the
inter-node communication to be performed in parallel with
calculation thus avoiding stalling the calculation as is the
case for a PC based system.

7. Conclusions and Future Work

Our goal is to investigate the suitability of FPGAs
combined with logarithmic arithmetic for performing high
performance computing calculations. Lattice QCD was
chosen as an example application to investigate this
suitability. Lattice QCD is the focus of much research
work worldwide and the results of some of this work are
presented in this paper.

We have shown that the combination of logarithmic
arithmetic and FPGAs can be an effective platform for
implementing high performance computing calculations.
Our performance results for a lattice QCD application
implemented on FPGAs are competitive with the results
of previous research work carried out in this field. This
means that FPGAs and logarithmic arithmetic are a viable
platform for performing high performance computing
applications such as lattice QCD.

Two directions for further work on this subject are
open at this point. One is to investigate the potential for
using multiple FPGAs to accelerate a single high
performance computing calculation, such as a lattice QCD
simulation. This could be pursued by using the results of
the work described here as the basis for a two node
design. The results of such work would show what future
potential there is in using clustered FPGAs for high
performance computing. Also double precision IEEE
compatible floating point cores have very recently become
available which would allow us to implement lattice QCD
at double precision using FPGAs. The cores are very
resource efficient and would allow such an
implementation to have floating point with performance at
the level of the work described here.

References

[1] R. Matousek, M. Tichy, Z. Pohl, J. Kadlec and C. Softley,

“Logarithmic Number Systems and Floating-point
Arithmetics on FPGA”, 12th International Conference on
Field Programmable Logic and Applications, Montpellier
(France), Sep. 2002.

[2] I. Kohen, “Computer Arithmetic Algorithms”, A. K.
Peters, Natick, Massachusetts, 2002.

[3] Celoxica, Handel-C Language Reference Manual, Version
3.1, 2002, http://www.celoxica.com

[4] C. T. H. Davies and S. M. Playfer, "Heavy Flavour
Physics: Theory and Experimental Results in Heavy Quark
Physics", Institute of Physics, June 2002.

[5] Xilinx, Xilinx Virtex-II Architecture Manual, Sep. 2002.
[6] Alpha Data Parallel System Ltd., ADM-XRC-II PCI

Mezzanine Card User Guide Version 1.5, 2002.
[7] Zoltán Fodor, Sándor D Katz, Gábor Papp; “Better than

$1/Mflops sustained: a scalable parallel computer for
lattice QCD”; Comput.Phys.Commun. 152 (2003) 121-
134, hep-lat/0202030.

[8] Zoltán Fodor, Sándor D Katz, Gábor Papp; “A Scalable
PC-based parallel computer for lattice QCD”;

Nucl.Phys.Proc.Suppl. 106 (2002) 177-183, hep-
lat/0209115.

[9] R Alfieri et al.; “The apeNEXT project”; Talk from
Computing in High Energy Physics 2003, La Jolla,
California, USA, March 2003.

[10] P A Boyle, D Chen et al., “Status and performance
estimates for QCDOC”; Nucl.Phys.Proc.Suppl. 106 (2002)
177-183, hep-lat0210034

[11] Christine Davis, Sara Collins, “Theorists get to grips with
the strong force”, http://www.physics.gla.ac.uk/lattice_
EU_network/physics_world.pdf

[12] W Ligon, S McMillan, G Monn, F Stivers, K Underwood,
“A Re-evaluation of the Practicality of Floating-Point
Operations on FPGAs”; In Proc The 6th Annual IEEE
Symposium on Field-Programmable Custom Computing
Machines FCCM '98 Napa, California, USA April 1998.

[13] G Govindu, L Zhuo, S Choi, V Prasanna, “Analysis of
High-Performance Floating-point Arithmetic on FPGAs”;
In Proc of 11th Reconfigurable Architectures Workshop,
Santa Fe, New Mexico, USA, April 2004

