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1 Introduction

Recent research results [8, 26, 27, 47, 19] and infrastructure
efforts [45, 44, 62, 30, 3] demonstrate the potential effective-
ness of large-scale distributed computing. Effective schedul-
ing based on empirically verifiable models has emerged as a
key factor in these successes. Moving to a new truly global
computing capability will similarly depend critically on new
models and scheduling techniques. The development and
instantiation of models for computing platforms are critical
first steps for studying the feasibility and scalability of ap-
plications, as well as for developing methodologies to en-
hance application performance. Our focus, in this proposal, is
on the modeling technologies that will enable performance-
engineering of such global computations. Specifically, these
new modeling technologies will support resource character-
ization and scheduling techniques thereby enabling robust,
predictable performance.

The increasing attractiveness of global computing ap-
proaches is fueled by dramatic advances in networking tech-
nology, and the penetration of PCs into the home. Numer-
ous projects (e.g. SETI@home, Great Internet Mersenne
Prime Search, and Compute Against Cancer) provide a strik-
ing demonstration of the power available from networked
PCs world-wide. To date, many academic and commercial
projects are attempting to harness these resources for compute
intensive applications [56, 10, 22, 34, 13, 21] and for devel-
oping distributed storage systems [33, 17, 25, 54, 18], either
world-wide or within institutions in an “enterprise” fashion.
We use the termglobal computingfor these projects, as they
can exploit a potentially world-wide universe of resources.
The key differentiating characteristics of these systems is that
application performance must be amalgamated from:

• desktop / laptop PC resources which are unreliable and
prone to reclamation by users,

• intermittent and highly fluctuating network connectivity,

• resources that span organizational boundaries each hav-
ing unique (potentially fluctuating) security and access
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control policies, and

• an application structure that permits flexible concurrency
management and scheduling.

Early adopters of this emerging paradigm have used it to
deliver massive compute capacity to their scientific, engineer-
ing, or business applications [2, 6, 38, 1, 43, 58]. Such appli-
cations often involve large numbers of independent (or nearly
so) computation and data objects, and are tolerant of high net-
work latencies and resource failures. These examples pointto
the dramatic advances that may be achieved if three orders of
magnitude more compute power than is available from single-
site resources is culled from a global resource pool. Applica-
tions already moving to this new level of capability include
GIMPS [24], and Folding@Home [5].

These early examples demonstrate the capabilities of global
computing to solve real problems, but their customized ap-
proaches have yet to be generalized. In particular, no well-
defined method for modeling resource usage by applications
that can take advantage of massively heterogeneous, volatile,
unreliable resources for performance yet exists. As a result,
achieving robust, predictable performance poses a significant
challenge. Our work will address this deficiency directly
by providing new modeling capabilities that support perfor-
mance scheduling in global computing environments.

At the same time, current Grid computing platforms are
more tightly controlled than the nascent global computing
platforms that are available. As a result, resource availabil-
ity tends to be more predictable since the administrative poli-
cies are in place to ensure more availability and less volatility.
The trend in Grid systems, however, is toward dynamically
coordinated Web services [23] that are compatible with W3C
standards. A lack of effective unifying models and schedul-
ing techniques poses a serious impediment to this continued
convergence between the Grid computing approach and the
Internet computing approach. In particular, platform resource
models that capture the performance behavior ofboth Grid
and global computing resources are key to the next genera-
tion of effective distributed high-performance applications.

A widely applicable global compute capability can only be
realized if models are developed and instantiated that allow
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the engineering of appropriate scheduling and deployment
of applications, and for predicting their performance. Such
models must characterize resource capabilities, dynamic be-
havior, availability, failure, and connectivity. Due to lack of
such models, current global computing applications are cus-
tomized point-solutions (e.g. high throughput with a central-
ized server) with unpredictable performance characteristics
(e.g.availability and response time).

Platform and resource modeling has been an important fo-
cus in the Grid computing community and has led to signifi-
cant number of successful applications [55, 51, 42, 57]. How-
ever, in the face of the current evolutions, it is clear that new
models and modeling techniques are required both for effec-
tive global computing and for next generation Grid comput-
ing. In particular, the uncoordinated burstiness of resource
availability, caused by user reclamation of resources and in-
termittent network connectivity, is orders of magnitude larger
than that of previously studied distributed computing plat-
forms. New measurement, analysis, prediction, and simula-
tion techniques must be investigated. Only with these models
will it be possible to enable a wide range of applications to
compute effectively at a global level.

Our approach to achieving the modeling and simulation ca-
pabilities that are necessary to enable global computing com-
prise three objectives proposed herein. We must

1. Develop novel models of complex emerging global and
Grid computing platforms. These models will target re-
source availability as well as resource classification, and
will attempt to unify the performance characteristics of
both platform types.

2. Use these models to develop resource classification and
scheduling strategies which enable robust, predictable
performance and deliver high availability for applica-
tions

3. We will validate our approach with two “real-world”
global computing applications, using both novel simula-
tion techniques and, if possible, a real global computing
system.

One of our goals is to develop models of resource avail-
ability as they are fundamental to an understanding of over-
all platform behavior and scheduling policies. Our previous
modeling and scheduling efforts [70, 12, 67, 68, 57, 9] capture
and make effective use of predicted performance levels, butdo
not include predictions of resource loss or failure. For initial
Grid efforts, resource availability predictions did not prove
critical. Moving to a more global computing context, how-
ever, will require availability and failure predictions that can
be used as the basis for new performance-oriented scheduling
techniques.

In addition, we believe that the issue ofresource classifica-
tion continues to be fundamental. One of the major challenges
for global computing is is the ability to impose a virtual struc-
ture (possibly application-specific) over the potentiallyuseful

resources at any given time making it possible for schedulers
to reason about platform utilization and performance. We
must be able to cluster resources according to performance
response, thereby defining resource categories (e.g. common
availability behaviors, coarse notions of network proximity).

In this paper, we briefly describe our efforts to automat-
ically determine good parametric models of machine avail-
ability. The results we have obtained are part of a larger effort
that includes new predictive capabilities [11], new scheduling
capabilities [46] and efforts to translate machine availability
to application-level performance measurements [32]. Taken
together, this effort embodies a new and comprehensive ap-
proach to modeling Global computing systems.

2 Automatically Determining an Avail-
ability Distribution

We have gathered machine availability data from a variety of
desktop, Internet, and cycle-harvesting systems using theNet-
work Weather Service (NWS) [66, 69, 70, 47] – distributed,
robust, and scalable performance monitoring and forecasting
system developed to support Grid and global computing. Af-
ter studying individual machine traces (some spanning almost
two years) we have found that the two distribution families
that consistently fit the data we have gathered most accurately
are the Weibull and the hyperexponential. These results are
somewhat surprising, since a variety of previous efforts have
focused on either exponential [64, 36, 52, 53, 37, 59, 71, 72]
or Pareto [29, 50, 49, 65, 15, 35] models of behavior. We com-
pare the effectiveness of these more traditional approaches to
our findings in the next section.

TheWeibull distributionis often used to model the lifetimes
of objects, including physical system components [7, 40]
and also to model computer resource availability distribu-
tions [31, 60]. Hyperexponentials have been used to model
machine availability previously [41] especially when ob-
served data requires a model which can approximate a wide
variety of shapes. Following are the equations for the mod-
els we compare in this work, along with a description of how
we automatically estimate the model parameters from given a
sample data set. Thus, with this system, we extract historical
availability information from the NWS and generate a statis-
tical models of previous availability. We can then compare
these models in terms of their accuracy and “fit.”

2.1 Weibull Distribution

The density and distribution functionsfw andFw respectively
for a Weibull distribution are given by

fw(x) = αβ−αxα−1e−(x/β)α

(1)

Fw(x) = 1 − e−(x/β)α

(2)
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The parameterα is called theshapeparameter, andβ is called
the scaleparameter1. Note that the Weibull distribution re-
duces to an exponential distribution whenα = 1.

2.2 Hyperexponential Distribution

Hyperexponentials are distributions formed as the weighted
sum of exponentials, each having a different parameter. The
density function is given by

fH(x) =

k
∑

i=1

[pi · fei
(x)] (3)

where
fei

(x) = λie
−λix (4)

defines the density function for an exponential having param-
eterλi. In the definition offH(x), all λi 6= λj for i 6= j, and
∑k

i=1 pi = 1. The distribution function is defined as

FH(x) = 1 −

k
∑

i=1

pi · e
−λix (5)

for the same definition offei
(x). Thus, to fit a hyperexpo-

nential to a given data set, the value ofk, eachλi and eachpi

must be estimated. For a specified value ofk (which indicates
how many phases will be included in the hyperexponential),
an MLE technique can be used to determine the remaining
2k − 1 parameters. However, the optimization problem that
arises for even small values ofk is often too complex for com-
monly available computers to solve, especially for larger data
sets2. As a result, we used the EMpht software package [20]
in place of an MLE procedure for all estimated hyperexpo-
nentials in this paper. EMpht implements the estimation max-
imization (EM) algorithm described in [4].

The number of exponential phases (denoted byk) that make
up a hyperexponential, however, is a free parameter that must
be specified rather than estimated. Our approach is is to use
EMpht to estimate parameters for successively larger values
of k and then to calculate goodness-of-fit metrics for each.
The algorithm terminates when an additional phase produces
no discernible improvement in the metrics.

2.3 Exponential and Pareto Distributions

The probability density functions (denoted using lower-case
f with a subscript) and distribution functions (upper-caseF
with a subscript) for the exponential and Pareto distributions
are as follows:

fe(x) = λe−λx (6)

1The general Weibull density function has a third parameter for location,
which we can eliminate from the density simply by subtracting the minimum
lifetime from all measurements. In this paper, we will work withthe two-
parameter formulation.

2While we were able to make MLE estimates for Weibull and Pareto dis-
tributions for all data sets, the same numerical algorithms failed for all hyper-
exponential estimations.

Fe(x) = 1 − e−λx (7)

fp(x) =
αβα

xα+1
(8)

Fp(x) = 1 −

(

β

x

)α

(9)

2.4 Distribution Parameter Estimation

For repeatability, we describe the exact method used to per-
form all of the model fitting in this work. Given a set of
sample data{x1...xn}, there are many common techniques
for estimating distribution parameters based on some set of
sample data, including visual inspection (e.g. using a two-
dimensional graph) and analytic methods. A commonly ac-
cepted approach to the general problem of parameter estima-
tion is based on the principle ofmaximum likelihood. The
maximum likelihood estimator (MLE) is calculated for any
data set, based on the assumptions that each of the sample
data pointsxi is drawn from a random variableXi an that the
Xi are independent and identically distributed (i.i.d.). The
method defines thelikelihood functionL, depending on the
parameters of the distribution, as the product of the density
function evaluated at the sample points. Thus in the case of
the Weibull distribution,L will be a function ofα andβ given
by

L(α, β | {xi}) =
∏

i

f(xi |α, β) =
∏

i

αβ−αxi
α−1e−(x/β)α

(10)
Roughly speaking, maximizingL is equivalent to maximiz-
ing the joint probability that each random variable will take
on the sample value. Large values of the density function
correspond to data that is “more likely” to occur, so larger
values ofL correspond to values of the parameters for which
the data was “more likely” to have been produced. Thus, the
MLE for the parameters is simply the choice of parameters
(if it exists) which maximizesL. Our approach to computing
MLE parameters numerically is to set the partial derivatives
of log−likelihood function equal to0 and solve for the dis-
tribution parameters.

We have implemented a software system that takes a set of
measurements as an ordinary text file and computes the MLE
Weibull, Pareto, exponential and the EM-based hyperexpo-
nential automatically. Perhaps unsurprisingly, the quality of
the numerical methods that we use is critical to the success
of the method. In particular, the MLE computations can in-
volve hundreds or thousands of terms (the data sets can be
quite large) and thus require robust and efficient techniques.
At present, the implementation uses a combination of the Oc-
tave [48] numerical package, Mathematica [39] (for solver
quality), and the above-mentioned EMpht. The resulting sys-
tem, however, takes data (as described in Section 3) and auto-
matically determines the necessary parameters.
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3 Experimental Data

The data we use in this study measures resource availabil-
ity in three different settings: a general student workstation
laboratory at the University of California, Santa Barbara,the
Condor [61] cycle-harvesting system at the University of Wis-
consin, and on the Internet circa 1995 [36, 52]. These three
data sets were obtained using different measurements of avail-
ability; our goal being to determine how sensitive our models
are to the way in which availability is measured.

3.1 The UCSB CSIL Data Set

At UCSB, the computer science students are given unre-
stricted access to workstations located in several rooms on
campus. Together, these systems make up the Computer Sci-
ence Instructional Laboratory (CSIL). Physical access to the
CSIL is provided to some (but not all) students 24 hours a
day when school is in session, and via remote access at all
other times to all computer science students. There are no
administrator-scheduled reboots when school is in session;
however, software failures, security breaches, and hardware
failures result in unplanned restarts by the administrative staff.
An interesting behavior we have noticed on these systems is
that it appears students periodically “clean off” the machines
by simply hitting the power switch and rebooting the systems.
As anarchic as it may seem, we believe this mode of usage
and administration is relatively common in today’s publicly
accessible computer workstation environments.

All CSIL workstations currently run Linux which records
the time since reboot in the/proc directory. We recorded
the availability times from 83 of the CSIL workstations and
recorded the duration between reboots during April and May
of 2003, which corresponds to the bulk of the spring quarter.
Thus the resultant data set captures a “production” use pe-
riod for the CSIL machines and does not span a quarter break,
during which a correlated reboot (for quarterly maintenance)
is likely.

3.2 The Condor Data Set

Condor [14, 61] is a cycle-harvesting system designed to sup-
port high-throughput computing. Under the Condor model,
the owner of each machine allows Condor to launch an ex-
ternally submitted job (i.e. one not generated by the owner)
when the machine becomes “idle.” Each owner is expected to
specify when his or her machine can be considered idle with
respect to load average, memory occupancy, keyboard activ-
ity, etc. When Condor detects that a machine has become idle,
it takes an unexecuted job from a queue it maintains and as-
signs it to the idle machine for execution. If the machine’s
owner begins using the machine again, Condor detects the lo-
cal activity and evacuates the external job. The result is that
resource owners maintain exclusive access to their own re-
sources, and Condor uses them only when they would other-
wise be idle.

In this study, we take advantage of the vanilla (i.e
terminate-on-eviction) execution environment to build a Con-
dor occupancy monitor. A set of monitor processes (10 in this
study) are submitted to Condor for execution. When Condor
assigns a process to a processor, the process wakes period-
ically and reports the number of seconds that have elapsed
since it began executing. When that process is terminated
(due to an eviction) the last recorded elapsed time value mea-
sures the occupancy the sensor enjoyed on the processor it
was using. We associate availability with Internet addressand
port number; therefore, if a monitor process is subsequently
restarted on a particular machine (because Condor determined
the machine to be idle), the new measurements will be associ-
ated with the machine running the process. In our study, Con-
dor used 210 different Linux workstations to run the monitor
processes over the six-week measurement period.

3.3 The Long-Muir-Golding Data Set

In [36] the authors identify 1170 hosts connected to the In-
ternet in 1995 that would cooperatively respond to a vacu-
ous query of therpc.statd; a Unix service which is commonly
found on systems using the Network File System (NFS). The
hosts were chosen to act as a “cross-section” of machines con-
nected to the Internet, and a probing mechanism based on pe-
riodic but randomized RPC calls torpc.statd. A successful
response to an RPC constitutes a “heartbeat” for the machine
in question, and failure to respond indicates machine failure.
Long, Muir, and Golding use this data to make a convinc-
ing argument that availability is not accurately modeled bya
Poisson process. More recently, Plank and Elwasif [52] and,
separately, Plank and Thomason [53], have analyzed it exten-
sively in terms of the suitability of Poisson and exponential
models in the context of process checkpoint scheduling. In all
three studies, the authors reach the same conclusion, which
is that the models under study do not accurately reflect the
behavior captured by the measurements.

4 Results

The goal of our study is to determine the value of using
Weibull and hyperexponential distributions to model resource
availability in contrast with previous approaches. Our method
is to compare the MLE-determined Weibull and EMpht-
determined hyperexponential to the MLE exponential and
Pareto for each of the data sets discussed in the previous sec-
tion. For reference, we have included the MLE-determined
and EMpht-determined model parameters that were used for
all fitted distributions discussed and shown in this work (Ta-
ble 1). As we noted in the introduction, both exponential and
the Pareto models have been used extensively to model re-
source and process lifetime. Thus the value we perceive is
the degree to which the Weibull and hyperexponential models
more accurately fit each data set.
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Data Set Weibull Hyperexponential Exp. Pareto
α β p1 p2 p3 λ1 λ2 λ3 λ α β

CSIL .545 275599 .464 .197 .389 1 ∗ 10−6 2 ∗ 10−4 8 ∗ 10−6 2 ∗ 106 .087 1
Condor .49 2403 .592 .408 NA 3 ∗ 10−3 7 ∗ 10−5 NA .00018 .149 1.005
Long .61 834571 .282 .271 .474 3 ∗ 10−7 1 ∗ 10−5 1 ∗ 10−6 7 ∗ 107 .079 1

Table 1: Table of fitted model parameters

In each case, we use three different techniques to evalu-
ate model fit: graphical; the Kolmogorov-Smirnov [16] (KS)
test; and the Anderson-Darling [16] (AD) test. Graphical
evaluation is often the most compelling method [63] but it
does not provide the security of a quantified result. The other
two tests come under the general heading of “goodness-of-
fit” tests. Note that the best known goodness-of-fit test is
based on the chi-squared distribution. However, this test is de-
signed for use with categorical data, and therefore to use chi-
squared with quantitative data requires that the data be artifi-
cally “binned” into discrete categories. For this reason, both
the Kolmogorov-Smirnov and the Anderson-Darling tests are
thought to be more appropriate for continuous distributions
than the chi-squared test. We therefore use these methods in
place of the more familiar one.

4.1 Graphical Analysis of The Availability
Measurements

To gauge the fit of a specific model distribution to a particular
data set, we plot the cumulative distribution function (CDF)
for the distribution and the empirical cumulative distribution
for the data set. The form of the CDF for the Weibull, hy-
perexponential, exponential and Pareto are given by equa-
tions 2, 5, 7, and 9 respectively (cf. Section 2). The
empirical distribution function (EDF) is the CDF of the ac-
tual data; it is calculated by ordering the observed values as
X1 < X2 < · · · < Xn and defining

Fe(x) =











0, x < X1;

j/n, Xj ≤ x < X(j+1);

1, x ≥ Xn.

(11)

We start by comparing the empirical observations from the
CSIL data set (as an EDF) to the CDF determined by the
EMpht-estimated hyperexponential, and the MLE-estimated
Weibull, exponential, and Pareto distributions. In all of the
figures depicting distributions in this paper, the units associ-
ated with the x-axis are seconds of machine availability. We
use a log scale for the x-axis to better expose the nature of
each fit. Both the hyperexponential and the Weibull fit the
data substantially better than either an exponential or Pareto;
the hyperexponential is also able to capture the slight inflec-
tion around 10,000 seconds. As was previously mentioned,
the choice of number of phases is a value specified by the

user when attempting to fit a hyperexponential using the EM-
pht software. To determine the number of phases to report
in the visual analysis, we start with a 2-phase hyperexponen-
tial, test the resulting fit with a Kolmogorov-Smirnov test and
then repeat with an increased number of phases until the KS
test result shows no improvement. In this case, for the CSIL
data, the algorithm terminated using three phases.

For the Condor data set, the comparison (shown in Figures
5, 4, and 6) is more striking. Again, the hyperexponential
(a 2-phase, in this case) appears to fit the shape of the curve
most closely, and the Weibull appears a better choice than ei-
ther exponential or Pareto. Note in particular how again the
hyperexponential is able to capture the inflection points ofthe
Condor EDF around 1000 seconds, while the Weibull is un-
able to do so.

Finally, the fits (3-phase hyperexponential in this case) for
the Long, Muir, and Golding data are shown in Figures 8, 7,
and 9.

The comparison is similar to that for the CSIL data.
The multi-phase hyperexponential fits slightly better thana
Weibull, and both are substantially better than an exponential
or Pareto.

Of particular interest are the way in which each hypotheti-
cal distribution appears to match the tail of an EDF. In many
application contexts, “tail behavior” can be important, espe-
cially if the presence or absence of rare occurrences must be
modeled accurately. For example, previous research [28, 29]
reveals Unix process lifetimes to be “heavy-tailed” and well-
modeled by a Pareto distribution. Thus schedulers and pro-
cess management systems must be designed for infrequently
occurring processes that have very long execution times.

According to Figures 3, 6, and 9, however, a Pareto distri-
bution would over-estimate the probability of very long-lived
resources by a considerable amount. Indeed, it may be that
while Unix process lifetime distributions are heavy tailed, if
they are executed in distributed or global computing environ-
ments, many of them will be terminated by resource failure
since the resource lifetime distributions (both EDFs and their
matching Weibull and hyperexponential fits) have consider-
ably less tail weight.

Even beyond the differences in the tails, however, we can
clearly see that the general shape of the exponential and
Pareto distributions do not seem to fit the sample CDFs well.
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Figure 1: CSIL data with Weibull fit
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Figure 2: CSIL data with hyperexpo-
nential fit
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Figure 3: CSIL data with exponential
and Pareto fits
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Figure 4: Condor data with Weibull
fit
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Figure 5: Condor data with hyperex-
ponential fit
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Figure 6: Condor data with exponen-
tial and Pareto fits

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1  100  10000  1e+06

empirical

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1  100  10000  1e+06

empirical
weibull

Figure 7: Long data with Weibull fit
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Figure 8: Long data with hyperexpo-
nential fit
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Figure 9: Long data with exponential
and Pareto fits
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5 Conclusion

The focus of this effort is on modeling and scheduling
methodologies that will enable global computing, thus ex-
tending Computational Grids and high-performance dis-
tributed computing to a global level. In this vein, we present
a methodology for automatically fitting parametric models to
machine availability data. We find that Weibull and Hyper-
exponential models are more suitable than other, more ex-
tensively studied alternatives such as exponential and Pareto
models.

Taken as part of a larger effort [11, 32, 46] this work con-
stitutes an important step toward achieving a new and pow-
erful global computing infrastructure. Through a rigorous
combination of newly developed modeling and prediction
techniques, their application in simulation to the problemof
scheduling, and their empirical verification with simulation
and functioning application, our goal is to lay the groundwork
for the scientific study of next generation distributed comput-
ing.
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