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1 Introduction control policies, and

Recent research results [8, 26, 27, 47, 19] and infrastreictu e an application structure that permits flexible concurrency
efforts [45, 44, 62, 30, 3] demonstrate the potential eiffeet management and scheduling.
ness of large-scale distributed computing. Effective dohe
ing based on empirically verifiable models has emerged as &arly adopters of this emerging paradigm have used it to
key factor in these successes. Moving to a new truly gloleliver massive compute capacity to their scientific, eegin
computing capability will similarly depend critically orew ing, or business applications [2, 6, 38, 1, 43, 58]. Suchiappl
models and scheduling techniques. The development gatlons often involve large numbers of independent (orlpear
instantiation of models for computing platforms are catic so) computation and data objects, and are tolerant of high ne
first steps for studying the feasibility and scalability qf-a work latencies and resource failures. These examples fmoint
plications, as well as for developing methodologies to etve dramatic advances that may be achieved if three orders of
hance application performance. Our focus, in this prop@salmagnitude more compute power than is available from single-
on the modeling technologies that will enable performancsite resources is culled from a global resource pool. Applic
engineering of such global computatiorSpecifically, these tions already moving to this new level of capability include
new modeling technologies will support resource charact&MPS [24], and Folding@Home [5].
ization and scheduling techniques thereby enabling robustThese early examples demonstrate the capabilities of lgloba
predictable performance. computing to solve real problems, but their customized ap-
The increasing attractiveness of global computing aproaches have yet to be generalized. In particular, no well-
proaches is fueled by dramatic advances in networking teglfined method for modeling resource usage by applications
nology, and the penetration of PCs into the home. Numetiat can take advantage of massively heterogeneous,leplati
ous projects €.9. SETI@home, Great Internet Mersenngnreliable resources for performance yet exists. As atesul
Prime Search, and Compute Against Cancer) provide a stélkhieving robust, predictable performance poses a signific
ing demonstration of the power available from networkeshallenge. Our work will address this deficiency directly
PCs world-wide. To date, many academic and commerdigl providing new modeling capabilities that support perfor
projects are attempting to harness these resources forutemmance scheduling in global computing environments.
intensive applications [56, 10, 22, 34, 13, 21] and for devel At the same time, current Grid computing platforms are
oping distributed storage systems [33, 17, 25, 54, 18]eeithnore tightly controlled than the nascent global computing
world-wide or within institutions in an “enterprise” fagii. platforms that are available. As a result, resource avéilab
We use the ternglobal computingor these projects, as theity tends to be more predictable since the administratiVe po
can exploit a potentially world-wide universe of resourcegies are in place to ensure more availability and less Viyati
The key differentiating characteristics of these systestisat The trend in Grid systems, however, is toward dynamically
application performance must be amalgamated from: coordinated Web services [23] that are compatible with W3C
standards. A lack of effective unifying models and schedul-
aH techniques poses a serious impediment to this continued
convergence between the Grid computing approach and the
« intermittent and highly fluctuating network connectivityinternet computing approach. In particular, platform tese
models that capture the performance behaviobath Grid
e resources that span organizational boundaries each Iﬁw global computing resources are key to the next genera-
ing unique (potentially fluctuating) security and acceggn of effective distributed high-performance applicat.
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e desktop / laptop PC resources which are unreliable
prone to reclamation by users,




the engineering of appropriate scheduling and deploymeesources at any given time making it possible for scheduler

of applications, and for predicting their performance. Isuto reason about platform utilization and performance. We

models must characterize resource capabilities, dynagiic imust be able to cluster resources according to performance

havior, availability, failure, and connectivity. Due tackaof response, thereby defining resource categoegs ¢ommon

such models, current global computing applications are casailability behaviors, coarse notions of network proxtimi

tomized point-solutionsg(g. high throughput with a central-  In this paper, we briefly describe our efforts to automat-

ized server) with unpredictable performance charactesistically determine good parametric models of machine avail-

(e.g.availability and response time). ability. The results we have obtained are part of a largereff
Platform and resource modeling has been an important fisat includes new predictive capabilities [11], new schiedu

cus in the Grid computing community and has led to signiiapabilities [46] and efforts to translate machine avdlitsb

cant number of successful applications [55, 51, 42, 57]. Hotw application-level performance measurements [32]. Take

ever, in the face of the current evolutions, it is clear thewn together, this effort embodies a new and comprehensive ap-

models and modeling techniques are required both for effgeeach to modeling Global computing systems.

tive global computing and for next generation Grid comput-

ing. In particular, the uncoordinated burstiness of reseur

availability, caused by user reclamation of resources and D Automatically Deter mining an Avail-

termittent network connectivity, is orders of magnitudeyéx . ] ) ;

than that of previously studied distributed computing plat ~ ability Distribution

forms. New measurement, analysis, prediction, and simula-

tion techniques must be investigated. Only with these nsodé¥e have gathered machine availability data from a variety of

will it be possible to enable a wide range of applications €gsktop, Internet, and cycle-harvesting systems usiniyéite

compute effective|y ata g|0ba| level. work Weather Service (NWS) [66, 69, 70, 47] — distributed,
Our approach to achieving the modeling and simulation d@bust, and scalable performance monitoring and forewgsti

pabilities that are necessary to enable global computing cystem developed to support Grid and global computing. Af-

prise three objectives proposed herein. We must ter studying individual machine traces (some spanning simo
two years) we have found that the two distribution families
1. Develop novel models of complex emerging global afitht consistently fit the data we have gathered most actyrate
Grid computing platforms. These models will target regre the Weibull and the hyperexponential. These results are
source availability as well as resource classification, angbmewhat surprising, since a variety of previous efforteeha
will attempt to unify the performance characteristics @bcused on either exponential [64, 36, 52, 53, 37, 59, 71, 72]
both platform types. or Pareto [29, 50, 49, 65, 15, 35] models of behavior. We com-
are the effectiveness of these more traditional appraatche

2. Use these models to develop resource classification e e : .
ur findings in the next section.

scheduling strategies which enable robust, predICtab?eTheWeibuIldistributioris often used to model the lifetimes

f liver high ilability f lica-
Eg:]:rmance and deliver high availability for app ICaof objects, including physical system components [7, 40]

and also to model computer resource availability distribu-
3. We will validate our approach with two “real-world” tions [31, 60]. Hyperexponentials have been used to model
global computing applications, using both novel simularachine availability previously [41] especially when ob-
tion techniques and, if possible, a real global computirggrved data requires a model which can approximate a wide
system. variety of shapes. Following are the equations for the mod-
els we compare in this work, along with a description of how
One of our goals is to develop models of resource avajfe automatically estimate the model parameters from given a
ability as they are fundamental to an understanding of ovggmple data set. Thus, with this system, we extract historic
all platform behavior and scheduling policies. Our pregiogyailability information from the NWS and generate a statis-

modeling and scheduling efforts [70, 12, 67, 68, 57, 9] cabtiical models of previous availability. We can then compare
and make effective use of predicted performance levelsiduihese models in terms of their accuracy and “fit.”

not include predictions of resource loss or failure. Fotiahi

Grid efforts, resource availability predictions did noope

critical. Moving to a more global computing context, how2.1 Weibull Distribution

ever, will require availability and failure predictionsathcan

be used as the basis for new performance-oriented schgduliie density and distribution functiorfs andF, respectively

techniques. for a Weibull distribution are given by
In addition, we believe that the issuerebource classifica- ol —(z/8)°"
tion continues to be fundamental. One of the major challenges fw(@) =aBf™ %" e 1)
for global computing is is the ability to impose a virtuakstr
ture (possibly application-specific) over the potentiaibeful Fu(z)=1—e" @/ 2)



The parametanr is called theshapeparameter, and is called F.(z)=1- e 7
the scaleparametef. Note that the Weibull distribution re-

duces to an exponential distribution when= 1. afe
fol®) = 23 (8)

2.2 Hyperexponential Distribution e

Hyperexponentials are distributions formed as the wewhte Fp(z)=1- (;) (9)

sum of exponentials, each having a different parameter. The
density function is given by

. 2.4 Distribution Parameter Estimation

fu(z) = Z[pi e (@)] ®) For repeatability, we describe the exact method used to per-

i=1 form all of the model fitting in this work. Given a set of

where sample datgx; ...z, }, there are many common techniques
fo,(x) = Nie N (4) for estimating distribution parameters based on some set of

, . . . _ sample data, including visual inspectioad. using a two-
defines the density function for an exponential having parag) ., cnsional graph) and analytic methods. A commonly ac-
eter);. In the definition offy (z), all A; # A; for i # j, and

cepted approach to the general problem of parameter estima-

i1 p: = 1. The distribution function is defined as tion is based on the principle shaximum likelihood The
A maximum likelihood estimator (MLE) is calculated for any
Fu(z)=1— Zp’ e (5) data set, based on the assumptions that each of the sample
= data pointse; is drawn from a random variablg; an that the

X, are independent and identically distributed (i.i.d.). The
for the same definition of., (z). Thus, to fit a hyperexpo- method defines thikelihood functionZ, depending on the
nential to a given data set, the valuekgfeach); and eaclp; parameters of the distribution, as the product of the dgnsit
must be estimated. For a specified valué ¢ivhich indicates function evaluated at the sample points. Thus in the case of
how many phases will be included in the hyperexponentiafie Weibull distribution will be a function ofe and3 given
an MLE technique can be used to determine the remainj
2k — 1 parameters. However, the optimization problem that
arises for even small values bfs often too complex for com- 1 , _ —a,. a—1_—(z/B)>
monly available computers to solve, especially for largead Lie fl{z:}) = 1:[ fi e B) = 1:[ af " e
sets?. As a result, we used the EMpht software package [20] (20)
in place of an MLE procedure for all estimated hyperexpRoughly speaking, maximizing is equivalent to maximiz-
nentials in this paper. EMpht implements the estimation-makxg the joint probability that each random variable will ¢éak
imization (EM) algorithm described in [4]. on the sample value. Large values of the density function

The number of exponential phases (denoteé)}ifrat make correspond to data that is “more likely” to occur, so larger
up a hyperexponential, however, is a free parameter that mugues ofL correspond to values of the parameters for which
be specified rather than estimated. Our approach is is to tigedata was “more likely” to have been produced. Thus, the
EMpht to estimate parameters for successively larger sali\gLE for the parameters is simply the choice of parameters
of k and then to calculate goodness-of-fit metrics for eadif.it exists) which maximized.. Our approach to computing
The algorithm terminates when an additional phase produfgisE parameters numerically is to set the partial derivative

no discernible improvement in the metrics. of log —likelihood function equal td) and solve for the dis-
tribution parameters.
2.3 Exponential and Pareto Distributions We have implemented a software system that takes a set of

N . ) ) measurements as an ordinary text file and computes the MLE
The probability density functions (denoted using loweseayyeipyll, Pareto, exponential and the EM-based hyperexpo-
[ with a subscript) and distribution functions (upper-c#Se nential automatically. Perhaps unsurprisingly, the dyaif
with a subscript) for the exponential and Pareto distrindi the numerical methods that we use is critical to the success
are as follows: . of the method. In particular, the MLE computations can in-
fe(x) = Ae (6) volve hundreds or thousands of terms (the data sets can be
1The general Weibull density function has a third parametetoization, quite large) anq thus requ'r? robust and effl_czler_]t techrsigue
which we can eliminate from the density simply by subtractmgminimum At present, the implementation uses a combination of the Oc-
lifetime from all measurements. In this paper, we will work witle two-  tave [48] numerical package, Mathematica [39] (for solver
parameter formulation. ; _ ; :
2While we were able to make MLE estimates for Weibull and Pareto dlqua“ty)’ and the above-mentioned _El\/lpht. The. resulting sys
tributions for all data sets, the same numerical algorithmeddor all hyper- tem_, however, tal_(es data (as described in Section 3) anel auto
exponential estimations. matically determines the necessary parameters.




3 Experimental Data In this study, we take advantage of the vanilla (i.e
terminate-on-eviction) execution environment to buildan€

The data we use in this study measures resource availafr occupancy monitor. A set of monitor processes (10 in this
ity in three different settings: a general student workstat study) are submitted to Condor for execution. When Condor
laboratory at the University of California, Santa Barbdh® assigns a process to a processor, the process wakes period-
Condor [61] cycle-harvesting system at the University o6Wiically and reports the number of seconds that have elapsed
consin, and on the Internet circa 1995 [36, 52]. These thigAce it began executing. When that process is terminated
data sets were obtained using different measurementsibf ay@ue to an eviction) the last recorded elapsed time value mea
ability; our goal being to determine how sensitive our mede&dures the occupancy the sensor enjoyed on the processor it

are to the way in which availability is measured. was using. We associate availability with Internet addeess
port number; therefore, if a monitor process is subseqyentl
3.1 TheUCSB CSIL Data Set restarted on a particular machine (because Condor detesimin

_ _ the machine to be idle), the new measurements will be associ-
At UCSB, the computer science students are given ungged with the machine running the process. In our study, Con-
stricted access to workstations located in several roomsqft used 210 different Linux workstations to run the monitor

campus. Together, these systems make up the Computer Sigicesses over the six-week measurement period.
ence Instructional Laboratory (CSIL). Physical accesiéo t

CSIL is provided to some (but not all) students 24 hours a . .
day when school is in session, and via remote access at3aB8 The Long-Muir-Golding Data Set

other times to all computer science students. There are no ) ]
administrator-scheduled reboots when school is in sessibh[36] the authors identify 1170 hosts connected to the In-

however, software failures, security breaches, and harwigMet in 1995 that would cooperatively respond to a vacu-
failures resultin unplanned restarts by the administeattaff. OUS query of thepc.statd a Unix service which is commonly

An interesting behavior we have noticed on these system&0idnd on systems using the Network File System (NFS). The
that it appears students periodically “clean off” the maeki hosts were chosen to act as a “cross-section” of machines con
by simply hitting the power switch and rebooting the systerr{LeCted to the Internet, and a probing mechanism based on pe-

As anarchic as it may seem, we believe this mode of usdlflic but randomized RPC calls 'PC-Statd A successful
and administration is relatively common in today’s pulylicl'€SPOnse to an RPC constitutes a “heartbeat” for the machine

accessible computer workstation environments. in question, and failure to respond indicates machineriilu

All CSIL workstations currently run Linux which records-0ng, Muir, and Golding use this data to make a convinc-
the time since reboot in théoroc directory. We recorded N9 argument that availability is not accurately moc_ieledaby
the availability times from 83 of the CSIL workstations anf©iSson process. More recently, Plank and Elwasif [52] and,
recorded the duration between reboots during April and Ma§Parately, Plank and Thomason [S3], have analyzed it exten
of 2003, which corresponds to the bulk of the spring quart&iVely in terms of the suitability of Poisson and expondntia
Thus the resultant data set captures a “production” use dels in t_he context of process checkpoint schedul_lngl.l Ina_l
riod for the CSIL machines and does not span a quarter brék€€ studies, the authors reach the same conclusion, which

during which a correlated reboot (for quarterly maintergndS thatl the models under study do not accurately reflect the
is likely. behavior captured by the measurements.

3.2 TheCondor Data Set 4 Results

Condor [14, 61] is a cycle-harvesting system designed te sup

port high-throughput computing. Under the Condor modélhe goal of our study is to determine the value of using
the owner of each machine allows Condor to launch an &Xeibull and hyperexponential distributions to model reseu
ternally submitted job (i.e. one not generated by the ownerjailability in contrast with previous approaches. Ourhmoeit
when the machine becomes “idle.” Each owner is expectedd¢oto compare the MLE-determined Weibull and EMpht-
specify when his or her machine can be considered idle witetermined hyperexponential to the MLE exponential and
respect to load average, memory occupancy, keyboard addareto for each of the data sets discussed in the previous sec
ity, etc. When Condor detects that a machine has become iti®. For reference, we have included the MLE-determined
it takes an unexecuted job from a queue it maintains and asd EMpht-determined model parameters that were used for
signs it to the idle machine for execution. If the machineal fitted distributions discussed and shown in this work- (Ta
owner begins using the machine again, Condor detects theble-1). As we noted in the introduction, both exponential and
cal activity and evacuates the external job. The resultds tthe Pareto models have been used extensively to model re-
resource owners maintain exclusive access to their own seurce and process lifetime. Thus the value we perceive is
sources, and Condor uses them only when they would othte degree to which the Weibull and hyperexponential models
wise be idle. more accurately fit each data set.



Data Set Weibull Hyperexponential Exp. Pareto

a |8 P | P2 | p3s | M A2 A3 A « B
CSIL 545 | 275599 .464 | .197| .389| 11076 | 2x107* | 81076 | 2x10° | .087 | 1
Condor | .49 | 2403 592 | 408 NA [3%1073 | 710> | NA .00018 | .149 | 1.005
Long .61 | 834571| .282| 271 .474| 3107 | 1%10=° | 1107 [ 7107 | .079| 1

Table 1: Table of fitted model parameters

In each case, we use three different techniques to evalser when attempting to fit a hyperexponential using the EM-
ate model fit: graphical; the Kolmogorov-Smirnov [16] (KSpht software. To determine the number of phases to report
test; and the Anderson-Darling [16] (AD) test. Graphicah the visual analysis, we start with a 2-phase hyperexponen
evaluation is often the most compelling method [63] but tial, test the resulting fit with a Kolmogorov-Smirnov tesia
does not provide the security of a quantified result. Therothben repeat with an increased number of phases until the KS
two tests come under the general heading of “goodnessiett result shows no improvement. In this case, for the CSIL
fit" tests. Note that the best known goodness-of-fit testdata, the algorithm terminated using three phases.
based on the chi-squared distribution. However, this sadbi . -

) . : . For the Condor data set, the comparison (shown in Figures
signed for use with categorical data, and therefore to use :F
!

) o ) i , 4, and 6) is more striking. Again, the hyperexponential
squared with quantitative data requires that the data ife al a 2-phase, in this case) appears to fit the shape of the curve

cally "binned” into discrete categories. For this reasasthb most closely, and the Weibull appears a better choice than ei

the Kolmogorov-Smirnov and the Anderson-Darling tests Wer exponential or Pareto. Note in particular how again the

thought to be more appropriate for continuous dlsmblﬂlo%yﬁqerexponential is able to capture the inflection pointhef

than the chi-squared test. We therefore use these metho ondor EDF around 1000 seconds, while the Weibull is un-
place of the more familiar one. able to do so

. . L Finally, the fits (3-phase hyperexponential in this case) fo
4.1 Graphical Analysis of The Availability the Long, Muir, and Golding data are shown in Figures 8, 7,
M easurements and 9.

To gauge the fit of a specific model distribution to a particula The comparison is similar to that for the CSIL data.
data set, we plot the cumulative distribution function (DA he multi-phase hyperexponential fits slightly better tlan
for the distribution and the empirical cumulative disttiom Weibull, and both are substantially better than an expaalent

for the data set. The form of the CDF for the Weibull, hyer Pareto.

perexponential, exponential and Pareto are given by EquUayy particular interest are the way in which each hypotheti-

tion; 2 5! 7 a_nd 9 re_spectivelxcf_( Section 2). The cal distribution appears to match the tail of an EDF. In many
empirical distribution function (EDF) is the CDF of the ac

| data: it lculated by ordering the ob d val application contexts, “tail behavior” can be importantpes
tual data; it is calculated by ordering the observed va BeSd lly if the presence or absence of rare occurrences must be
X1 < Xy < -+ < X, and defining

modeled accurately. For example, previous research [38, 29
reveals Unix process lifetimes to be “heavy-tailed” andlwel

0, r < Xy modeled by a Pareto distribution. Thus schedulers and pro-
Fe(z)=q7j/n, X; <z <X (11) cess management systems must be designed for infrequently
1 x> X, occurring processes that have very long execution times.

. - : According to Figures 3, 6, and 9, however, a Pareto distri-
We start by comparing the empirical observations from t Etion would over-estimate the probability of ver longel
CSIL data set (as an EDF) to the CDF determined by tréa ources by a considerable anp10unt Inydeed i)t/ma be that
EMpht-estimated hyperexponential, and the MLE-estimate y ' ' y

Weibull, exponential, and Pareto distributions. In all bét while Unix process "fe.“”?e distributions are heayy ta”d(.j
! - L C ..~ " they are executed in distributed or global computing emviro
figures depicting distributions in this paper, the unitsoass

. . . o Wents, many of them will be terminated by resource failure
ated with the x-axis are seconds of machine availability. We I S .

X sifice the resource lifetime distributions (both EDFs arirth
use a log scale for the x-axis to better expose the nature 0of, . : N .

X . . .. matching Weibull and hyperexponential fits) have consider-
each fit. Both the hyperexponential and the Weibull fit thaeOI less tail weight
data substantially better than either an exponential cetBar y ght.
the hyperexponential is also able to capture the slightdnfle Even beyond the differences in the tails, however, we can
tion around 10,000 seconds. As was previously mentionetkarly see that the general shape of the exponential and

the choice of number of phases is a value specified by fPa&reto distributions do not seem to fit the sample CDFs well.



Figure 1: CSIL data with Weibull fit

Figure 4: Condor data with Weibull
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5 Conclusion

(12]

The focus of this effort is on modeling and scheduling
methodologies that will enable global computing, thus ex-

tending Computational Grids and high-performance d

i6L3]

tributed computing to a global level. In this vein, we prdsen

a methodology for automatically fitting parametric models

f14]

machine availability data. We find that Weibull and Hypeff5)

exponential models are more suitable than other, more

ex-

tensively studied alternatives such as exponential anet®ar

models.
Taken as part of a larger effort [11, 32, 46] this work co

stitutes an important step toward achieving a new and po

(16]

Tan

erful global computing infrastructure. Through a rigorous
combination of newly developed modeling and prediction

techniques, their application in simulation to the probleim
scheduling, and their empirical verification with simudati

(18]
(19]

and functioning application, our goal is to lay the groundao [20]

for the scientific study of next generation distributed coitap
ing.
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