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Abstract

A large emerging class of interactive multimedia stream-
ing applications that are highly parallel can be represented
as a coarse-grain, pipelined, data-flow graph. One com-
mon characteristic of these applications is their use of cur-
rent data: A task would obtain the latest data from pre-
ceding stages, skipping over older data items if necessary
to perform its computation. When parallelized, such ap-
plications waste resources because they process and keep
data in memory that is eventually dropped from the ap-
plication pipeline. To overcome this problem, we have de-
signed and implemented an Adaptive Resource Utilization
(ARU) mechanism that uses feedback to dynamically ad-
justs the resources each task running thread utilizes so as
to minimize wasted resource use by the entire application.
A color-based people tracker application is used to explore
the performance benefits of the proposed mechanism. We
show that ARU reduces the application’s memory footprint
by two-thirds compared to our previously published results,
while also improving latency and throughput of the appli-
cation.

1. Introduction

Resource Utilization is the efficient use of resources
given to an application. Unlike Resource Management
schemes, such as QoS and scheduling, which are con-
cerned with allocation of resources to an application, Re-
source Utilization targets the economical use of resources
already allocated to an application. For example, if a sched-
uler provides an application thread pool with a set of

+ The work has been funded in part by an NSF ITR grant CCR-01-
21638, NSF grant CCR-99-72216, the Yamacraw project of the State
of Georgia, and the Georgia Tech Broadband Institute. The equipment
used in the experimental studies is funded in part by an NSF Research
Infrastructure award EIA-99-72872, and Intel Corp.

Kathleen Knobe
HP Labs - Cambridge Research Lab.
One Cambridge Center, Cambridge, MA
kath.knobe @hp.com

Tow-fi Low-i
tracker records
Decision
records
Display
High-i High-f
tracker records

Figure 1. Vision Application pipeline.
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CPU time-slices, the rules by which resources are man-
aged among these threads would be characterized as their
resource utilization policy.

Efficient resource utilization is considered primarily the
responsibility of application developers, who have a vast set
of static analysis methodologies and tools at their disposal.
However, many applications such as streaming multimedia
applications are affected by dynamic phenomena such as
current load, for which such tools are inapplicable.

Our motivation to suggest a dynamic resource utilization
mechanism stems from our unique perspective of reduc-
ing wasted resource usage. To better understand our goal,
it is important to understand the characteristics, structure
and dynamics of parallel streaming applications that we tar-
get. Figure 1 illustrates an example of a simple streaming
vision application pipeline.

The most important characteristic common to this class
of applications is the need for representing temporal data.
Therefore, associating every piece of data with a timestamp,
allows for an index into the virtual (or wall-clock) time of
the application. Such a timestamp tag preserves the tem-
poral locality of data, which is required during analysis by
many multimedia algorithms and interactive applications.
For example, a stereo module in an interactive vision ap-
plication may require images with corresponding ' times-
tamps from multiple cameras to compute its output, or a
gesture recognition module may need to analyze a sliding

1 Corresponding timestamps could be timestamps with the same value
or with values close enough within a pre-defined threshold.



window over a video stream. Providing support at the run
time system level for handling time can ease the program-
ming effort required to write and maintain these applica-
tions.

In addition, application pipelines consist of independent
tasks implemented by a single or a group of threads. The
structure of each task typically consists of repeatedly get-
ting data from input buffers, processing it, and producing
new data. These tasks run independently in parallel but have
input dependencies between them that are inherent in the
application task-graph structure. Tasks also have variable
execution rates based on their internal runtime complexity
and resource availability in the parallel environment. Such
variable execution rates create a production differential be-
tween tasks, creating a need for communication buffers be-
tween threads.

Stampede [19, 24, 23] is a run-time system designed
to provide abstractions and system support to help write
such streaming media applications. One available abstrac-
tion is called a fimestamp, which is associated with every
data item, produced or consumed by any application thread.
Other abstractions, such as Channels and Queues, provide
data elements with system-wide unique names, and serve
as containers or buffers for storing time-sequenced data
items. They facilitate inter-thread communication and syn-
chronization, regardless of the physical location of threads.
Since tasks in successive pipeline stages do not have the
same rate of consumption/production, a task may have to
drop or skip-over stale data to access the most recent data
from its input buffers. Consuming fresh data helps ensure
the production of fresh output, a necessary condition for in-
teractive multimedia pipelines. Channels and Queues alle-
viate the problem of variable production/consumption rate
by allowing non-FIFO and out-of-order access to data items
sometimes required in such application pipelines.

Skipping of data may be important to preserve the inter-
active nature of applications, but as a side affect the system
sustains data items that are eventually dropped. Efficient im-
plementation of the application will attempt to minimize re-
source utilization wasted in maintaining such data. Stam-
pede run-time system contains garbage collection (GC) al-
gorithms [18, 6, 14] based on timestamp visibility that free
data elements as soon as the run-time system can be cer-
tain that they are not going to be used by the application.
These Stampede GC algorithms differ from traditional GC
in their logic governing garbage collection in that they as-
sert data will not be used in the future. Traditional GC con-
cepts, on the other hand, regard a data element as a garbage
only if it not reachable by any one of the threads that com-
pose the computation.

GC algorithms may help alleviate the problem by free-
ing unwanted data after it has already been created, how-
ever it would be best if wasted items are never produced

in the first place, saving both processing, networking, and
memory resources. Static determination of unneeded items
cannot be made due to the interactive nature of such appli-
cations. The only way to eliminate wasteful resource con-
sumption is by dynamically controlling and matching the
data production of each thread with the overall application
rate.

In this paper, we propose an Adaptive Resource Uti-
lization (ARU) mechanism that uses feedback to influ-
ence utilization among application threads and minimizes
the amount of wasted resources consumed by interactive
streaming multimedia applications. The mechanism pro-
vides the production rate of each pipeline stage as feedback
to earlier stages. This feedback helps each stage adapt its
own production rate to suit the dynamic needs of the appli-
cation.

We use a color-based people tracker application to ex-
plore the performance benefits of the proposed algorithm.
We show that compared with our former published re-
sults, the ARU mechanism reduces the memory footprint
by nearly two-thirds while simultaneously improving per-
formance measures such as latency and throughput.

In section 2 we review and compare related work. In sec-
tion 3 we describe the run-time instrumentation that enables
the ARU optimization. In section 4 we explain our perfor-
mance evaluation methodology. We present comparative re-
sults in section 5, and conclusions in section 6.

2. Related Work

The Adaptive Resource Utilization (ARU) mechanism
we propose strives to optimize resource usage to best meet
resource availability. Prima facie, this mechanism seems
similar to the notion of Quality of Service (QoS) in multi-
media systems but is quiet different. Firstly, ARU deals with
optimizing resource utilization, as opposed to QoS, which
we categorize as a resource management system. In other
words, ARU does not guarantee a specific level of service
quality like QoS. Instead, it makes sure that threads exe-
cute tasks at an equilibrium rate such that resources are not
wasted on computations and on producing data that would
eventually be thrown away. Therefore, while ARU allows
an application to voluntarily reduce its resource consump-
tion on the inference that using more resources would not
improve performance, QoS forces a reduction in resource
consumption if it cannot meet a certain service level. QoS
is not concerned with inefficient use of resources as long as
a service quality is maintained. Thus, we can consider ARU
to be orthogonal to QoS provisioning.

Most QoS provisioning systems work at the level of
the operating system, e.g.,reserving network bandwidth for
an application or impacting the scheduling of threads. Our
ARU mechanism, resides in the programming runtime en-



vironment above the OS-level. QoS provisioning typically
requires the application writer to understand, and in many
cases specify, the application’s behavior for different lev-
els of service (see [32, 1, 29, 16]). However, ARU requires
little developer involvement.

Similarities to ARU can also be drawn from the extensive
work done in the domain of real-time scheduling, especially
from those that use feedback control. However, there are
fundamental differences between them. First and foremost,
similar to QoS, real-time scheduling is a resource manage-
ment mechanism. The primary aim of real-time schedul-
ing is to ensure that data processing complies with appli-
cation deadlines. ARU, on the other hand, attempts to min-
imize wasted resources by exploiting available knowledge
about data dependencies. ARU therefore takes advantage of
inter-application dependencies whereas real-time schedul-
ing make no such exploit and uses only global informa-
tion about all applications. The global knowledge is read-
ily available in the OS, where real-time scheduling is typ-
ically performed. However, internal data-dependencies can
be found only within an application or a run-time system de-
signed for a particular class of applications (such as Stam-
pede). ARU makes use of this information from the Stam-
pede runtime implicitly derived by the input/output connec-
tions made between threads.

Real-time scheduling also includes reservation style
scheduling works where different threads must first re-
serve their CPU time to be allowed use of the re-
sources [30, 8, 28, 27, 17]. These differ from our ap-
proach in (1) they are all scheduling techniques, (2) are
instrumented in the kernel and (3) require expert develop-
ers to supply accurate period/proportion reservation. There
are systems that alleviate the requirement of accurate reser-
vation information by using feedback: The Real-Rate [27]
mechanism removes the dependency on specifying the rate
of real-time tasks.

More traditional real-time schedulers such as EDF [12],
RM [12] and Spring [33] are all open-loop static schedul-
ing algorithms that require complete knowledge about tasks
and their constraints. Variants like FC-EDF [13], simi-
lar to Adaptive Earliest Deadline (AED) [7] in real-time
databases, use feedback to improve miss-ratio in resource
constrained environments by increasing priority (AED) or
increasing CPU utilization (FC-EDF).

Other hybrid schedulers such as SMART [17], and
BERT [2] handle both real-time and non-real-time ap-
plications simultaneously. Both use feedback to allow
for the coexistence of real-time and non-real-time appli-
cations types by stealing resources from non-real-time
applications to give to real-time algorithms.

Recent adaptive scheduling works consider resource
constrained environments other than limited CPU, e.g.,high
memory pressure [20]. Here, threads are put to sleep to pre-

vent thrashing while experiencing high memory pressure.
Although our approach also involves sleeping of threads,
we do so not to avoid resource constraints but to avoid us-
ing resources on computing unneeded data altogether.
Avoiding wasted computation indirectly reduces mem-
ory pressure by using less resources to begin with.

Massalin and Pu [15] introduced the idea of using feed-
back control loops similar to hardware phase locked loops
in real-time scheduling. Their approach deals with adap-
tively giving more unused resources to threads that require
them or give priority to threads that need them more based
on feedback information. The Swift toolbox was also de-
veloped [21, 3, 5] to allow portability of the feedback con-
trol mechanism from its OS test bed, the Synthesis Ker-
nel [22]. However, these mechanisms try to improve upon
scheduling (resource management) and do not try to elim-
inate wasted resource usage (resource utilization). There is
also a special need for application modification to use these
feedback mechanisms as shown in works [4, 26] where as
our mechanism, instrumented in the Stampede runtime sys-
tem, is available by default to application writers that use
the runtime. In addition, the feedback control loop work
of Massalin and Pu [15] deals with feedback filters, where
feedback information is first filtered before propagated back
to the algorithm. Currently, ARU does not include the no-
tion of filters, although it is a natural extension of our work.

It is important to note that giving more resources to
bottleneck threads in the pipeline would improve the per-
formance of the overall pipeline application. However, we
deal with scenarios where the option of more resources,
e.g.,CPU or threads to the bottleneck task has been ex-
hausted. Such cases, i.e.,problems of dynamic resource
management are handled by feedback based scheduling al-
gorithms [15, 21, 4, 3, 26, 5] where bottleneck threads are
given more resources to improve their throughput.

Both ARU and GC are similar in that they are dynamic in
nature, and have the common goal of freeing resources that
are not needed by an application. However, the ARU mech-
anism is complementary to both traditional GC [31, 9] and
Timestamp based GC in streaming application [18]. Tradi-
tional GC algorithms consider a data item to be garbage
only if it is not “reachable” by any thread in the applica-
tion. On the other hand, Timestamp based GC algorithms
such as Dead Timestamp GC (DGC) [6] use virtual time in-
ferences to define garbage. These are data items that the
application will not use in the future. ARU goes one step
further, and attempts to prevent the creation of data items
that will not be used at all by examining the consump-
tion/production patterns of the application. Unlike GC al-
gorithms, ARU directly affects the pace of data production
and matches it with available system resources and applica-
tion pipeline constraints. It should be noted, however, that
the ARU mechanism does not eliminate the need to deal



with garbage created during execution, although it reduces
the magnitude of the problem.

3. ARU via Feedback Control

In this section we present our distributed ARU via a
Feedback Control Loop that minimizes the creation of un-
used data in streaming applications.

3.1. Factors Determining Rate of Tasks

Pipelined streaming applications such as the one illus-
trated in figure 1, have similarities with systolic architec-
tures [11]. It is therefore useful to talk about a rate of exe-
cution for the entire pipeline. This is the rate at which a pro-
cessed output is emitted from the right end of the pipeline
as fresh input is being provided from the left end. Ideally,
every pipeline stage should operate at the same rate such
that no resources are wasted at any stage. However, in con-
trast to a systolic architecture, the rate is different at each
pipeline stage of a streaming application. Intrinsically, the
rate of each pipeline stage is determined by the changing
size of the input data, and the amount of processing required
on it. Since computation is data-dependent (for example,
looking for a specific object in a video frame), the execu-
tion time of a task for each loop iteration depicted in fig-
ure 2 may vary. Additionally, the actual task execution time
is subject to the vagaries of OS scheduling and computa-
tional load on the machine. Unfortunately, these parameters
are fully known only at run time.

3.2. Eliminating Wasted Resources

As discussed earlier, skipping over unwanted data may
allow an application to keep up with its interactive require-
ments, but it does not allow savings on computations al-
ready executed to produce such data. We use the term
wasted computation to denote task executions that produce
data eventually unused by downstream threads. Unfortu-
nately, a priori knowledge of parameters described ear-
lier (section 3.1) is required to eliminate wasted computa-
tion. Even though the future cannot be determined at any
point in time, virtual time (VT) systems such as Stam-
pede, allow inferences to be made about the future local
virtual time using task-graph topology. This technique is
used to eliminate irrelevant resource usage. Stampede as-
sociates a notion of virtual time with each thread in a
pipelined application. Furthermore, data produced by each
thread is tagged with a virtual timestamp. In our earlier
work [6], we proposed GC algorithms for eliminating up-
stream computations (i.e.,computations performed at earlier
stages of the task-graph) using the virtual times of times-
tamped data requests made by downstream threads. How-

ever, such techniques have shown limited success [6]. The
cause for this phenomenon is that in many interactive appli-
cation pipelines, upstream threads (such as the digitizer in
figure 1) tend to be quicker than downstream threads (such
as an image tracker). As a result, it generally becomes too
late to eliminate upstream computations based on local vir-
tual time knowledge. There is, however, another piece of in-
formation that is embedded in the task-graph that can help
the run-time system to predict wasted computations. If pro-
cessing rate of downstream stages were made available to
the runtime system, it would become possible to control the
rate of production of timestamped items in earlier stages.
This would retroactively eliminate unwanted computation
before data production.

3.3. Distributed ARU

We now describe a distributed algorithm whereby tasks
constantly exchange local information to change their rate
of data item production.

Start Loop Execution {

Code executed

Thread Blocks, Waits for Data

Code executed
} I* End Loop Execution */

Figure 2. Measuring the Sustainable Thread Period (STP)

3.3.1. Sustainable Thread Period We define sustainable
thread period (STP) as the time it takes to execute one itera-
tion of a thread loop. STP is dynamically computed locally
by a thread with clock readings taken at the end of each loop
iteration (see figure 2). Since the STP is measured at run-
time, it captures all factors affecting the execution time of
a thread. It is important to note that blocking time (i.e.,time
spent waiting for an upstream stage to produce data) is not
included in the STP. In essence, a current-STP value cap-
tures the minimum time required to produce an item given
present load conditions. This current-STP is used as feed-
back to compute the summary-STP described below, which
is in-turn propagated back upstream as more feedback to
other tasks in the pipeline.

3.3.2. Computation of Summary-STP and Backward
Propagation For generality in the ARU algorithm, a node



may either be a thread, channel, or a queue. Each node has a
backwardSTP vector that contains summary-STPs received
from downstream nodes (see figure 3). Using this vector,
along with the current-STP generated by the node itself (if
this is a thread node), each node computes a summary-STP
value locally, that is then propagated to upstream nodes on
every put/get* operation.

Given below is the algorithm for propagating and com-
puting the summary-STP:

e Receive summary-STP value from output connection i
from downstream nodes (figure 3).

e Update backwardSTP[i] with received summary-STP
value.

e Compute compressed-backwardSTP value by applying
min/max operator to backwardSTP vector.

e If node is a thread, compute summary-STP =
max(compressed-backwardSTP, current-STP)

e Else (node is a channel or a queue and therefore does
not generate current-STP values) summary-STP =
compressed-backward-STP.

e Propagate summary-STP to nodes earlier in the
pipeline.

The computation of the compressed-backwardSTP value
represents compressing the execution rate knowledge of
consumer nodes. This computation can be either done by
using the default min operator, which is a conservative ap-
proach, or with the help of a user-defined function that
captures data-dependencies between consumer nodes. For
complete data-dependency between all consumers nodes,
the max operator can be used (figure 4). Any function
other than the default min operator requires the applica-
tion writer to understand the data-dependencies that exist
between consumer nodes so as to decide which nodes dic-
tate the compressed-backwardSTP value without hurting the
current-node throughput. The min operator is the default op-
erator as it does not affect throughput and is safe to use in
all data-dependency cases.

In the example shown in figure 3, node A has output
connections to nodes B-F. The downstream nodes B-F re-
port summary-STP values of 337, 139, 273, 544, and 420,
respectively to node A. Consider such a pipeline where
nodes B-F are end points of the computation. In this case,
node A sustains the fastest consumer (C) with the small-
est summary-STP by using a min operation to compute the
compressed-backwardSTP. Consider the pipeline shown in

2 In the specific context of Stampede, put/get operations allow insert-
ing and retrieving timestamped data to/from globally accessible Stam-
pede buffers called channels and queues. However, such operations
could be generalized to write/read operations on any given buffer data-
structure.

Threads

Thread A

° e o

Figure 4. Using the Max() operator

figure 4. In this case, A is a thread connected to data ab-
stractions represented by nodes B-F, which are in turn con-
nected to a consumer G. With this data-dependency knowl-
edge, node A can use a max operation on the backwardST-
PVec to get the highest summary-STP value and therefore
get an aggressive reduction in production rate to match the
slowest consumer. This is acceptable in a pipeline where
node G dictates the throughput of the entire pipeline and
producing more data would only be wasteful.

The summary-STP value is then computed by applying a
max operator between the compressed-backward-STP value
and the current-STP value of the node. Note only thread
nodes generate current-STP feedback values. This allows a
thread with a larger period than its consumers to insert its
execution period into the summary-STP.

Once the summary-STP value is computed, it is propa-
gated to upstream nodes. Source threads, i.e.,threads on the
left of the pipeline in figure 1, use the propagated summary-
STP information to adjust their rate of data item production.
Our results show that this cascading effect indirectly adjusts
the production rate of all upstream threads.

Both the computation and propagation of summary-STP
values occur in a distributed manner in the pipeline, i.e.,the
computation is completely local to a node, and values are
exchanged with neighboring nodes by piggy-backing them
on every put/get> operation. This mechanism has scalabil-
ity advantages over a centralized approach used elsewhere.
e.g.,in scheduling and QoS systems (section 2) management
is handled by a central entity such as a scheduler. However,



a distributed mechanism does raise issues of system reac-
tion time. The worst case propagation time for a summary-
STP value to reach the producer from the last consumer in
the pipeline is equal to the time it takes for an item to be
processed and be emitted by the application (i.e.,latency).
This is due to the fact that as data items propagate forward
in the processing pipeline, summary-STP values propagate
one stage backwards on the same put/get operation.

One stability problem that we encounter is noise in the
summary-STP values emitted by consumers. This results
in non-smooth production rate for producer threads. Recall
that the summary-STP, or the execution time for a task it-
eration run by a thread, is largely affected by the amount
of resources (such as CPU) given to the thread by the un-
derlying OS. Variances in the OS scheduling of threads re-
sult in variances in the execution time of task iterations run
by these threads. We observe that consumer tasks intermit-
tently emit large or small summary-STP values. Such noise
can be smoothed out by applying filters also used by other
feedback systems [21, 3, 5]. Filters to smooth summary-STP
noise have currently not been implemented in ARU and is
left for future work.

3.3.3. Assumptions The ARU algorithm is predicated on
the following two assumptions:

e Threads always request the latest item from its input
sources; and

e To achieve optimal performance, the application task
graph is made available to the runtime system.

No additional application information is needed for the
ARU algorithm. It is possible that application defined func-
tions for computing the summary-STP values for each
pipeline stage may lead to better performance and/or re-
source usage. However providing such knobs to the appli-
cation increases programming complexity and hence is not
considered in this study.

4. Implementation and Performance Evalua-
tion Methodology

We have used the Stampede distributed programming en-
vironment as the test-bed for our ARU mechanism. Im-
plemented in C, Stampede is available as a cluster pro-
gramming library for a variety of platforms including x86-
Linux and x86-WIN-NT. The implementation of ARU in-
cluded adding a special API call (periodicity_sync()) to
the Stampede runtime. This call computes the current-STP
value for a specific thread. Each thread is required to call
this function at the end of every thread iteration loop.
In addition we modified the Stampede runtime to piggy-
back the summarySTP values on existing put/get calls to
channels and queues. To allow the application to specify

producer/consumer dependencies to the underlying ARU
mechanism, a parameter was added to all channel/queue and
thread creation APIs (e.g.,. spd_chan_alloc()). As described
earlier, this graph dependency information is optional, and
the default conservative min operator assumes no graph de-
pendencies and allows producers to slow down to the faster
consumer. Other user-defined dependency-encoded opera-
tors, such as the max operator, can be used to increase the
aggressiveness of reducing wasted resource utilization.

A color-based people tracker application (figure 5) de-
veloped at Compaq CRL [25] is used to evaluate the per-
formance benefit of the ARU algorithm. The tracker has
five tasks that are interconnected via Stampede channels.
Each task is executed by a Stampede thread. The applica-
tion consists of (1) a Digitizer task that outputs digitized
frames; (2) a Motion Mask or Background task that com-
putes the difference between the background and the cur-
rent image frame; (3) a Histogram task that constructs color
histogram of the current image; (4) a Target-Detection task
that analyzes each image for an object of interest using a
color model; and (5) a GUI task that continually displays
the tracking result. Note that there are two target-detection
threads in figure 5 where each thread tracks a specific color
model. The color-based people tracker application with its
fairly sophisticated task-graph provides a realistic environ-
ment to explore the resource-savings made possible by the
ARU algorithm.

The performance of the application is measured using
the following metrics: latency, throughput, and jitter. La-
tency measures the time it takes an image to make a trip
through the entire pipeline. Throughput is the number of
successful frames processed every second. Jitter, a met-
ric specifically suited for streaming applications, indicates
the average change in the time difference between succes-
sive output frames. Mathematically, jitter is represented as
the standard deviation of the time difference between suc-
cessive output frames. Jitter therefore is a measure of the
smoothness of the output frame rate or throughput.

The resource usage of the application is measured us-
ing the following metrics: memory footprint, percentage
wasted memory, and percentage wasted computation. Mem-
ory footprint provides a measure of the memory pressure
generated by the application. Intuitively, it is the integral
over the application memory footprint graph (Figures 8,9).
Mean memory footprint is the memory occupancy for all
the items in various stages of processing in the different
channels of the application pipeline averaged over time.
The mean memory footprint is computed as: MU, =
E(MUyy, X (tisr — )/ (tn = to)

Standard deviation of the memory footprint met-
ric is a good indicator of the “smoothness” of the to-
tal memory consumption; the higher the deviation the
higher the expected peak memory consumption by
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Figure 5. Color-based People Tracker application pipeline

the application. This metric is computed as: MU, =
VE(MU, = MUy, ,)? X (tisr — 1))/ (tn — to)

Total computation is simply the work done (execution
time) by all tasks in the different stages of the applica-
tion pipeline (excluding blocking and sleep time). Corre-
spondingly, wasted computation is the cumulative execution
times spent on items that were dropped at some stage in the
pipeline. Therefore, the percentage wasted computation is a
ratio between the wasted computation and the total compu-
tation. Similarly, the percentage memory wasted represents
the ratio between the wasted memory (integrated over time
just as mean memory footprint) and the total memory us-
age of the application. These percentages are a direct mea-
sure of efficient resource usage in the application.

Please note that we do not directly account for the over-
head of ARU in the metrics above. We consider the over-
head to be negligible relative to the resources used by the
application. For example, the summary-STP values that are
piggy backed with each item are only 8 bytes long, very
small compared to the size of each item (typically in the or-
der of several hundred kilobytes). Also, the cost of com-
puting the summary-STP value is minuscule. The compu-
tation involves a simple min/max operations on very small
vectors (order n, where n is the number of output connec-
tions from a node). This computation is done only once at
the end of each data production iteration by a thread, and at
every put/get call on buffers.

We have an elaborate measurement infrastructure
for recording these statistics in the Stampede runtime.
Each interaction of an item with the operating sys-
tem (e.g.,allocation, deallocation, efc.) is recorded. Items
that do not make it to the end of the pipeline are marked
to differentiate between wasted and successful mem-
ory and computations. A postmortem analysis program
uses these statistics to derive the metrics of interest pre-
sented in this paper.

A number of garbage collection and scheduling strate-
gies have been implemented and experimented within
Stampede [18, 6, 10]. Among these techniques, the most re-
source saving is found in the Dead Timestamp Garbage
Collector (DGC) [6]. DGC is based on dead times-
tamp identification, a unifying concept that simultaneously

identifies both dead items (memory) and unnecessary com-
putations (processing). Each node (be it a thread, a chan-
nel, or a queue) propagates information about locally dead
items to neighboring nodes. These nodes use the informa-
tion in turn to determine which items they can garbage
collect.

The goals of ARU and Garbage Collection (GC) are or-
thogonal (section 2) as ARU tries to reduce wasted use of re-
sources whereas GC tries to reclaim resources already used
in the application. To use a GC mechanism in the Stampede
runtime, we use our latest DGC algorithm and add the ARU
mechanism to understand the extent of wasted resource re-
duction and subsequent performance improvement in appli-
cations due to ARU.

In an earlier work [14], we introduced an Ideal Garbage
Collector (IGC) [14]. IGC gives a theoretical lower limit
for the memory footprint by performing a postmortem anal-
ysis of the execution trace of an application. IGC simu-
lates a GC that can eliminate all unnecessary computations
(i.e.,computations on frames that do not make it all the way
through the pipeline) and associated memory usage. Need-
less to say, IGC is not realizable in practice since it re-
quires future knowledge of dropped frames. To determine
how close the results are to the ideal, the ARU mechanism
is compared to IGC.

5. Experimental Results

The hardware platform used is a 17 node cluster over
Gigabit Ethernet of 8-way SMPs with 550MHz Intel Pen-
tium III Xeon processors with 2MB L2 cache. Each SMP
node has 3.69 GB of physical memory and is running Red-
hat Linux (2.4.20). All experiments reported in this section
are done in two configurations. In configuration 1, a sin-
gle physical node is used for all tasks, where each task is
mapped to an individual thread. Every thread runs on its
own address space. All global channels are allocated on this
node as well. In configuration 2, five physical nodes are
used with all five tasks mapped to distinct threads in turn
running on separate nodes. Channels in this case are allo-
cated on nodes where their corresponding producer threads
are mapped. The data items emitted to channels by the



different threads are of the following sizes: Digitizer 738
kB, Background 246 kB, Histogram 981 kB and Target-
Detection 68 Bytes.

The performance results given below are average statis-
tics over successive execution runs of the tracker applica-
tion.

5.1. Resources Usage

Config 1: 1 node Config 2: 5 nodes
Mem. % Mem. %

use (MB) wrt use (MB) wrt
STD | mean | IGC STD | mean | IGC
No ARU 431 | 33.62 | 387 6.41 | 36.81 | 341
ARU-min | 2.58 | 16.23 | 187 294 | 15.72 | 145
ARU-max | 049 | 12.45 143 0.37 | 13.09 | 121

IGC 0.33 8.69 100 0.33 | 10.81 100

Figure 6. Memory Footprint for the tracker application
in comparison with the Ideal Garbage Collector (IGC).

Config 1: 1 node Config 2: 5 nodes

% of % of % of % of
Mem. Comp. Mem. Comp.
Wasted | Wasted Wasted | Wasted
No ARU 66.0 25.2 60.7 24.4
ARU-min 4.1 2.8 7.2 4.0
ARU-max 0.3 0.2 4.8 2.1

Figure 7. Wasted Memory Footprint and Wasted Compu-
tation Statistics for the tracker application.

Memory Footprint: Figure 6 shows the mean memory
footprint in megabytes when ARU is applied to the baseline
tracker application. Recall that the mean memory footprint
accounts for memory consumed by all items in application
channels. The IGC row shows the theoretical limit for mean
memory footprint with an ideal garbage collector. By elimi-
nating wasted computations, ARU dramatically reduces the
memory footprint the application requires, both in 1-node
and 5-node configurations. In fact, results for the max oper-
ator are quite close to the ideal garbage collector. For exam-
ple, in the 1-node configuration, ARU with the max operator
reduces the mean memory footprint of the tracker by almost
two-thirds when compared to the tracker footprint without
the ARU mechanism. Figures 8 and 9 show the same data
in a graphical form as a function of time. It provides a qual-
itative perspective, as all graphs are shown side by side and
share the same axes. One can observe not only how close

ARU is to IGC, but also how ARU reduces fluctuations in
the application memory pressure over time.

Percentage of Wasted Resources: Figure 7 shows the
amount of wasted memory and computation in the tracker
application with and without ARU mechanism. When not
using ARU, more than 60% of the memory footprint is
wasted as opposed to only less than 5% wasted with the
ARU-max operator. Substantial savings are visible for com-
putation resources as well. Thus the ARU mechanism suc-
ceeds in directing almost all resources towards useful work.

5.2. Application Performance

Throughput Latency Jitter
(fps) (ms) (ms)
mean | STD | mean | STD

Config 1: 1 node
No ARU 330 | 0.02 661 23 77
ARU-min | 4.68 | 0.09 594 9 34
ARU-max | 4.18 | 0.10 350 7 46

Config 2: 5 nodes
No ARU 427 | 0.06 648 23 96
ARU-min | 4.47 | 0.10 605 24 89
ARU-max | 3.53 | 0.15 480 13 162

Figure 10. Latency, Throughput and Jitter of the tracker

In addition to reducing resource waste, the ARU mech-
anism also succeeds in improving application performance
by decreasing jitter and latency, and increasing throughput
(figure 10).

One can observe that even though ARU-max reduces la-
tency compared to no ARU, it performs worse in terms of
throughput (5 node configuration). This is not due to a high
cost of the ARU mechanism, but is an artifact of the aggres-
siveness with which the max operator slows down producers
to remove wasted resources. The less aggressive ARU-min
mechanism manages to maintain a higher throughput at the
expense of higher latency and greater resource usage.

The jitter caused by variations in the summary-STP
causes jitter in the production rate as well. Due to the ag-
gressive slowing of producers in ARU-max, coupled with
the jitter in production, certain iterations of producer tasks
are made slower than their consumers. This causes con-
sumer threads to wait for data on buffers. Wait for consumer
thread inadvertently decreases throughput for the appli-
cation pipeline. However, as consumers are waiting for
data in buffers, items never spend time in buffers them-
selves. This causes the observed reduced latency for
ARU-max. It is clear from these results that a balance be-
tween aggressiveness of slowing producers and the amount
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Figure 8. Memory Footprint config. 1, single node: All graphs have the same scale. Y-axis: memory use (bytes x 107); X-axis:
time (microseconds). (left to right)(a) Ideal Garbage Collector (IGC), (b) Dead-timestamp GC (DGC) with ARU - Max Operator,

(c) DGC with ARU - Min Operator, (d) DGC without ARU.
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Figure 9. Memory Footprint config. 2, five nodes: Scale and graph order same as for figure 8.

resource usage needs to be maintained. We plan to ex-
plore this relationship further in future work.

6. Conclusion and Future Work

In this work we present an Adaptive Resource Utiliza-
tion (ARU) mechanism that uses feedback to reduce wasted
resource usage between a group of threads within an appli-
cation. This mechanism is unique in its approach from sim-
ilar work in traditional resource management, which have
been dedicated to improving resource allocation to threads
as oppose to incorporating application feedback on wasted
production. Our mechanism targets parallel streaming mul-
timedia applications that are computationally intensive and
are designed to drop data when resources are insufficient so
as to ensure the production of current output. With the ARU
mechanism we show that dynamic adjustment of data pro-
duction rate is a better approach than dropping data, since
it is less wasteful of computational resources. Our ARU
mechanism is implemented completely in user-space in the
Stampede cluster programming framework. Using a color-
based people tracker application, we show that the ARU al-
gorithm achieves significant reduction in wasted resources
in terms of both computation and memory while sustaining
and even improving, application performance. The through-
put increase in ARU-min clearly shows that ARU can im-
prove performance. However, the ARU-max results show

that being over aggressive saves more wasted resources and
improves latency but at the expense of throughput. It is
therefore important to find the right balance between wasted
resource usage and application performance. Preliminary
investigation indicates this is a viable avenue to pursue for
future work.
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