Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 18 Jan 2009]
Title:Sample-Align-D: A High Performance Multiple Sequence Alignment System using Phylogenetic Sampling and Domain Decomposition
View PDFAbstract: Multiple Sequence Alignment (MSA) is one of the most computationally intensive tasks in Computational Biology. Existing best known solutions for multiple sequence alignment take several hours (in some cases days) of computation time to align, for example, 2000 homologous sequences of average length 300. Inspired by the Sample Sort approach in parallel processing, in this paper we propose a highly scalable multiprocessor solution for the MSA problem in phylogenetically diverse sequences. Our method employs an intelligent scheme to partition the set of sequences into smaller subsets using kmer count based similarity index, referred to as k-mer rank. Each subset is then independently aligned in parallel using any sequential approach. Further fine tuning of the local alignments is achieved using constraints derived from a global ancestor of the entire set. The proposed Sample-Align-D Algorithm has been implemented on a cluster of workstations using MPI message passing library. The accuracy of the proposed solution has been tested on standard benchmarks such as PREFAB. The accuracy of the alignment produced by our methods is comparable to that of well known sequential MSA techniques. We were able to align 2000 randomly selected sequences from the Methanosarcina acetivorans genome in less than 10 minutes using Sample-Align-D on a 16 node cluster, compared to over 23 hours on sequential MUSCLE system running on a single cluster node.
Current browse context:
cs.DC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.