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Abstract—Automatic tuning has emerged as a solution to
provide high-performance libraries for fast changing, increas-
ingly complex computer architectures. We distinguish offline
adaptation (e.g., in ATLAS) that is performed during in-
stallation without the full problem description from online
adaptation (e.g., in FFTW) that is performed at runtime.
Offline adaptive libraries are simpler to use, but, unfortunately,
writing the adaptation heuristics that power them is a daunting
task. The overhead of online adaptive libraries, on the other
hand, makes them unsuitable for a number of applications. In
this paper, we propose to automatically generate heuristics in
the form of decision trees using a statistical classifier, effectively
converting an online adaptive library into an offline one. As
testbed we use Spiral-generated adaptive transform libraries
for current multicores with vector extensions. We show that
replacing the online search with generated decision trees
maintains a performance competitive with vendor libraries
while allowing for a simpler interface and reduced computation
overhead.

Keywords-automatic performance tuning; library generation;
high-performance computing; decision trees; statistical classi-
fier; machine learning; fast Fourier transform; FFT;

I. INTRODUCTION

As we approach the power wall, processor microarchitec-

tures have become increasingly complex and diverse. Even

a standard commodity platform offers now features such as

multiple cores, short vector SIMD units, long pipelines, and

a deep memory hierarchy. Optimizing for these features is

very difficult and often out of reach for compilers, hence the

task falls to the software developer.

One domain were this problem is apparent is high perfor-

mance library development for computing functions. Com-

mon practice involves experts who write different optimized

routines for the same function, one for each of the supported

architectures (an example is Intel’s IPP library [1]). This

approach is costly: it requires continual development to effi-

ciently support permanently changing computing platforms.

A better approach pursued by several research projects is

to automate the process of optimization and porting using

automatic program generation or adaptive libraries. Such

libraries provide degrees of freedom in how to compute the

exact same function and the fastest choice is automatically

This work was supported by NSF through awards 0325687, 0702386,
by DARPA (DOI grant NBCH1050009), the ARO grant W911NF0710416,
and by Intel.

determined by empirical search. Adaptive libraries have

proven successful in various domains including basic dense

linear algebra (ATLAS [2]) and linear transforms (FFTW [3]

and Spiral-generated libraries [4]).

In this paper, we distinguish between online (at runtime)

and offline (at installation time) adaptation. Online adaptive

libraries require search every time the input specification

(typically the input size) changes. An example is FFTW

where this process is called planning. In offline adaptive

libraries, the search is done only at installation time. Subse-

quently, all problem sizes are supported, without rerunning

search. An example of such a library is ATLAS: during in-

stallation, it automatically produces a tuned implementation

of basic linear algebra subroutines (BLAS). A summary of

the different properties of the libraries is presented in Table I

using the discrete Fourier transform (DFT) as example. We

note that FFTW also possesses a hand-written heuristic

which provides mixed performance results as we will show

later. and

Observe that the interface in all libraries is the same re-

quiring two distinct calls in a way that is similar to currying

(partial application). In the first phase, d = dft(n), the

libraries perform initialization, which includes precomputa-

tion of the trigonometric constants (called twiddle factors),

and in the case of the FFTW, the library searches for

the fastest way to compute the DFT of the given size n.
The actual computation is only performed in the second

phase when the data is provided. The time for search is

only amortized if many computations of the same type

(here size n) are performed. The advantage of non-adaptive

and offline adaptive libraries is that the initialization step

is asymptotically faster than the computation step (O(n)
vs. O(n log n)), but in practice it is still slower than the

computation step, until n is at least several thousand points.

In an online adaptive library, the adaptation process usually

must perform at least one timing of the entire computation

(and in reality, many more timings), and thus is guaranteed

to take longer than just the computation step. In practice,

for larger problem sizes, it may take several hours, which

is prohibitive for applications with permanently changing

problem sizes.

The interface used by the libraries in Table I conflicts

with many legacy applications, which use a simpler one-



Table I
DIFFERENT LIBRARY TYPES AND THEIR PROPERTIES USING THE n POINT DFT AS AN EXAMPLE.

Library type Non-adaptive Online adaptive Offline adaptive

Prototype IPP [1] FFTW [3] this paper

Interface

{

d = dft(n)

d(X,Y)

{

d = dft(n)

d(X,Y)

{

d = dft(n)

d(X,Y)

Initialization cost O(n) > O(n logn) O(n)

Computation cost O(n logn) O(n logn) O(n logn)

Adaptation mechanism none online (planner at runtime) offline (at installation time)

User view

When problem changes - replan -

When platform changes rebuy replan reinstall

call interface. Non-adaptive and offline adaptive libraries can

emulate the one-call interface without substantial overhead.

In online adaptive libraries, a caching system could be used

to hide online adaptation behind the legacy interface, but this

complicates usage, potentially increases memory footprint,

and does not resolve the problem of the high latency in

applications with changing problem sizes.

On the other hand, if a library provides no adaptation

mechanism (as IPP), it has to be reoptimized with every

change in the microarchitecture or a performance loss is

incurred.

Offline adaptation enables the best of both worlds: low

initialization overhead and automatic adaptation. Alas, the

development is difficult since it requires the developer to

come up with a framework to automatically find suitable

heuristics that have to work well for all problem sizes. In

ATLAS this was done successfully but the search space

(which includes different blocking and unrolling sizes) is

BLAS-specific and cannot be used for other libraries, e.g.,

for the DFT.

Contributions. In this paper we propose a machine-

learning approach to automatically convert an online adap-

tive library into an offline adaptive library. Specifically, we

use at installation time (offline) a statistical classifier on a

training set of problem sizes to automatically derive heuris-

tics in the form of decision trees supporting all problem

sizes. The decision trees are inserted into the library to

remove search. Benefits include the following:

1) The ability of using knowledge about some sizes to

infer a general behavior and hence the knowledge

(represented as decision trees) of how to handle all

sizes. The search is hence concentrated at installation

time which simplifies shared usage (e.g., one time

deployment on a supercomputer).

2) The ability to simplify the interface and match legacy

interfaces, without substantial initialization overhead.

3) The obtained libraries have bounded initialization over-

head (online adaptive libraries can have essentially

unbounded initialization time).

4) The possibility of pruning complex adaptive libraries

into simpler ones by cutting choices that are suboptimal

and never used (not done in this paper).

5) Finally, the generated decision trees provide a mecha-

nism for the developer obtain an understanding of when

certain choices are taken.

We demonstrate the viability of our approach with Spiral-

generated online adaptive DFT libraries. These are among

the fastest DFT libraries available, and have a search space

that includes decisions such as the radix, threading and

number of threads, buffering and size of buffer, and several

others. The heterogeneous nature of the search space and

the nature of our approach should make it applicable for

adaptive libraries outside the transform domain.

II. FORMAL PROBLEM STATEMENT

We consider an online adaptive performance library that

provides a computing function parameterized by one or

multiple positive integers, typically the input size or sizes.

For simplicity, we assume in our problem formulation a

single parameter n; the formulation for several parameters is

analogous. One parameter is sufficient for the DFT (Table I)

but not for all the subroutines needed to compute the DFT

(as discussed later).

The library has degrees of freedom in the computation. We

call every degree of freedom a choice and model it as a set

of positive integers C ⊂ N = {0, 1, 2, ...}. Examples include

binary choices {0, 1} such as “threading or not,” the choice

of the number of threads, and the choice of radix. In the

ATLAS BLAS generator, choices include various tile sizes

and the degree of unrolling. Making a decision for a given

choice C means choosing d ∈ C. The complete computation

is specified by a finite sequence (list) of decisions D =
{d1, . . . , dk}. We denote the set of possible decision lists

(which may have different lengths) for input size n with

D(n). Hence, in the library D(n) is the search space for

size n that is available for adaptation.
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Figure 1. Our proposed offline adaptation process.

Problem statement. We now can formalize and distin-

guish the problems of online and offline adaptation for

a given library. Given a list D of decisions, we assume

p(D) is the associated performance (higher is better) of the

computation with the library.

Problem 1 (Online adaptation): Given n, find

Dn = argmax
D∈D(n)

p(D).

Problem 2 (Offline adaptation): Find a function

D : n 7→ Dn,

where Dn is defined as in the online adaptation.

Note that in both problems, the optimum can only be

guaranteed by exhaustive search which is not feasible. Hence

Dn and D will be only approximations. For this reason, we

will call the function D a heuristic.

For example, FFTW solves Problem 1 using a dynamic

programming search and Dn can be stored as wisdom.

FFTW also and alternatively provides a hand-written heuris-

tic D. In ATLAS, the situation is simpler, since it generates

a matrix multiplication for a fixed small size (the size is also

determined by the search), which is then used as building

block for all sizes. Hence, D is constant and can be inlined.

In this paper we use a machine learning technique to

solve Problem 2 while achieving similar performance as

search-based solutions to Problem 1. The function D will

be generated as a set of decision trees.

Offline adaptation approach. Several efficient methods

to solve Problem 1 have been proposed including dynamic

programming [3], [4], and reinforcement learning based

search [5]. Hence, we assume that Problem 1 is solved (even

if time-consuming).

Our approach uses solutions Dn for several n as training

set to solve Problem 2, i.e., to generate the heuristic D. The

approach is summarized in Figure 1. It decomposes in four

phases:

1) Exploration: For a training set of sizes n, Dn is

computed.

2) Statistical classification: We use the classifier C4.5 [6]

to generalize the knowledge learned during the explo-

ration to produce D in the form of a set of decision

trees. If needed, “hints” based on the library function-

ality are provided to help with the generalization.

3) Verification: The decision trees are verified and, if

needed, corrected, to enforce the constraints imposed

by the library.

4) Combination: Finally, the generated decision trees are

inserted into the library as heuristics and replace the

parts where the online decision code was called. The

final result is a library adapted to the target platform.

III. RELATED WORK

In the domain of high-performance library develop-

ment, [7] is the only paper, to the best of our knowledge,

that deals with automatically designing heuristics (which

we denoted as Problem 2). The paper considers the Walsh-

Hadamard transform, which has similar properties but is

simpler than the DFT. The approach in [7] is to accurately

predict the runtimes of the different algorithms by collecting

WHT-specific features from the algorithms. The features are

only related to the chosen radices; unrelated choices such as

threading or buffering are not considered. For these reasons,

the work is not easily extensible to other transforms or other

domains since the feature selection is non-trivial and not

automatic.

In the larger domain of optimizing compilation, two

different subjects directly relate to this paper. First, iterative

compilation (also called adaptive or feedback-driven) de-

scribes the process of successively compiling and executing

the code in order to find the best optimizations for one

given application. This topic is analogous, in a more general

setting, to our Problem 1. Compilation time issues have

led to smart timing frameworks [8] and various interesting

search methods whether ad hoc [9] or rooting in machine

learning [10] have been proposed.

The second trend in compiler research that relates to our

paper is the work that propose to automatically tune the

heuristics themselves, which in turn allows the compiler

to perform better on all programs (which is similar to our

Problem 2). Early work on the subject [11] suggested to use

reinforcement learning in order to improve the scheduling of

straight-line code. Closer to our work, [12], [13], [14] have

suggested to learn whether or not an optimization should

be triggered by learning decision trees using algorithms

derived from C4.5. In contrast to our work, legality is never

an issue for them and they only focus on dealing with a



Outlook Temperature Humidity Windy Decision

sunny 85 85 false don’t play

sunny 80 90 true don’t play

overcast 83 78 false play

rain 70 96 false play

rain 68 80 false play

rain 65 70 true don’t play

overcast 64 65 true play

sunny 72 95 false don’t play

sunny 69 70 false play

rain 75 80 false play

sunny 75 70 true play

overcast 72 90 true play

overcast 81 75 false play

rain 71 80 true don’t play

Figure 2. The “weather” machine learning data set.

single heuristic whereas we generate all the heuristics of

the library with this method. Other researcher have pursued

the same goal with different search methods such as genetic

programming [15]. In this area, research essentially focuses

on predicting whether an optimization should be triggered

but leaving the actual parameter choices to an heuristic.

Predicting the actual parameters is needed for our work, in

the spirit of what is achieved by [16] exploring the model

space or [17] exploring the feature space.

IV. BACKGROUND: INDUCING CLASSIFICATION MODELS

The goal of decision tree learning is to create a model that

classifies records based on a training set of already classified

records. It is built by recursively partitioning the training

set using well chosen tests. The interest is two-fold: On

the one hand, it helps summarizing and understanding the

already known training data and on the other hand it gives a

simple mechanism to infer a classification for new cases.

The most famous algorithm for producing such decision

trees is probably Quinlan’s C4.5 [6], which is based on his

earlier algorithm ID3 but supports numerical features. The

algorithm is best understood by walking through an example

and we will use for this purpose the famous “weather” data

set.

Example: Golfing or not golfing. A golf manager has

observed that the attendance varies greatly depending on

the weather (Figure 2) and is trying to understand the

pattern behind it in order to manage his staff better. Before

explaining the algorithm any further, we invite the reader

to directly look at Figure 3, which is the decision tree

produced by C4.5 for such a data set. Observe how the tree

concisely captures the decisions in the table and also enables

generalization for cases not contained in the table. The main

difficulty is to determine which question should be asked in

order to partition the cases in the most meaningful way.

Entropy of an event. ID3 and C4.5 are both based on

Occam’s razor, preferring simpler explanations over compli-

cated ones: the goal is to always maximize the information

outlook?

humidity?

sunny

play

 overcast

windy?

 rainy

play

≤ 75

don’t play

>75

play

 true

don’t play

 false

Figure 3. The decision tree generated by C4.5 for the “weather” dataset.

gain. To do this, the algorithms rely on the concept of

entropy, which is a measure of the information content of a

distribution, and was first introduced by Shannon [18],

Formally, suppose that the final decision can take any

of the values {d1, . . . , dn} (here: golfing or not) and that

the feature a (e.g., temperature) can take any of the values

{a1, . . . , am}. We denote by P (di|a = aj) the conditional

probability that decision di is made given that a takes the

value aj . By definition, the quantity

H(a = aj) = −
n
∑

i=1

P (di|a = aj) log2 P (di|a = aj)

is called the entropy of the event (a = aj) and measures the

level of uncertainty that remains about the final decision if

the said event happens. It is computed in bits (a fair coin

has an entropy of one bit).

In our example, we can use Table 2 to first compute all

conditional probabilities and then the entropy of events such

as

P (play|windy=false) = 6/8,

P (don’t play|windy=false) = 2/8,

which yields

H(windy=false) = −(6/8 log2(6/8)+2/8 log2(2/8)) = 0.81.

We see that, once golfers know that the outlook is overcast,

their decision is already taken (they will definitely play). If

it is not windy, uncertainty remains.

Entropy of a feature. Computing the weighted sum of

the entropies over all the possible values a feature may take

yields the entropy of the feature:

H(a) =

m
∑

j=1

P (a = aj)H(a = aj).

The feature with the smallest entropy is the one that best

partitions the training data set and is therefore the one that

should be placed at the root of the decision tree. Recursively

applying this process yields a full decision tree.



In our example, we observe that the “outlook” feature dis-

criminates better than the “windy” feature, hence it becomes

the root of the decision tree in Table 3:

H(outlook) = 5/14 · 0.97 + 4/4 · 0 + 5/14 · 0.97 = 0.69,

H(windy) = 6/14 · 1 + 8/14 · 0.81 = 0.89.

Numerical features. In our example, “temperature” and

“humidity” are both described by continuous ranges rather

than by discrete classes and therefore, cannot be directly

taken into account by the above algorithm. It is clear, how-

ever, that any numerical range can be split into two classes

using a threshold: one containing values that are bigger

and the other containing values that are lower or equal.

This process is called discretization and C4.5 automatically

selects the threshold that provides the biggest information

gain.

Shortcomings. C4.5 is limited to classifying rectangular

regions in the feature space. This is due to the conjunctive

partitioning system that can only produce expressions of the

type (x > 16) ∧ (y > 3) ∧ (x ≤ 70). Therefore, it fails at

properly handling xor and parity problems.

In the context of adaptive numerical libraries, C4.5 will

therefore not be able, unless it is “hinted”, to recognize a

decision that is beneficial only if two features are equal (e.g.,

the input and output strides). Also it will not be able to

recognize number theoretic properties that may be significant

(e.g., divisibility for the radix choice).

V. BACKGROUND: STRUCTURE OF A RECURSIVE DFT

LIBRARY

In this section we explain the structure of the search space

in recursive state-of-the-art adaptive libraries computing the

discrete Fourier transform (DFT). The libraries considered

are generated by Spiral; FFTW offers a similar structure.

Most importantly, we will see that the search space can

be represented as a graph involving a set of heterogeneous

decisions.

DFT. The DFT is the matrix-vector product y = DFTn x,
where x, y ∈ Cn are the complex input and output vector,

and

DFTn = [e−2πikℓ/n]0≤k,ℓ<n, i =
√
−1.

FFT. Fast Fourier transform algorithms (FFTs) reduce the

complexity of the DFT from O(n2) to O(n log(n)) and can

be written as matrix factorizations of DFTn. For example,

the famous Cooley-Tukey FFT can be written as

DFTn = (DFTk ⊗Im)T n
m(Ik ⊗DFTm)Ln

k , (1)

where n = km. Here, In is the identity matrix of size n; T n
m

is a diagonal matrix and Ln
k a stride permutation matrix that

maps the vector elements as i(n/k)+j 7→ jk+i. Finally, the
tensor (or Kronecker) product ⊗ of two matrices is defined

as

A⊗B = [ak,lB], where A = [ak,l].

void dft(int n, cpx *y, cpx *x) {

if (use_dft_base_case(n))

dft_bc(n, y, x);

else {

int k = choose_dft_radix(n);

for (int i=0; i < k; ++i)

dft_strided(m, k, t + m*i, x + m*i);

for (int i=0; i < m; ++i)

dft_scaled(k, m, precomp_d[i], y + i,

t + i);

}

}

void dft_strided(int n, int istr, cpx *y, cpx *x)

{ ... }

void dft_scaled(int n, int str, cpx *d, cpx *y,

cpx *x) { ... }

Figure 4. FFTW 2.x-like implementation of the DFT. In this code, degrees
of freedom are set by heuristics (instead of being searched online by the
planning system). For brevity, auxiliary recursion steps dft_strided

and dft_scaled are not detailed entirely.

We show below a visualization of the non-zero values in the

matrices in (1) for k = m = 4.

DFT16 DFT4 ⊗I4 T 4

4
I4⊗DFT4 L16

4

=

In both tensor products, all parts of equal gray shade

constitute a single DFT4. We observe that all four matrices

are sparse, that the computation uses a divide-and-conquer

approach, and that there is a degree of freedom (choice of

k|n).
Mutually recursive implementation. The above FFT

suggests an implementation in four passes corresponding

to the four matrix factors. Both tensor products become

loops which call smaller DFTs recursively. However, a better

approach (taken, e.g., in FFTW 2.x) uses only two passes

hence improving locality.

Namely, the explicit (and expensive) permutation Ln
k is

replaced with a readdressing in the subsequent smaller

DFTs. Similarly, scaling by T n
m is fused with the subsequent

DFTs. However, this creates the need for auxiliary functions,

variants of the DFT with modified interfaces:

DFTn

︸  ︷︷  ︸

dft

=
(

(DFTk ⊗Im)T km
m

)

︸                       ︷︷                       ︸

dft_scaled

(

(Ik ⊗DFTm)Lkm
k

)

︸                       ︷︷                       ︸

dft_strided

We call the recursive functions needed for the computation

recursion steps following [4].

The pseudo-code for such an implementation is displayed

on Figure 4. Since the recursion must eventually terminate,

base cases are provided for each recursion step in the form

of unrolled codelets of fixed size (denoted with a bc for

base case in the code). Following FFTW, we assume that

dft_scaled is always a codelet.



Search space. The implementation in Figure 4 does not

fully specify the computation but leaves choices that can

be used for online adaptation (as was done in FFTW 2.x).

The choices are the radix and whether to use a codelet or

not. Further, note that the auxiliary recursion steps whose

implementation is not displayed may possess their own

choices. Also, they have the stride as additional parameter,

which can impact the decision.

Figure 5 shows a representation of this search space as

decision graph involving recursion steps (gray boxes) and

choices (white boxes). It is a classic static closure graph

augmented with the choices in the library. The outgoing

edges of choices are labeled with decisions and connect to

spawned recursion steps. For example, a decision on the

radix recurses as shown in Figure 4. The outgoing edge

of a recursion step may connect to a choice or to another

recursion step that it calls without choice.

We make further observations:

1) Choices of the same type (e.g., “base case?”) may occur

multiple times inside the graph since they correspond

to different recursion steps.

2) The decision graph contains cycles due to the recursive

nature of the library and hence the search space. During

the decision process, the same choice box can hence be

encountered several times. For example choice of radix

for a strided DFT of size 128 and later choice of radix

for a strided DFT of size 16. What cannot be seen in the

decision graph is that the decision procedure eventually

terminates.

3) A given recursion step is implemented using zero, one,

or more recursion steps. Therefore, open choices are of

different nature: a recursion step is either implemented

as a base case or not, but an actual recursion always

uses two recursion steps.

Advanced implementations. The search space gets con-

siderably more complicated with state-of-the-art libraries.

The reason is in the support for vectorization, multithread-

ing, and advanced memory hierarchy optimizations [3], [19],

[4]. The latter includes support for buffering and for on-the-

fly twiddle factor computation. These optimizations require

transformations of (1) that produce additional recursion steps

together with additional choices.

Figure 6 shows the decision graph of such a library

generated by Spiral. Observe the increase in the number of

recursion steps and the associated increase in choices inside

the library.

Library generation. The Spiral project [4] has demon-

strated that online adaptive libraries for transforms as the one

discussed above can be computer-generated directly from

an algorithm like (1). The generator works for a variety of

transforms and can generate different libraries for each. Our

work is designed to interface with each of these libraries

to automatically convert them into offline adaptive libraries.

Deriving and writing the heuristics by hand in each case

would be unfeasible.

VI. GENERATING DECISION TREES FOR LIBRARIES

In this section, we first explain how statistical classifica-

tion can be used to convert an online adaptive library into

an offline one. Then we explain two techniques, hinting and

automatic correction that enlarge the class of problems that

the classifier can tackle.

A. Mapping of the Problem

Figures 5 and 6 show the structure of choices inside an

adaptive library. These are used to tune to the hardware for

a given problem size. As said before, each of these choices

depends on the parameters or arguments of its recursion

step: the questions read “should the DFT of size 1024 be

threaded?”, “should the strided DFT of size 16 and stride 4

be implemented as a base case?,” and so on.

First we note that applying the classification framework

from Section IV implicitly assumes that the best decisions

only depend on the arguments of the current recursion step.

In other words, the context of the function call has no

significant impact and therefore every subprogram can be

optimized independently. This assumption is equivalent to

the one underlying dynamic programming, the preferred

search method in this domain.

Providing a deterministic library means that heuristics

are given for each one of these choices. Providing an

offline adaptive library means that customized (i.e., platform

specific) heuristics are given for each one of these choices.

We use C4.5 to generate these customized heuristics.

Features. Selecting relevant features is the crucial prob-

lem for machine-learning based compilation. However, given

our approach and assumption above, the features are pre-

cisely the arguments of each recursion step, omitting pointer

addresses. For example, in Figure 4, the only relevant feature

for the heuristics of dft is the size n; for dft_strided,

it would be the size n and the input stride istr.

Decisions. The set of choices is fixed by the given online

adaptive library (e.g., Figures 5 and 6). Since each choice

takes numerical values (see Section II), C4.5 is applicable.

Training set. The training set for the main recursion

step has to be selected by the developer of the library. As

we will show in Section VII, it is interesting to choose a

variety of sizes that encompasses the different performance

regimes of the library. Note that training cases for the

additional recursion steps are automatically derived, since

they consist of the different possibilities that stem from the

main recursion step.

B. Advanced Manipulation of the Decision Trees

C4.5 is limited from a learning point of view and might

require good hints to produce good results. Due to the finite

character of the training set, it might also generate trees that
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cannot be generalized as heuristics and therefore require an

automatic correction pass.

Hinting. C4.5 can only cut the feature space into orthog-

onal rectangles and can only consider one dimension at a

time. In some cases, these restrictions prevent a good gener-

alization which in turn leads to a disappointing performance.

For instance, we have seen that in DFT libraries the choice

of the radix must divide the size so the performance actually

depends on the prime factorization of a number. Since

multiples of 2 and multiples of 3 are interleaved and even

mixed on the real axis, C4.5 is not able to discover by itself

that both groups naturally exhibit a very different behavior.

The tree C4.5 then produces treats individual cases, shows

no global understanding of the problem and, ultimately,

performs poorly.

However, it is possible to drastically improve the quality

of the trees by providing “hints” to the classifier. A hint

is a function that is directly computed from the features

and fed to the classifier as if it was an extra feature. For

instance, in the above case, hints that could be provided

are the number of powers of 2 and of powers of 3 in the

prime decomposition of the size. In practice, this creates two

new dimensions, which enables the selection of meaningful

groups using only rectangles. Finally, note that designing

hints is not pushing the burden onto developers: anybody

using DFTs knows that powers of two sizes are inherently

very different from non-powers of two. Writing a hint is only

giving this information to the classifier without explaining

the implications of such a difference—the classifier will

figure that out for itself.

Figure 7 shows a generated heuristic that chooses a radix

as a function of the size. The functions nfactor(f, n),

that computes the number of times the factor f appears

inside n, were provided as hints to the classifier. The

comments in the code display the effect of the automatic

correction which is the topic of the following paragraph. It

can be noticed that, for this recursion step, this library and

this training set, the chosen radix is often, but not always,

the largest integer of {2, 3, 4, 6, 12, 18} that divides the size.
Automatic correction. The C4.5 classifier is, in some

way, short-sighted: it can come up with decisions that are

not correct in the general case but were true inside the

finite training set. For instance, if the classifier trains only

on the set {12, 14, 16, 18, 20, 22, 24}, it might conclude that

the best radix for any number divisible by 3 is 6 (since all

numbers of the set divisible by 3 are also divisible by 6),

overlooking the fact that choosing such a radix also needs a

factor 2 which might lead to unpleasant surprises at runtime.

Consider Figure 7. We want to make sure that the returned

radix is always valid, that is, always divides the input size.

As an example, let us focus on the first return 8. It is

easy to prove that 8 is always a correct radix because the

above condition, nfactor(2, n) <= 3 is false so n is

necessarily a multiple of 8. If we focus on the return

18 line now, we observe that n is only guaranteed to be

divisible by 6. A correction needs to take place there.

In our system, this verification phase is mechanized by

traversing each tree and automatically correcting decisions

(leaves) that cannot be justified by the information contained

in the internal nodes. Correcting means that decisions are



choose_dft_radix(int n) {

if ( nfactor(3, n) <= 0 ) {

if ( nfactor(2, n) <= 2 )

return 2;

//Corrected to: error(‘‘ no divisors‘‘);

else {

if ( nfactor(2, n) <= 3 ) return 4;

else return 8;

}

}

else {

if ( nfactor(2, n) <= 1 ) {

if ( nfactor(2, n) <= 0 ) return 3;

else {

if ( nfactor(3, n) <= 1 ) return 2;

else return 6;

}

}

else {

if ( nfactor(2, n) <= 3 ) {

if ( nfactor(2, n) <= 2 ) {

if ( nfactor(3, n) <= 1 ) return 6;

else return 12;

}

else return 18;

//Corrected to: else return 6;

}

else return 12;

}

}

}

Figure 7. A computer-generated heuristic for the implementation from
Figure 4. The function nfactor(f,n) returns the number of times the
factor f appears inside n and constitutes an hint. After the generation of
the heuristic, the automatic correcter enforces the divisibility policy (the
effect of which is displayed in commented lines that replace the line above
them).

either changed to more conservative ones or additional

internal nodes are added. We also insert a proper error

message in case all tests are failed which means that the

situation was not learned during training.

VII. EXPERIMENTS

Platform. Our benchmark platform has two dual core 3

GHz Intel Xeon 5160 processors (server version of Core 2

Duo) with 4 MB of shared L2 cache per processor, running

Linux in 64-bit mode. We generate different online adaptive

C++ libraries using Spiral [4], which are then inserted into

our tool and converted into offline libraries. Libraries are

compiled using the Intel C/C++ Compiler 10.1. We compare

against FFTW 3.2 alpha 2 and Intel IPP 5.3.

All libraries were timed out of the box. In particular,

slightly better performance for FFTW and Spiral-generated

libraries could have been achieved for mid-range sizes by

ensuring that only two threads are used and properly pinned

to the processors. However, these choices are not automat-

ically handled by the library and hence not considered by

our tool.

We use pseudo-GFlop/s to show performance, which is

standard for the DFT. It assumes a (real) operations count

of 5n log2 n (a slight overestimate) for the complex DFT of

size n.

Clothesline experiments. First, we want to demonstrate

that useful heuristics can be learned. To do this, we show

that the quality of the generated heuristics improves with

the size of the training set and approaches the best runtimes

found.

The experiment is performed using the Spiral-generated

DFT library corresponding to Figure 6, i.e., the library

has eleven choices. Only two-powers are considered. First,

online search is used to find the best runtimes for all 20 sizes

21–220 (2–1M). The competitiveness of these runtimes, and

hence the library is established by comparing to FFTW and

IPP in Figure 8(d). The runtimes serve as ground truth or

clothesline.

Next, a subset of the 20 sizes is chosen as training set

for our tool. These sizes serve as clothes-pins. From the

training set the tool generates heuristics for all sizes and

inserts them into the library. The library is then timed on all

sizes. The resulting line is the cloth. The goal is to verify

that with increasing number of pins (increasing training set)

the cloth hangs straighter, i.e., approaches the clothesline

(ground truth).

The results are shown in Figure 8(a)–(c). In each case the

training set is marked by circles. In Figure 8(a), the training

set contains only two small sizes: 24 and 28. For these sizes,
threading is irrelevant, hence the generated heuristics avoid

it, which then yields bad performance for larger sizes. In

Figure 8(b), the training set includes four sizes that are well

distributed so different scenarios (e.g., in-cache and out-of-

cache, threading or not) can be learned. The performance

already closely approaches the ground truth. In Figure 8(c),

the training set consists of half of the sizes and the resulting

library is practically as fast as the online adaptive one in all

sizes.

Note that for a given choice in Figure 6, a chosen training

size may give a varying number of training points: zero (e.g.,

the buffer size is not known if the best alternative doesn’t

buffer), one, or more than one (e.g, due to the recursion, the

best radix is simultaneously selected for the problem and all

subproblems).

Mixed sizes experiments. The learning approach be-

comes particularly relevant if we consider a much larger

set of sizes by including non-two-powers. We do so in

the second experiment which considers all sizes up to 218

(256K) that decompose into prime factors smaller or equal

than 19. We generate two offline adaptive libraries that differ

in the size of their training set, which respectively amounts

for 1% and 6% of all sizes. As can be seen in Figure 8(e),

and as is known, DFT performance varies greatly depending

on the prime factorization of the size, which makes it

very irregular and difficult to read. In this first plot, it can

however be seen that the performance of the library with our

generated heuristics exhibits somewhat less variation than

IPP.

Next we measured the performance for all sizes up to
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(a) 2-powers, training set: 24, 28
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(b) 2-powers, training set: 24, 29, 214, 219
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(c) 2-powers, training set: 2k , k odd
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(d) The 2-powers library is competitive
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Figure 8. (a), (b), and (c) show clotheslines experiments with a Spiral-generated online adaptive DFT library, whose competitiveness is shown in (d).
The clotheslines experiments demonstrate the effectiveness of our tool in learning and generating heuristics. Both (e) and (f) present the DFT performance
of different libraries on all numbers smaller than 256K that decompose into prime factors smaller or equal than 19. In (f), the data is interpolated using a
sixth order logarithmic trendline. This plot also includes FFTW using its heuristics mode instead of online search.

256K for all libraries that are not online-adaptive: IPP,

FFTW with the included (hand-written) heuristics, and our

Spiral-generated libraries with generated heuristics for the

1% and 6% training set. To reason about the performance

data, we computed a logarithmic regression of order 6

in each case and present them in Figure 8(f). First, as

expected, we observe that the library that is trained on

the larger training set (6%) performs better than the one

with the 1% training set. Second, we observe that the 6%

generated-heuristics library performs better than IPP. Precise

computation shows that the average performance gain is

10.7%. Finally, the poor performance of the hand-written

heuristic mode of FFTW shows that writing heuristics is no

simple task.

VIII. CONCLUSION

We proposed a machine learning technique to automati-

cally convert online adaptive libraries into offline adaptive

libraries by generating heuristics. In practice this means

that the burden of searching can be pushed from runtime

to installation, which improves usability considerably. The

performance penalty incurred by doing so is very minor, at

least for the DFT libraries we considered.

Our method is entirely automatic and capable of handling

a very diverse set of choices inside an online adaptive library

including the choices of radix (i.e., the block size), threading,

and buffering. This ability should make the method applica-

ble to other problem domains and libraries.

Together with Spiral’s previous capability to automatically

generate online adaptive libraries, we hence demonstrated

for the first time the computer generation of a state-of-

the-art offline adaptive library, directly from an algorithm

specification.
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