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Abstract 
 

In this paper, we discuss the implementation of a lattice 
Quantum Chromodynamics (QCD) application to a Xilinx 
VirtexII FPGA device on an Alpha Data ADM-XRC-II 
board using Handel-C and logarithmic arithmetic. The 
specific algorithm implemented is the Wilson Dirac 
Fermion Vector times Matrix Product operation. QCD is 
the scientific theory that describes the interactions of 
various types of sub-atomic particles. Lattice QCD is the 
use of computer simulations to prove aspects of this 
theory. The research described in this paper aims to 
investigate whether FPGAs and logarithmic arithmetic 
are a viable compute-platform for high performance 
computing by implementing lattice QCD for this platform. 
We have achieved competitive performance of at least 936 
MFlops per node, executing 14.2 floating point equivalent 
operations per cycle, which is far higher than the previous 
solutions proposed for lattice QCD simulations. 

 

1. Motivation 

We aim here to evaluate the viability of using FPGAs 
and logarithmic arithmetic [1] to accelerate high 
performance computing applications by implementing a 
specific application, lattice QCD, on this platform. FPGAs 
have considerable potential to accelerate computationally 
intensive applications and particularly those with 
exploitable instruction level parallelism such as lattice 
QCD. Traditionally floating point arithmetic units have 
been too large to fit in an FPGA; logarithmic arithmetic 
units provide a resource efficient alternative to these units. 
Logarithmic arithmetic has several advantages over 
conventional floating point systems and the most important 
is that multiplication, division and square root operations 
are very fast and require few resources as part of an FPGA 

design. Thus logarithmic arithmetic and FPGAs have the 
potential to provide a viable platform for many 
computationally intensive applications.  

Lattice QCD [4] is a simulation of sub-atomic particle 
interactions and is used to verify theories about the Strong 
Force of Nature, which is described by QCD theory. 
Computer simulations must be used to verify QCD 
theories since it is impossible to observe these interactions 
experimentally. Thus, since QCD describes the very 
nature of matter, lattice QCD is a grand challenge high 
performance computing application. First, lattice QCD is 
converted into logarithmic floating-point domain [2], and 
then ported to a high-level hardware description language, 
Handel-C [3]. Handel-C describes behaviour at an 
algorithmic level rather than at a logical level, as is the 
case with conventional Hardware Description Languages 
(HDLs) such as VHDL and Verilog. This high-level 
approach eases the modelling of complex systems and 
reduces the time required to specify and implement an 
FPGA system  

In this paper, we discuss the implementation of a 
custom processor for the lattice QCD application 
discussed in Section 2. Section 3 describes the logarithmic 
arithmetic cores used in this work and compares them 
with conventional IEEE floating point arithmetic. Section 
4 describes how the application was implemented in 
hardware using FPGAs. Section 5 shows the experimental 
results. Section 6 discusses related work. Section 7 gives 
the conclusions and details of possible future work. 

2. QCD and Lattice QCD 

2.1. QCD 

We know that all matter is made of atoms of one type 
or another. We also know that these atoms are constructed 
out of many different combinations of protons, neutrons 
and electrons. Protons and neutrons are examples of a 



 

class of particle called hadrons which we now know to be 
constructed from quarks and gluons. However we do not 
know whether quarks and gluons are indivisible or 
whether they can be sub-divided further, answering this 
question will require experimental analysis. Quarks and 
gluons are bound together by the Strong force of nature 
and QCD is the scientific theory that describes this force 
[11]. QCD predicts that quarks can never be individually 
seen and that they can only ever be seen bound with 
gluons and other quarks to form a hadron. Thus in order to 
obtain information about quarks QCD theory must be 
solved. Currently the best way to do this is through the use 
of computer simulations referred to as lattice QCD. 

2.2. Lattice QCD 

There are many aspects of lattice QCD that can be 
simulated using computer simulations. In this study, the 
aspect of lattice QCD implemented is a Wilson Fermion 
Vector times Matrix Product. Lattice QCD simulates a 
finite portion of space and time at a sub-atomic level. This 
portion of space and time is represented by a four 
dimensional grid of points, or sites, called a lattice. The 
data for each site in the lattice is held in a large matrix 
composed of groups of four small matrices of complex 
numbers. These small matrices are called gl3 matrices. 
Data is also stored for the links between sites in the lattice. 
This data is stored in another large matrix composed of 
another type of small complex number matrices which are 
called wfv matrices. One wfv matrix is used per point in 
the lattice. 

A lattice QCD calculation consists of a very large 
number of sweeps of the lattice. A sweep is performed by 
updating the wfv matrices for each point of the lattice 
once, with each update taking the result of the previous 
update as the input wfv value for the current update. The 
update of each site is independent of the update of any 
other site, allowing a single sweep to be performed by 
multiple computing nodes. The data held in the gl3 
matrices is not changed.  

A site update is performed by the following steps: 
1. The wfv matrix for each of the neighbouring sites is 
put through a Gamma operation. This operation consists 
of twelve additions or subtractions and so is very simple. 
There are 8 matrices upon which this calculation is 
performed. 
2. The result of step 1 is then multiplied by one of the 
gl3 matrices for the current site resulting in a wfv matrix. 
Each site has eight neighbours (one in each dimension) so 
eight versions of this calculation (referred to here as Mul 
calculations) are performed. 
3. The next step is to add together all 8 wfv matrices 
produced by step 1. The resulting wfv matrix is then 
multiplied by a scaling factor called kappa. 

4. The result of step 2 is then subtracted from the 
existing value for the current point. 

The Mul operations are the most computationally 
demanding part of the application since they require two 
complex number matrices to be multiplied. In comparison 
the calculations of stages 1, 3 and 4 are all variations on 
matrix additions and so are less computationally 
demanding. Each of the 8 Gamma operations in stage 1 
are paired with a Mul operation from stage 2 and these 
pairs may be considered as one operation referred to here 
as GammaMul operations. All 8 versions of the 
GammaMul operations are independent and may be 
performed in parallel given sufficient functional units. The 
additions of the results of stage 2 may also be parallelised, 
but to a lesser extent, by performing the additions in 3 
stages with 4 matrix additions in the first stage, 2 in the 
second and 1 in the third, with each stage not beginning 
until the results of the previous stage are available. It is 
also possible to exploit parallelism internally within the 
components of each stage by using multiple functional 
units to perform a single matrix operation. Since most of 
the operations are performed on small complex number 
matrices there is considerable exploitable parallelism 
within these steps, given sufficient availability of 
functional units. 

A very important issue with a lattice QCD simulation is 
how many points the lattice contains. The total number of 
points in the lattice, N, is the product of each of the four 
dimensions in the lattice as follows;  

 
N = NX × NY × NZ × NT.  
 
Where NX, NY, NZ and NT are the number of points the 

lattice has in each of its four dimensions. N is important 
because calculations performed at higher values of N are 
more scientifically interesting than those performed with 
lower values for N; however since there are more points in 
the lattice the calculation takes longer to complete. 
Scientifically valuable results are now being obtained 
from very large problem sizes with upwards of 244 lattice 
points. Consequently it is unacceptably slow to complete a 
lattice QCD calculation on a single compute node; many 
nodes are needed for such calculations. To update a single 
lattice point requires approximately 2420 floating point 
operations thus a sweep of a 244 lattice requires over 800 
million floating point operations and given that many 
millions of sweeps are required for a solution it can be 
seen that the computational requirements for a full lattice 
QCD simulation are vast.  

3. Logarithmic Arithmetic 

We aim here to explore the usefulness of logarithmic 
arithmetic and FPGAs as a platform for performing 
floating point based applications. We do this by 



 

implementing a specific floating point based application, 
lattice QCD, for FPGAs using logarithmic arithmetic. 
Conventional floating point does not translate well to 
FPGAs since some of the structures required for a floating 
point calculation, such as the multiplier tree used in the 
multiplier units, require considerable resources. 
Logarithmic arithmetic offers an alternative approach to 
such systems and it is the viability of this alternative that 
we aim to evaluate here. 

Logarithmic arithmetic is an alternative approach to the 
IEEE standard for performing floating point arithmetic 
calculations. The main advantage of the Logarithmic 
Number System (LNS) lies in the simplicity and speed of 
the multiplication, division and square root operations. 
These operations are largely reduced to the complexity of 
an integer addition and consequently the hardware 
required to perform them is very small and fast. They are 
implemented in the package used here as 2 cycle latency 
pipelines which require only about 80 slices on an FPGA 
for each unit.  

LNS addition, and consequently subtraction, uses the 
block RAMs available on Virtex II FPGAs to store look-
up tables that are used to perform addition and subtraction 
operations. The Xilinx Virtex II includes a significant 
amount of on-chip RAM, called block RAM, which can 
be used for data storage in a design. This block RAM has 
two ports allowing two accesses to be made to the RAM 
in a single cycle. The Virtex II also includes 18 by 18 bit 
multipliers that can multiply two numbers each 18 bits 
wide without using any LUTs to perform the operation.  

The hardware implementation of LNS addition and 
subtraction involves the use of look-up tables to calculate 
the result and these look-up tables require significant 
amounts of on-chip storage. The process of performing the 
addition involves several look-up operations and 
consequently the adder pipelines have a 9-cycle latency. 
The implementation of the LNS adder for Virtex II 
FPGAs used here uses the dual ported on-chip block RAM 
incorporated into the Virtex II design to store these look 
up tables. This dual porting allows two adder pipelines to 
share the same set of look up tables and for this reason the 
LNS adder pipelines are always instantiated in pairs. 

With IEEE floating point, the situation is somewhat 
reversed with multiplication being the more complex 
operation and requiring the greater amount of resources to 
implement when compared to IEEE addition. Complexity 
in IEEE addition primarily arises in the addition of the 
mantissas and in the normalisation of the additions result. 
In comparison, the IEEE multipliers principle source of 
logic complexity is the multiplication of the mantissas 
with the rest of the operation being relatively simple.  

 
Table 1 shows resource requirements for fully 

pipelined implementations of the LNS multiplier along 
with the requirements for two different IEEE format 

multiplier units. The Clemson units [12] are the result of 
work published in 1998 and do not make use of the 
hardware multipliers available in Virtex II FPGAs. The 
USC multiplier [13] is the result of work published in 
2004 makes use of the hardware multipliers. It can be seen 
that the LNS format multiplier is over an order of 
magnitude smaller than the Clemson multiplier. In 
addition the LNS multiplier requires significantly fewer 
flip flops and fewer LUTs than the USC multiplier and it 
also requires no hardware multipliers. The small size of 
the LNS multipliers along with their low pipeline latency 
of two cycles makes the LNS multipliers a viable 
alternative to IEEE format floating point multipliers 
including those that use the Virtex II hardware multipliers. 

  
 

Table 1. Resource requirements for LNS 
multiplier and comparable units 

Resource Type LNS Clemson USC 

Flip flops 67 1017 249 

LUTs 159 759 196 

Block RAM 0 0 0 
On-Chip 
Multipliers 0 0 4 

 
 

Table 2. Resource Requirements for LNS adder 
and comparable units 

Resource Type LNS Clemson  USC  

Flip flops 1778 1342 1040 

LUTs 2539 1248 1096 

Block RAM 28 0 0 
On-Chip 
Multipliers 8 0 0 

 
Table 2 shows the resource requirements of the LNS 

adder used in this work, the Clemson adder [12] and the 
USC adder [13]. LNS adder pipes can only be instantiated 
in pairs; this ensures that the pipes make efficient use of 
block RAM. It can be seen that whilst the resource 
requirements for the LNS adder are greater than those for 
either IEEE format adder, they are nonetheless reasonably 
comparable. This combined with the low pipeline latency 
and small size of the LNS multipliers makes the LNS 
arithmetic units a competitive solution for performing 
floating point calculations on FPGAs. 

The lattice QCD application described here involves 
nearly equal numbers of floating point additions and 
multiplications, making it well suited to take advantage of 
the small size and high speed of the LNS multipliers. 



 

4. Implementation 

4.1. Conversion of Floating Point Numbers to 
LNS Format 

The LNS functional units will only operate on operands 
that have already been converted to the LNS system; the 
operands are not converted on the fly. So when a design is 
implemented in LNS all floating point data are transferred 
to the chip and stored on chip in the LNS format. The host 
performs all necessary conversion prior to sending the 
data to the FPGA. This means that there is no conversion 
overhead to using the LNS system. 

4.2. Porting Applications to Logarithmic 
Arithmetic 

Included with the logarithmic ALUs are C-level 
logarithmic emulation libraries, which allow a C program 
to be converted to perform all its calculations in 
logarithmic arithmetic. Also included are Handel-C 
simulation libraries which allow Handel-C code that uses 
logarithmic arithmetic to be run simulated correctly. 
Conversion functions to/from the logarithmic/real domain 
are also provided. The approach taken here in converting a 
C application to Handel-C using logarithmic arithmetic is: 
1) incrementally port functions to logarithmic arithmetic 
using ANSI-C emulation libraries, 2) verify that no error 
has been introduced by calling the converted function 
from the application inside a wrapper function which 
converts the operands into log format and the results back 
to IEEE format. The results will not be identical since the 
FPGA is running single precision and the original version 
is performed at double precision. 3) Convert the log 
ANSI-C application to simulated Handel-C incrementally, 
and verify the results produced are correct. Handel-C 
allows the calling of ANSI-C functions and this facilitates 
incremental porting, 4) add hardware-specific 
functionality to the Handel-C design using the ADM 
XRC-II board support package, 5) generate an EDIF 
netlist with the Handel-C compiler and finally 6) place 
and route the netlist using Xilinx tools and run it using the 
ADM-XRC II board. 

4.3. Handel-C 

Handel-C is a C level hardware description language. It 
is similar to C but it has several extensions to support the 
instruction level parallelism available in FPGA 
architectures. The principle difference between Handel-C 
and conventional HDLs, such as VHDL or Verilog, is that 
conventional HDLs are good for describing the behaviour 
at a logical level, whereas Handel-C describes behaviour 
at an algorithmic level. As a result of this Handel-C hides 

much of the complexity that is inherent in the use of 
conventional HDLs. Thus for small designs Handel-C is 
often not an ideal choice since it can prevent a designer 
from constructing precisely the right circuit, however for 
large designs, such as the one described in this paper, it is 
much more suitable since by hiding much of the detail it 
makes large designs much more tractable.  

Handel-C was chosen for this project since the original 
application was written in C and by using a C based 
hardware design tool it was possible to significantly 
simplify the process of converting the application to an 
FPGA-based implementation. Handel-C includes 
functionality to allow a design consisting of part ANSI C 
and part Handel-C to be simulated. The facility allows the 
process of porting a C application to Handel-C to be 
performed incrementally, one function at a time. The 
feature is a considerable advantage for the work described 
here. Also given that the design is significant in terms of 
size and complexity the level of abstraction offered by 
Handel-C was very attractive. 

4.4.  Optimisation and Parallelisation Strategy 

The key to obtaining good performance with this 
application is to maximise the number of floating point 
operations that are performed per cycle. The first priority 
is to include as many floating point units as possible in the 
design, this maximises the potential peak floating point 
performance. Analysis of the resource requirements of the 
two types of floating point units required, adders (which 
can also perform subtractions) and multipliers, reveals that 
a maximum of 5 pairs of adder pipes will fit on the 
available chip at one time, giving a total of ten adder 
pipes. The reason for this limit is that each pair of adders 
requires 28 block RAMs and there are a total of 144 block 
RAMs available on the device available. The multipliers 
meanwhile require few resources and consequently a large 
number can be instantiated in a design. Thus it is 
important to maximise the use of the adders in the design 
in order to obtain good performance. 

Analysis of the application reveals that there is good 
match between the number of available adders and the 
number of functions in the application. The application 
contains 8 pairs of functions (steps 1 and 2 described in 
Section 2.2) which will be referred to as the GammaMul 
functions and each pair has identical requirements for 
floating point functional units. The 8 functions are all 
independent of each other and thus can be performed in 
parallel. Each function involves 144 multiplications and 
156 additions. The remainder of the application consists 
mainly of matrix additions and a matrix scale operation 
where each element in the matrix is multiplied by a 
constant. This section of the application requires 192 
additions and 24 multiplications to be performed. We 
determined that if a single adder pipe is devoted to each of 



 

the GammaMul functions and a pair is devoted to the set 
of matrix addition functions then the GammaMul 
functions require a similar number of cycles to the set of 
addition functions to complete.  

This approach allows the 8 GammaMul functions to be 
performed in parallel. Each of the GammaMul functions is 
then internally optimised using pipelining techniques and 
by performing other calculations, such as loop counter 
increments, in parallel with the floating point calculations 
so as to make best use of the adder pipes assigned to it. 
Sufficient multiplier units are instantiated for each 
function to ensure that the adder pipes never have to stall 
whilst waiting for multiplications to complete. The 
collection of addition and subtraction functions is 
integrated into one function so as to make best use of the 
allocated adders by minimising pipeline flushes. 

 

 

Figure 1 - Structure of pipelined optimized 
application 

Also since the addition functions cannot be performed 
until the GammaMul functions are complete it was 
decided that the best approach would be to convert the 
application itself into a pipelined design. Thus operand 
retrieval, the GammaMul functions and the matrix 
addition functions are parallelised by performing each set 
of operations on its own pipeline stage. Figure 1 shows  

the structure of the fully optimised and pipelined 
application. This approach allows very high overall 
utilisation levels for the adder units. The allocation of the 
functional units is important since the scheme chosen 
means that each of the pipeline stages requires a similar 
number of cycles to complete creating a well balanced 
pipeline. It is important to note that Handel-C is a 
synchronous language in which each statement takes 
exactly one cycle. Thus no explicit synchronisation is 
needed. 

An important aspect of the application structure shown 
in Figure 1 is that since each function only uses of a small 
number of functional units nearly all data storage are 
implemented by using distributed RAM. Distributed RAM 
is constructed using the Look Up Table (LUT) elements of 
the FPGA. LUTs are normally used for synthesising logic 
within the FPGA however they may also be used to 
construct RAMs for data storage. Distributed RAMs 
require fewer resources than arrays of registers, which are 
constructed using the flip flop elements of the FPGA. 
However distributed RAMs, unlike register arrays, only 
allow a maximum of two parallel accesses to be made to a 
single RAM in a single cycle. The data access pattern 
created by the chosen distribution of the functional units 
does not require more than two parallel accesses to any 
bar one set of arrays; consequently distributed RAM is 
ideally suited for storing most of the application data. 
Using distributed RAM significantly reduces both the 
resource requirements and the routing complexity of the 
design. 

Once the structural optimisations outlined above were 
completed optimisation aimed at maximising clock rate 
began. The original clock speed of the design was about 
30 MHz which was much slower than the maximum clock 
rate of the arithmetic cores. Consequently we felt that 
there was much scope for improving this figure. This was 
done by placing and routing the design and then running 
the result through the Xilinx Timing Analyser tool. 
Timing Analyser can be used to find the paths in the 
design with the longest delays, which are the paths that are 
limiting clock rate. The names of all the nets in the placed 
and routed design contain the name and line number of the 
Handel-C source file that generated them. Tracing back to 
the Handel-C source allows the source delay to be found 
so that logic with a shorter delay can be used instead. This 
process was then repeated several times until no more 
clock rate improvements could be made. Examples of long 
delays removed are complex condition checks in if 
statements and while loops, complex arithmetic operators 
such as modulus and nested if then else statements. The 
clock rate of the design was improved from about 30 MHz 
to 66 MHz by this process. 

Gamma/Mul 
Stage 

Storage 1 

Storage 2 

Add Wfv 
Stage 

Operand Retrieval 

Write Result 

Stage 
1 

Stage 
2 

Stage 3 



 

5. Experimental Results 

The design described here is implemented on a six 
million gate equivalent Xilinx Virtex II FPGA. The 
specific FPGA used is a Xilinx VirtexII xc2v6000-ff1152-
4. This FPGA is part of an Alpha Data ADM XRC-II 
development board. This board has 6 banks of external 
RAM with 2MByte of storage per bank. Both the host 
computer and the FPGA can access these RAMs using an 
Alpha Data board support package. FPGA access to 
RAMs is fully pipelined. In this paper, the host PC is used 
to initialize data and convert it to the logarithmic domain, 
the data is then transferred to the RAM and the FPGA 
performs the lattice QCD calculation; writing the result 
back to the RAMs. The host computer then retrieves the 
results from the RAMs and checks them for correctness. 

5.1. Performance and Area Results 

Table 3 presents performance results for an FPGA 
implementation of lattice QCD using single precision 
logarithmic arithmetic running at 66 MHz. All 
measurements are lattices of the dimensions N4. The clock 
rate of 66 MHz was the best clock rate obtained after 
aggressive timing analysis aimed at reducing long logic 
and routing delays in the design along with maximum 
effort place and routing. Results are presented for a fully 
pipelined version of the design described in Section 4.4. 
We have achieved very good results with no degradation 
for increasing values of N. Hence our solution is scalable 
with increasing problem size and suffers no degradation.  

 
Table 3. FPGA lattice QCD implementation 

performance results in MFLOPS 

Lattice 
Dimension, N 

Performance 
(MFlops) FP-IPC 

4 936.6 14.2 
5 936.9 14.2 
6 937.1 14.2 
7 937.3 14.2 
8 937.5 14.2 
9 937.6 14.2 

10 937.6 14.2 
 
Also we can achieve 14.2 floating point instructions per 

cycle (FP-IPC) for all values of N. Floating point 
instructions per cycle is an excellent indicator of the level 
of parallelism that a design achieves and a high figure 
indicates that the functional units in a parallel processor 
are heavily utilised. FP-IPC is calculated by dividing the 
number of floating point instructions performed per 
second by the clock rate of the processor. 

Table 4 presents resource requirement data for the 
design implemented on a Xilinx VirtexII XC2V6000. As 
can be seen from the data in the table the design uses 
nearly all (97%) of the available block RAM along with a 
substantial number of LUTs (55%). Comparatively few 
flip flops are used (24%) since registers are not used 
extensively for data storage. The reason for the high 
utilisation of block RAM in the device is due to the 
substantial number of block RAMs required by each pair 
of adders. It can be seen that the design fit easily into the 
available FPGA barring the high requirement for block 
RAM.  

 
Table 4. Resource requirement data for complete 

design 

Resource 
Type 

Total 
Used 

Percentage 
Used 

Total 
Available 

LUTs 37,752 55% 67,584 
Flip Flops 16,276 24% 67,584 
Block RAM 141 97% 144 
Multipliers 40 28% 144 

6. Related Work 

There are two existing approaches to performing lattice 
QCD calculations that are relevant for comparison to the 
work described here. These are PC based clusters and 
specialised lattice QCD machines based around 
customised ASIC processors. Table 5 shows per node 
performance data in MFLOPS for the two types of 
relevant lattice QCD platforms. The PC cluster solution 
described here is the result of work described in [7] [8]. 
This solution uses a cluster of 128 PCs connected using 
Gigabit Ethernet and makes use of the SSE2 capabilities 
of the Pentium 4 processor to improve the floating point 
performance of the design. These systems use single 
precision floating point. It also makes use of the pre-fetch 
instruction included in the Pentium 4 instruction set to 
reduce cache misses in the design. PC based solutions can 
show extremely high performance, where a single node is 
used for a very small problem size. Under these conditions 
nearly 2 GFlops is possible for a 1.7 GHz Pentium 4 in [7] 
[8]. However this performance drops away dramatically to 
about 1.5 GFlops as the problem size increases. This is 
because the application dataset no longer fits in the 
processor’s cache and the cache misses that this causes 
degrade performance. Also once communication is turned 
on so that more than one node can be used the 
performance degrades even further to 1 GFlops for a 4 
node system down to 750 MFlops for a 64 node system. 
This is because the processor must stop calculating in 
order to perform the inter-node communication. Results 
presented in [8] show a per node problem size of 84 is the 



 

minimum size that each node can calculate without inter-
node communication dominating the calculation and thus 
degrading performance. Obviously this is not ideal since 
the PC nodes return their best performance at very small 
problem sizes and this minimum problem size contributes 
to the limited scalability of PC based clusters. These 
figures for a PC based system are all for single precision 
arithmetic, the figures for double precision are roughly 
half those for single. 

The ApeNEXT [9] and QCDOC [10] systems both 
have ASIC processors designed specifically for 
performing lattice QCD calculations. Both of these 
systems use double precision floating point arithmetic.  
Being custom designs they have been tailored to the 
demands of lattice QCD calculations so that their inter-
node communication has a very low latency and is 
performed in parallel with the calculation. This means that 
whilst these systems return similar per node performance 
to PC cluster nodes they allow clusters of many more 
nodes can be constructed, up to 4000 nodes compared to 
128 for the PC clusters. Also the minimum per node 
problem size is much smaller due to the low latency of the 
communication and that it is performed in parallel with 
calculation. The sustained figures presented for these 
systems here are the measured performance of the chips 
performing real lattice QCD calculations at double 
precision; these systems are ASIC based and consequently 
only double precision floating point hardware is included 
on chip. Table 5 shows the sustained per node 
performance in MFLOPS, clock-rate in MHz and IPC 
number of these studies. 

  
Table 5. Performance of existing lattice QCD 

machines 

 Single 
Node  

Multiple 
Node 

Clock 
Rate IPC 

PC Cluster 1500 750 1700 0.88/ 
0.44 

QCDOC - 535 500 1.07 

ApeNEXT - 800 200 4 

FPGA 936 - 66 14.2 
 
Comparison between the performance data in Table 3 

and Table 5 shows that the single node sustained 
performance of our FPGA implementation compares very 
well with each of the relevant systems discussed here. 
Whilst our single node performance is not as good as that 
of the single node PC it is still compares well. 
Unfortunately no single node performance data is 
available for either the QCDOC or ApeNEXT systems. 
However both systems use very low latency interconnects 
and both scale to very large numbers of nodes. This gives 

us reason to believe that the single node performance of 
either system would be quite close to the multiple node 
performance. Once again our performance compares well 
with the performance figures for either of the two 
solutions.  

It is possible to connect multiple FPGAs using a low 
latency high bandwidth inter-connect in a similar fashion 
to either the QCDOC or ApeNEXT systems to perform 
lattice QCD calculations. The performance of FPGAs 
running lattice QCD interconnected in such a way would 
not cause a significant degradation of per-node 
performance relative to a single node system. Also the 
customisable nature of an FPGA design would allow the 
inter-node communication to be performed in parallel with 
calculation thus avoiding stalling the calculation as is the 
case for a PC based system. 

7. Conclusions and Future Work 

Our goal is to investigate the suitability of FPGAs 
combined with logarithmic arithmetic for performing high 
performance computing calculations. Lattice QCD was 
chosen as an example application to investigate this 
suitability. Lattice QCD is the focus of much research 
work worldwide and the results of some of this work are 
presented in this paper. 

We have shown that the combination of logarithmic 
arithmetic and FPGAs can be an effective platform for 
implementing high performance computing calculations. 
Our performance results for a lattice QCD application 
implemented on FPGAs are competitive with the results 
of previous research work carried out in this field. This 
means that FPGAs and logarithmic arithmetic are a viable 
platform for performing high performance computing 
applications such as lattice QCD. 

Two directions for further work on this subject are 
open at this point. One is to investigate the potential for 
using multiple FPGAs to accelerate a single high 
performance computing calculation, such as a lattice QCD 
simulation. This could be pursued by using the results of 
the work described here as the basis for a two node 
design. The results of such work would show what future 
potential there is in using clustered FPGAs for high 
performance computing. Also double precision IEEE 
compatible floating point cores have very recently become 
available which would allow us to implement lattice QCD 
at double precision using FPGAs. The cores are very 
resource efficient and would allow such an 
implementation to have floating point with performance at 
the level of the work described here. 
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