
CycLedger: A Scalable and Secure Parallel Protocol
for Distributed Ledger via Sharding

Mengqian Zhang∗, Jichen Li†, Zhaohua Chen‡, Hongyin Chen§ and Xiaotie Deng¶
∗School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China

†‡§¶School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China
Email: ∗mengqian@sjtu.edu.cn, {†1600012970, ‡chenzhaohua, §1600012903, ¶xiaotie}@pku.edu.cn

∗†‡§These authors contributed equally to this work.

Abstract—Traditional public distributed ledgers have not been
able to scale-out well and work efficiently. Sharding is deemed
as a promising way to solve this problem. By partitioning all
nodes into small committees and letting them work in parallel,
we can significantly lower the amount of communication and
computation, reduce the overhead on each node’s storage, as
well as enhance the throughput of the distributed ledger. Ex-
isting sharding-based protocols still suffer from several serious
drawbacks. The first thing is that all non-faulty nodes must
connect well with each other, which demands a huge number
of communication channels in the network. Moreover, previous
protocols have faced great loss in efficiency in the case where
the honesty of each committee’s leader is in question. At the
same time, no explicit incentive is provided for nodes to actively
participate in the protocol.

We present CycLedger, a scalable and secure parallel pro-
tocol for distributed ledger via sharding. Our protocol selects
a leader and a partial set for each committee, who are in
charge of maintaining intra-shard consensus and communicating
with other committees, to reduce the amortized complexity of
communication, computation, and storage on all nodes. We
introduce a novel semi-commitment scheme between committees
and a recovery procedure to prevent the system from crashing
even when leaders of committees are malicious. To add incentive
for the network, we use the concept of reputation, which measures
each node’s trusty computing power. As nodes with a higher
reputation receive more rewards, there is an encouragement
for nodes with strong computing ability to work honestly to
gain reputation. In this way, we strike out a new path to
establish scalability, security, and incentive for the sharding-
based distributed ledger.

Index Terms—Distributed Ledger, Sharding, Scalability, Secu-
rity, Reputation

I. INTRODUCTION

The blockchain revolution has established a milestone with
Nakamoto’s Bitcoin [20] during the long search for a dreaming
digital currency. It maintains the distributed database in a
decentralized manner and has achieved a certain maturity to
provide the electronic community with a service that captures
the most important features of cash: secure, anonymity, easy to
carry, easy to change hand, and exchangeable across a nation’s
boundaries. At the same time, Bitcoin realizes the tamperproof
of transactions.

Unfortunately, the transaction throughput of Bitcoin is 3 to
4 orders of magnitude away from those centralized payment-

This research reported in this work was supported by the National Natural
Science Foundation of China (No. 61761146005, 61632017).

processors like Visa, which stops its popularization. Specifi-
cally, Bitcoin can process only 3.3-7 transactions per second in
2016 [7] while Visa handles more than 24,000 transactions per
second [25]. The low scalability of Bitcoin is the key factor
causing this displeasing result.

Sharding is a famous technique in building the scale-out
database by separating the whole state into multiple parts and
making them work concurrently. Inspired by this idea, shard-
ing is also used to benefit distributed ledgers in these years.
When nodes are partitioned into groups, less computational
power is wasted and higher processing capacity is achieved.
However, most sharding-based protocols fail to maintain high
efficiency when committee leaders betray [17] [27]. They also
fail to give an explicit incentive for nodes to join the protocol
and behave honestly.

We present CycLedger, a fully decentralized payment-
processor that provides scalability over the number of nodes
and provable security. Specifically, we expect our protocol to
remain robust when leaders in each committee are faulty. This
is a problem that remains unsolved until now. Meanwhile, we
hope there is enough encouragement for a node to participate
honestly in our protocol. Furthermore, scalability is realized
via sharding nodes into concurrent committees as previous
works have shown [17] [18] [27].

We assume there are no more than 1/3 malicious nodes
at any time during the execution of our protocol, which
is the best result achieved so far in sharding blockchain
schemes [14] [27]. Meanwhile, an adversary can corrupt any
nodes as he/she likes, but it requires some time for such
corruption attempts to take effect. We select its members in
each committee pseudorandomly so that with overwhelming
probability, there are more than 1/2 honest validators in a
committee. Furthermore, we construct a partial set in each
committee. Members in this set supervise the leader’s behavior
and act as alternates when the latter is confirmed to be vicious.
By setting the size of each partial set to an appropriately large
number, we ensure that only with negligible probability there
are no honest nodes in a partial set. Finally, we design a
recovery procedure to select a new leader when the original
one is dishonest. Concretely, when a leader is found to violate
the restriction of the protocol, he/she will be evicted and a
node in the partial set will take his/her place. By introducing
digital signature and semi-commitments between committees,

ar
X

iv
:2

00
1.

06
77

8v
4

 [
cs

.D
C

]
 5

 A
pr

 2
02

0

we can guarantee that a non-void block can be successfully
generated in each round with high probability.

To provide validators with enough incentive to enter our
network, we introduce the concept of reputation to CycLedger.
We hope one’s reputation could be a good reflection of
his/her computing power so that when we distribute the total
revenue according to nodes’ reputation, those honest nodes
who contribute more to access transactions are paid more. To
achieve this goal, we consider one’s vote on a certain set of
transactions. The more similar his/her vote is with the final
decision, the more reputation he/she gains. In this way, as
nodes with a higher computational resource can process more
transactions correctly within a given time, they will obtain
a higher accumulated reputation, consequently, winning more
reward than other nodes.

The convenience reputation provides us is that we can
simply sort out those nodes with strong computing ability. In
CycLedger, those nodes with the best reputation are selected
as leaders of each round, hoping they can use their abundant
computational resources to bring more transactions into a
block. In this way, a promotion on throughput is expected
to see in CycLedger.

This paper is organized as follows. In Section II, we review
previous works that are relevant to our protocol. In Section III,
we state the network and threat models we use, define the
problems we aim to solve and give an overview of CycLedger.
We elaborate on our main protocol in Section IV. After that,
we give the analysis on the security and incentive of our
protocol in Section V and Section VII, respectively. Finally,
we conclude the paper in Section IX.

II. BACKGROUND AND RELATED WORK

A. Sharding-based Blockchains

In traditional blockchain protocols, all nodes in the network
have to agree on a certain set of transactions. This scheme
leads to a very low throughput as only a rather fixed amount of
transactions are included in a block regardless of the number of
nodes in the network. An alternative way is to partition nodes
into parallel committees and let each committee maintain
the status of a certain group of users. Under this method,
the amount of transactions is proportional to the number of
committees rather than a constant. This technique is known as
sharding and is considered as a good way to help blockchain
scale well in literature.

RSCoin [9] implements a centralized monetary system via
sharding, however, it is not decentralized and cannot transplant
to distributed ledgers. Elastico [18] is the first sharding-based
protocol for public blockchains which can tolerate up to a
fraction of 1/4 of malicious parties. Unfortunately, it has a
very weak security guarantee as the randomness in each epoch
of the protocol can be biased by the Adversary. Meanwhile,
Elastico’s small committees (only about 100 nodes in a com-
mittee) cause a high probability to fail under a 1/4 adversary,
and cannot be released in a PoW system [12]. Specifically,
when there are 16 shards, the failure probability is 97% over
only 6 epochs [17]. OmniLedger [17] also allows the adversary

to take control of at most 25% of the validators as well as
assuming the adversary to be mildly-adaptive, nevertheless, it
depends on the assumption that there is a never-absent trusty
client to schedule the leaders’ interaction when handling cross-
shard transactions. RapidChain [27] enhances the efficiency of
sharding-based blockchain protocols on a large scale, but the
protocol guarantees high efficiency only when leaders of each
committee are honest, an unrealistic assumption in practice.
Concretely, in expectation, there is a proportion of 1/3 leaders
that are malicious in a round. Under this condition, cross-shard
transactions may hardly be included in a block. Furthermore,
the protocol does not have an explicit incentive for nodes to
participate in. At the same time, all the above postulate a good
connection between any pair of truthful nodes, which causes
a huge burden in creating connection channels.

We give a comparison of CycLedger with previous sharding
blockchain protocols on several aspects in table I.

B. Distributed Randomness and Cryptographic Sortition

It has long been a critical task in blockchain to come
up with a random beacon each round (or step, slot, epoch).
Algorand [13] makes use of Verifiable Random Functions
(VRFs) [19]. The seed of the current round, the round number
as well as the leader’s secret key are required to produce the
next round’s seed and a proof of it. In this way, when the
leader is honest, the seed is pseudorandom and unpredictable.
However, the beacon can be somehow biased when the leader
is malicious. Ouroboros [16] takes the usage of the Publicly
Verifiable Secret Sharing (PVSS) scheme [4] [23] to generate
the random seed. This scheme is now known as a secure way
to distributedly generate a random number and is also used
in OmniLedger [17]. However, OmniLedger deploys Rand-
Hound [24] to generate the Common Reference String (CRS).
Therefore, the protocol can only allow a 1/3 proportion of
malicious nodes in each committee. At the same time, a trusty
client is also required in RandHound. Other protocols [1] [10]
use an external cryptographic hash function (CRHF), which
takes an unpredictable and tamper-resistant value (e.g., some
values contained in previous blocks) as input. The output of
the function is seen as the randomness of an epoch.

The technique of cryptographic sortition is widely used
in blockchain protocols to select a small set of validators
pseudorandomly. In Algorand [13], a node’s VRF value on
a given input is the ticket to enter the committee. At the same
time, VRF also provides proof so that everyone can verify if a
node is selected. We mention that many protocols [1] [10]
now use this scheme to ensure pseudorandomness, verifia-
bility, and unpredictability without loss of efficiency. Other
protocols are utilizing different mechanisms. For example, the
Sleepy Model [22] only uses pseudorandom functions while
Ouroboros [16] randomly generates several coins and uses the
Follow-the-Satoshi (FTS) algorithm [3] to find their owners
who are deemed as leaders. However, these methods are either
lack of security or not quite efficient.

TABLE I
A COMPARISON OF CYCLEDGER WITH PREVIOUS SHARDING BLOCKCHAIN PROTOCOLS

Elastico OmniLedger RapidChain CycLedger

Resiliency t < n/4 t < n/4 t < n/3 t < n/3

Complexity Ω(n) O(n) O(n) O(n)

Storage O(n) O(c+ log(m)) O(c) O(m2/n+ c)

Fail Probability within a Round Ω(me−c/40) O(me−c/40) me−c/12 + (1/2)27 m(e−c/12 + (1/3)λ)

Decentralization no always-honest party an honest client an honest reference committee no always-honest party

High Efficiency w.r.t Dishonest Leaders × × × X

Incentives × × × X

Burden on Connection heavy heavy heavy light
1 n: total amount of nodes in the network m: amount of committees c: amount of nodes in a committee, we mention that n = mc.
2 λ: size of a partial set. Usually λ is set to be no less than 40.
3 When computing complexity, it is assumed that a cross-shard transaction be relative with all committees.

C. Reputation and Blockchain

The open, anonymous and decentralized environment of
Peer-to-Peer (P2P) systems brings significant advantages, such
as the strong expansibility and load balancing. But in the
meantime, it provides great convenience for the self-interested
and malicious users to take strategic behaviors, which could
lead to the inefficiency or even failure of the system. For
example, current P2P file-sharing networks suffer from the
rifeness of inauthentic contents [6]. Reputation, regarded as a
tool to record the action of users, has been widely used in the
collaborative P2P applications to solve this problem. By de-
signing a proper metric and corresponding algorithm, it could
help the aforementioned file-sharing system effectively to
identify malicious peers [15], avoid undesirable contents [26]
[8] and drive cooperation among strategic users [11].

Inspired by the success of reputation in many other P2P
systems, some researches try to introduce it into the area of
blockchain. Nojoumian et al. [21] proposes a new framework
for the PoW-based blockchain, in which each miner has a
public reputation value reflecting his historical mining behav-
ior. One’s reputation influences his opportunity to participate
in future minings, thus, for their long-term interests, miners
are encouraged to avoid dishonest mining strategies in this
model. Repchain [14] first introduces the reputation mecha-
nism into the sharding-based blockchain system. Reputation is
designed to characterize validators’ trust and activeness, based
on their decisions on the transactions list. Repchain uses the
accumulated reputation values for balanced sharding, leader
selections, and transaction fee distributions. It is claimed
that the schema provides a high incentive for validators to
work hard and honestly, as well as improving the system
performance. However, building a committee with the help of
a reputation reduces its randomness. That is, it indeed trades
security for better incentives.

III. MODEL, PROBLEM DEFINITION AND OVERVIEW

A. Notation

CycLedger works in rounds. In each round r, suppose there
are n (n is changing as r changes, but to simplify the notation,

we use n instead of nr) nodes in the network and each of
them has a reputation wr1, w

r
2, · · · , wrn which changes as the

protocol executes. We use a Public-Key Infrastructure (PKI) to
give each node a public/secret key pair (PK,SK). An honest-
majority referee committee CrR is selected in round r − 1 to
manage nodes’ identities, produce next round’s randomness
Rr+1 and propose round r’s block Br. At the same time,
all other nodes are partitioned into m committees which
we denote as Cr1 , C

r
2 , · · · , Crm. Note that we require each

committee a trusty majority. Therefore, in our protocol, we
would like the size of each committee to be c = O(log2 n)
in expectation. Readers should mention that n = mc. Each
committee Cri , excluding the referee committee, includes a
leader lri , λ potential leaders and c−λ−1 members. Potential
leaders in Cri (1 ≤ i ≤ m) form the partial set of the commit-
tee, the latter is denoted as Cri,partial = {cri,1, cri,2, · · · , cri,λ}.
It is ensured that there is at least one non-faulty node in each
partial set. In practice, λ can be an appropriate value, like
40. Fig. 1 demonstrates the hierarchical structure of different
nodes and committees.

Besides, with overwhelming probability, each round is suc-
cessfully terminated (i.e., all expected operations are finished)
within a fixed time T .

B. Network Model

We assume the good connection within a committee while
all leaders and partial set members are linked. Furthermore,
we suppose that each leader or partial set member is con-
nected with the whole referee committee CR. This requires
a far less amount of reliable connection channels than other
works [14] [17] [18] [27] in which they require a good
connection among all honest nodes. Meanwhile, like existing
works [17] [27], we assume synchronous communication
within committees (i.e., the delay of transporting every mes-
sage is within some ∆) which is realistic in real-world as a
committee only consists of several hundred nodes. Meanwhile,
all leaders and partial set members are synchronously linked,
however, with a larger time delay of Γ. Concerning other
connections, we only need to assume partially-synchronous
channels [2] [5] [17].

Fig. 1. Hierarchical structure.

C. Threat Model

As we use digital signatures in reaching consensus as
RapidChain [27] and RepChain [14] do, we may assume the
existence of a probabilistic polynomial-time Adversary which
takes control of less than 1/3 part of total nodes. Corrupted
nodes may collude and act out arbitrary behaviors like sending
wrong messages or simply pretending to be offline. The
adversary can change the order of messages sent by non-faulty
nodes for the restriction given in our network model, just like
in classical BFT protocols [2]. Other nodes, known as honest
nodes, always follow the protocol and do nothing exceeding
the regulation. At the same time, we allow the adversary to
be mildly-adaptive, which means that he/she is allowed to
corrupt a set of nodes at the start of any round. Nevertheless,
such corruption attempts require at least a round’s time to take
effect. Also, we assume all nodes in the network have access
to an external random oracle H which is collision-resistant as
well as a Verifiable Random Function (VRF) scheme.

D. Problem Definition

We assume that a large set of transactions are continuously
sent to our network by external users. Users are almost equally
divided into m shards. The status of each shard, including the
users’ identity and Unspent Transaction Outputs (UTXOs), is
maintained by the corresponding committee. All processors
have access to an authentication function V to verify whether
a transaction is legitimate, e.g., the sum of all inputs of the
transaction is no less than the sum of all outputs and there is no
double-spending. Our goal is similar to [18] [27] but slightly
different. We seek for a protocol Π which, with a given set
of transactions as input, outputs a subset, TX , such that the
following properties hold:
• Security. In each round, the protocol fails at a probability

no more than 2−λ, where λ is the security parameter.
• Validity. Each transaction in TX passes the verification,

i.e., ∀tx ∈ TX, V (tx) = True.
• Scalability. |TX| grows quasi-linearly with n.
• Incentive. Nodes are awarded to execute the protocol

within the given restriction.

We mention that CycLedger differs from previous protocols
[17] [18] [27] as there is an explicit incentive design in it.

E. Protocol Overview

Roughly, in each round r, our protocol consists of the
following phases.

• Committee Configuration. As the referee committee
CrR, leaders and partial sets of round r are already
determined in the previous round, in this phase, all other
verified nodes are grouped and committees are formed.

• Semi-Commitment Exchanging. Each leader constructs
a semi-commitment of all members in his/her committee
and sends it to CrR, the partial set of his/her commit-
tee and all other leaders. Loosely speaking, the semi-
commitment helps to detect a malicious leader when
he/she tries to cheat in the phase of inter-committee
consensus.

• Intra-committee Consensus. In this phase, non-faulty
nodes within a committee reach an agreement on those
transactions whose inputs and outputs only relate with
the shard they are responsible for.

• Inter-committee Consensus. In short, all truthful nodes
agree on the validity of cross-shard transactions, whose
inputs and outputs are related to multiple shards. To
achieve the goal, several steps are required, which will
be discussed later in detail.

• Reputation Updating. Reputation is an important indi-
cator for each node in CycLedger. The higher a node’s
reputation, the more rewards he/she will get. After the
above consensus phases, the reputation of all members
in a committee are updated according to their votes.

• Referee Committee, Leaders and Partial Sets Selec-
tion. We use a Proof-of-Work (PoW) process to figure out
those nodes who will participate in the next round. After
that, the referee committee and partial sets in round r+1
are uniformly selected while leaders in the next round are
selected concerning the updated reputation. At the same
time, CrR produces the randomness Rr+1 for the next
round.

• Block Generation and Propagation. After receiving
all transactions, CrR verifies and packs the legitimate
ones as well as next round’s randomness, next round’s
participants, nodes’ updated reputation, and all members
in Cr+1

R , all leaders and partial set members into the block
Br, and releases it to all nodes. All nodes in a committee
reach a consensus on the UTXOs they are in charge of
after seeing Br, and the leader will send them to Cr+1

R .
We roughly show how the protocol works when a transac-

tion is submitted in Fig. 2.

IV. MAIN PROTOCOL

A. Committee Configuration

For simplicity, it is by default that all messages are sent
authentically via the digital signature scheme throughout the
protocol. We implicitly omit the signature verification in the
description. Meanwhile, to avoid unnecessary tautology, a
committee’s leader and partial set members are referred to
as key members of the committee. Other validators in the
committee are also known as common members.

To begin with, we propose a cryptographic sortition mecha-
nism using the Verifiable Random Function (VRF) scheme.
Except for the pre-selected referee committee participants
and key members, an undetermined node can find out the
committee he/she belongs to via this method. Algorithm 1
takes node’s public/secret key pair (PK,SK), round number r
and round’s randomness Rr as input, and returns a committee
ID id and a proof π which certifies that the node belongs to
Cri in the round.

Algorithm 1 Cryptographic Sortition
1: procedure CRYPTO SORT(PK,SK, r,Rr)
2: < hash, π >← V RFSK(COMMON MEMBER‖r‖Rr);
3: id← hash mod m;
4: return (id, hash, π).

For a non-key member i:
1) He/she determines his/her committee via Algorithm 1.
2) He/she sends his/her public key PKi, address, VRF

value hash and VRF proof π to the key members of
the committee whose addresses are already shown in
block Br−1.

3) When node i receives a list from a key member, he/she
delivers his/her public key, address, the hash value
together with the proof to all unconnected committee
members on the list.

4) When i receives a PKj from a validator j, first he/she
checks if node j is in the same committee with the given
proof and forms the link if right.

For a key member in committee Ck:
1) He/she maintains a < PK, address > list. Initially, the

list contains the < PK, address > pairs of all key
members in the committee.

2) When receiving a public key from node j, first he/she
checks whether node j belongs to the committee via the

provided proof. If j ∈ Crk , he/she responds the current
list back, and adds < PKj , addressj > into the list.

Committees are formed in parallel as nodes independently
execute the program shown in Algorithm 2. As a default, in all
pseudocodes, the function BROADCAST implicitly suggests
that the message is multicast to all known members in the
committee. We note that in expectation, each committee is
consist of c = O(log2 n) nodes. To avoid complex notations,
we sometimes use Ck, lk and CR instead of Crk , lrk and CrR in
algorithms when there is no ambiguity. Meanwhile, typically,
we use l to represent a leader, pm to represent a partial set
member when the specific committee is unimportant and rm
to represent a referee member.

Algorithm 2 Committee Configuration
1: procedure COMM CONFIG(r,Br−1)

2: For any key member km in committee Ck:
3: S ←

⋃
i∈{lk}∪Ck,partial

{< PKi, addressi >};
4: Ψ← ∅;
5: Q← COMMON MEMBER‖r‖Rr;

6: upon DELIVER(i | CONFIG, < PKi, addressi >
, hashi, πi) do

7: if VRF VERIFYPKi
(Q, hashi, πi) = TRUE

then
8: S ← S ∪ {< PKi, addressi >};
9: Ψ← Ψ ∪ {< hashi, πi >};

10: SEND(i | MEM LIST, S);

11: For any non-key member i:
12: S ← ∅;
13: Q← COMMON MEMBER‖r‖Rr;
14: (id, hash, π)← CRYPTO SORT(PKi, SKi, r, R

r);
15: (lid, Cid,partial)← Br−1;
16: BROADCAST(CONFIG, < PKi, addressi >

, hash, π);

17: upon DELIVER(km | MEM LIST, S′) do
18: S ← S ∪ S′;
19: BROADCAST(MEMBER, < PKi, addressi >

, hash, π);

20: upon DELIVER(j | MEMBER, < PKj , addressj >
, hashj , πj) do

21: if VRF VERIFYPKj (Q, hashj , πj) = TRUE
then

22: S ← S ∪ {< PKj , addressj >};

B. Semi-Commitment Exchanging

This phase starts at a given time after the first phase starts.
The recommended delay is 8∆.

We rely on Algorithm 3 which works efficiently to reach
an agreement inside a committee. For simplicity, we omit the

(1) User Submits a

Transaction.
(2) Sharding.

Referee Committee

Committee 2Committee 1 Committee 3

(3a) Intra-committee Consensus.

(3b) Inter-committee Consensus.

(4) Complete.

tx

Fig. 2. CycLedger architecture overview: (1) When someone submits a transaction (tx, for short), (2) the transaction will be sent to the corresponding shard,
which is in the charge of committee 1. (3a) If the inputs and outputs of the transaction all belong to committee 1, they reach an intra-committee consensus
on it. (3b) Otherwise, they reach an inter-committee consensus with the help of other committees. (4) After that, the verified transaction will be sent to the
referee committee, who verifies and packs it into the block.

message verification procedure in the algorithm. A demon-
stration of its process is in Fig. 3. Specifically, the algorithm
contains three synchronous steps. In the first step, the leader
multicasts the round number r, the original information M ,
the digest H(M), and the sequence number of the message
sn to each group member with the tag PROPOSE. Here, the
sequence number sn is unique and monotonically increasing
over time. And the digest helps to mitigate the burden on the
channel in later steps. When a committee member i receives
M and H(M), he/she verifies the correctness of the digest,
checks the round number and the uniqueness of the sequence
number, and broadcasts < r, sn,H(M), i > with the tag
ECHO as well as transmits the original PROPOSE message to
all members in the committee. If i receives the identical ECHO
and transmitted messages from more than half validators in the
committee as well as the corresponding PROPOSE message
from the leader, he/she gossips < r, sn,H(M), i > tagged
by CONFIRM with all the authenticated ECHOes he/she
received back to the leader. If any non-faulty node notices that
the leader is malicious (e.g., proposed different messages to
different nodes), he/she informs all members of the committee
immediately to stop the consensus process. A trustful partial
set member then arouses a recovery procedure to evict the
current leader and elect a new one. The recovery procedure
will be explained in detail later.

Back to the phase, we only require the computational-
binding property of a commitment scheme here. That is
where the name ”semi-commitment” comes from. The semi-
commitment exchanging phase runs as follows.

1) To start, each committees leader lrk should unite the
member list S = {PKr

k,1, PK
r
k,2, · · · } from all key

members in the committee, and compute the committees
semi-commitment via the external hash function H:

SEMI COMr
k = H(S).

Then he/she multicasts it together with the member list

to everyone in CrR. To prevent any means of cheating,
he/she also delivers the latter with the belongingness
certificate to the partial set Crk,partial.

2) After every participant in CrR receives semi-
commitments from all committees, all trusty nodes
in CrR apply Algorithm 3 to check i) all members in
any list are registered; ii) all semi-commitments are
valid. (To execute the algorithm, each node in CrR is
regarded as the leader.) They transmit the set of valid
semi-commitments to all key members and expel the
cheating leaders afterward.

3) When a partial set member crk,i gets the semi-
commitment SEMI COMr

k from CrR, he/she verifies
whether his/her committees semi-commitment corre-
sponds with the member list S he/she receives from
the leader. The list S should be no smaller than the
set he/she locally maintains. Meanwhile, the certificate
should be valid. Once a truthful partial set member
notices any mismatch, he/she may invoke the recovery
procedure to evict the current leader.

We show the phase in Algorithm 4, however, the verifying
process executed by partial set members is omitted.

C. Intra-committee Consensus

The phase is a straight application of Algorithm 3.
1) In the beginning, after receiving some constant amount

of transactions from external users, each leader lrk creates
a TXList whose inputs are all within the shard they are
in charge of.

2) The leader lrk broadcasts his/her TXList to everyone in
the committee.

3) After receiving TXList, every member votes listed
transactions with Y es, No or Unknown. When an
honest node fails to judge a transaction within the given
time, he/she should vote Unknown. Afterwhile, he/she
forwards the voting list back to the leader.

Fig. 3. A demonstration of inside-committee consensus.

Algorithm 3 Inside-committee Consensus
1: procedure INSIDE CONSENSUS(r, sn,M)

2: For leader l:
3: SigList← ∅;
4: BROADCAST(SIGl < PROPOSE, r, sn,H(M) >
,M);

5: upon DELIVER(i | SIGi <
CONFIRM, r, sn,H(M), i >,EchoListi) do

6: Mc,i ← SIGi < CONFIRM, r, sn,H(M), i >;
7: v ← v + 1;
8: SigList← SigList ∪ {Mc,i};
9: if v > C/2 then . C := the committee size.

10: return SigList;

11: For any member i (including leader l):
12: EchoList← ∅;
13: v ← 0;

14: upon DELIVER(l | SIGl <
PROPOSE, r, sn,H(M) >,M) do

15: Mp,l ← SIGl < PROPOSE, r, sn,H(M) >;
16: BROADCAST(SIGi < ECHO, r, sn,H(M), i >

,Mp,l);

17: upon DELIVER(j | SIGj < ECHO, r, sn,H(M), i >
,Mp,l) do

18: Me,j ← SIGj < ECHO, r, sn,H(M), j >;
19: v ← v + 1;
20: EchoList← EchoList ∪ {Me,j};
21: if v > C/2 then
22: Mc,i ← SIGi <

CONFIRM, r, sn,H(M), i >;
23: SEND(l | Mc,i, EchoList);

4) After the leader obtains all voting lists, he/she picks up
the set of transactions marked with a majority of Y es,
which is named as TXdecSET .(Note that the collecting
process should be within a certain time, e.g. 6∆ to avoid
malicious nodes from indefinitely delaying. Those nodes
who fail to reply in the period are deemed as voting

Algorithm 4 Semi-commitment Exchange
1: procedure COM EXCHANGE(r, S,Ψ)

2: For leader lk:
3: SEMI COM ← H(S);
4: ComList← ~0;
5: ConfList← 0;
6: for rm ∈ CR do
7: SEND(rm | SIGlk <

SEMI COM, SEMI COM, r, S, k >);
8: for pm ∈ Ck,partial do
9: SEND(pm | SIGlk <

SEMI COM, SEMI COM, r, S,Ψ >);

10: upon DELIVER(rm | SIGrm <
SEMI COM, SEMI COMj , r, j, rm >) do

11: ConfList[j][SEMI COMj] ←
ConfList[j][SEMI COMj] + 1;

12: if ConfList[j][SEMI COMj] > |CR|/2 then
13: ComList[j]← SEMI COMj ;

14: For any referee member rm:
15: upon DELIVER(SIGlk <

SEMI COM, SEMI COMk, r, S, k >) do
16: SigList ←Inside Consensus(r,< k, lk >,<

SEMI COM, SEMI COMk, k >)
17: for each leader l do
18: SEND(l | SIGrm <

SEMI COM, SEMI COMk, r, k, rm >, SigList);

Unknown on all transactions. In the description of
Algorithm 5, we tacitly approve that all members reply
within the time limit.) Then he/she bales everyone’s vote
in a set named V List. The leader runs Algorithm 3 to
reach consensus on both TXdecSET and V List.

5) Finally, the leader sends TXdecSET with at least half
members’ certification to CrR.

Readers can refer to Algortihm 5 for the execution of the
phase.

Algorithm 5 Intra-committee Consensus
1: procedure INTRA CONSENSUS(r, TXList)

2: For leader l:
3: TXdecSET ← ∅;
4: V List← ~0;
5: TXSigNum← ~0;
6: ReplyNum← 0;
7: BROADCAST(TX LIST, r, SIGl < TXList >);

8: upon DELIVER(i | VOTE, r, SIGi < V Listi >) do
9: ReplyNum← ReplyNum+ 1;

10: V List[i]← V Listi;
11: for tx ∈ TXList do
12: if V Listi[tx] = Y es then
13: TXSigNum[tx]← TXSigNum[tx] + 1;
14: if TXSigNum[tx] > C/2 then . C :=

the committee size.
15:
16: TXdecSET ← TXdecSET ∪ {tx};

17: upon ReplyNum = C do
18: SigList← Inside Consensus(r,< l, INTRA >,<

TXdecSET, V List >);
19: for each rm ∈ CR do
20: SEND(rm | SIGl <

INTRA, r, TXdecSET, V List >);

21: For any member i (including leader l):
22: upon DELIVER(l | TX LIST, r, SIGl < TXList >)

do
23: V Listi ← V ote(TXList);
24: SEND(l | VOTE, r, SIGi < V Listi >);

D. Inter-committee Consensus

We use the semi-commitment scheme introduced before to
ensure the security of cross-shard communication.

Consider those transactions whose inputs and outputs scatter
across two shards, which are maintained respectively by Cri
and Crj . First of all, lri should reach a consensus on such trans-
actions within Cri by Algorithm 3. We call this list TXListi,j .
Then, the leader sends the consensus on TXListi,j as well as
the member list to lrj and Crj,partial. Note that in this process,
a faulty leader cannot fabricate a consensus result concerning
the semi-commitment.

Resembling the last phase, Crj will reach an agreement on
TXListi,j . lrj then sends the consensus result back to lri .

E. Reputation Updating

Once reaching the agreement on a voting of a TXList
(either an inner-committee list or a cross-committee one), the
leader grades every group member. As previously described,
V List contains c marked votes, i.e., all members’ opinion on
the validity of listed transactions. On the vote, someone marks
Y es for those transactions he/she agrees, No for disagreed and

Unknown for the left. Facing the votes of all members, the
leader scores each member according to the proximity between
his/her opinion and the final decision.

Let +1, −1 and 0 represent Y es, No and Unknown respec-
tively. Suppose the amount of transactions to be determined
is D. Then there is a D-dimensional vector space and each
transaction represents an axe of the space. From this aspect,
a vote is seen as a vector in this space. Let ~vi = {vi,k|k =
1, 2, · · · , D} denote the vote of member i, where vi,k is the
member i’s opinion on the kth transaction. We use the cosine
of the angle between two vectors to measure the proximity
of two corresponding opinions. In other words, we define the
score of one node as the cosine similarity between its voting
vector and the resulting vector, which is determined by the
majority algorithm and denoted by ~u = {uk|k = 1, 2, · · · , D}.
Let si denote the member i’s score. We have

si = cos(~vi, ~u) =

∑D
k=1 vi,kuk√∑D

k=1 v
2
i,k

√∑D
k=1 u

2
k

∈ [−1, 1]. (1)

Owing to the random generation of each committee and
the design of Algorithm 3, the majority result reflects truthful
members’ views. Here, the main idea is, the closer one’s
opinion stands with the consensus, the higher the grade he/she
will get. Specifically, if a member has the same answers
with the consentaneous results, he/she would be rewarded the
highest score, i.e., +1. On the contrary, if a member replies
with completely opposing opinions, he/she will face a loss of
−1 in reputation.

After calculating all scores, the leader assembles them
into a ScoreList = {s1, s2, · · · , sc}. Then he/she broadcasts
ScoreList and the original V List to all members, waiting
for the consensus by Algorithm 3. In this process, each non-
faulty member should sign on the ScoreList. If successful,
the leader sends the agreement to CrR, together with relevant
certification. Then CrR updates their reputation by simply
adding the listed score.

F. Referee Committee, Leaders and Partial Sets Selection

Participants in CrR distributedly generate next round’s seed
Rr+1 via a random beacon generator. Here, the SCRAPE [4]
scheme is preferred as it guarantees the pseudorandomness and
unbiasedness of the seed even when the adversary takes control
of almost half nodes. The nodes who want to participate in
the next round need to solve a PoW puzzle in advance. The
difficulty of the puzzle is appropriate and equal to everyone.
Upon solving, a node is supposed to deliver the solution to
the referee committee CrR and the latter will record his/her
identity. As a result, by the end of the round r, CrR is aware
of all next round’s participants P r+1. CrR chooses m nodes
with the highest reputation as new leaders in round r + 1.
Afterwhile, based on randomness Rr, CrR determines the next
referee committee Cr+1

R and partial sets in the next round
{Cr+1

1,partial, · · · , C
r+1
m,partial}. For example, a member in CrR

can see if the following inequality holds for a node i:

H(r + 1‖Rr‖PKi‖role) ≤ dr(role)

Fig. 4. The monotone function g(x) mapping reputation to a positive number.

where d(·) is a difficulty function and role is an op-
tional string including REFEREE COMMITTEE MEMBER
or PARTIAL SET MEMBER. A new dr(role) for either
role can be proposed every several rounds as the number
of nodes in the network changes. If a node is selected
as a partial set member, a member in CrR can calculate
H(r + 1‖Rr‖PKi‖PARTIAL SET MEMBER) mod m to
determine the committee he/she belongs to.

G. Block Generation and Propagation

Each time CrR members receive a TXdecSET from a
leader, they check the validity of its signature. By the end
of the round, the referee committee comes to an agreement
using Algorithm 3 on the set of valid TXdecSET s and pack
them up, together with all participants of next round Sr+1,
their reputations W r+1, the elected referee committee Cr+1

R ,
leaders and partial sets as a block Br. By releasing it to the
whole network, all nodes could obtain the contained informa-
tion. After viewing the proposed block Br, each committee
member traverses all transactions packed in it. In this process,
members delete the used ones from their local UTXO Lists and
append the newly generated outputs that they are responsible
for. Meanwhile, limited by the package size or other reasons,
there may be some unpacked valid transactions within each
committee, which form a Remaining TX List. The leader of
each committee runs Algorithm 3 to reach a consensus on the
final UTXOs List and Remaining TX List, and sends them to
CrR. Next, CrR binds these lists with the Committee ID and
forwards them to the corresponding new partial sets. Up to
this point, all committees have finished their tasks.

Afterward, a node obtains part of the transaction fee based
on his/her reputation. The sum of all nodes’ revenue equals the
fee of all transactions admitted in this round. Considering that
one’s reputation may be negative, we first map the reputation
to a positive number using a monotone function g(·). Then
rewards are distributed proportionally to the mapped value.
Specifically, the function g(·) is designed as follows. The
reputation of CrR will be updated by Cr+1

R in the next round.

g(x) =

{
ex, x ≤ 0;

1 + ln(x+ 1), x > 0.
(2)

The monotone increasing function and proportional distri-
bution ensure that whoever works more gets more. According
to (2), g(0) = 1. Thus, nodes whose reputation is zero
(e.g., nodes who always vote Unknown) could still get little
rewards. By contrast, the negative reputation is mapped to
near zero, which means the corresponding nodes can hardly
obtain revenue. Under this reward mechanism, it is better to
do nothing rather than do something bad, thus encouraging
the malicious nodes to do right.

V. SECURITY ANALYSIS

In this section, we provide a comprehensive discussion on
the security of our protocol, showing that CycLedger is highly
secure with overwhelming probability.

A. Security on Randomness

In CycLedger, we apply the SCRAPE scheme [4] within CR
to distributedly generate a random string. SCRAPE guarantees
that as long as the majority of nodes in CR are honest, the out-
put random string is pseudorandom and unpredictable. At the
same time, no leader is required in the execution of SCRAPE.
This feature suits the construction of the referee committee
well as CR is the only committee without a leader. As one can
see in the following analysis, each committee, including CR,
has more than half of non-faulty nodes with high probability,
hence, we assert that the randomness produced by SCRAPE
with CR is reliable.

B. Security on Committee Configuration

We say a committee is secure when more than half of nodes
are non-faulty. Recall that committees are formed uniformly
except leaders. Let X denote the number of malicious nodes
in a committee, and c be the expected committee size. We
consider the tail bound of hypergeometric distribution which
gives the following result:

Pr[X ≥ c

2
] =

c∑
x= c

2

(
t
x

)(
n−t
c−x
)(

n
c

) ≤ e−D(1
2 ||f)c, (3)

where D(·||·) is the Kullback-Leibler divergence. Here t < n
3

and f < 1
3 + 1

c , thus,

Pr[X ≥ c

2
] ≤ e− c

12 . (4)

When the expected committee size is c = O(log2 n), we
derive that the probability that a committee is insecure is less
than n

− log n
12 , which is negligible of n.

Fig. 5 visualizes (4). Namely, it shows the probability of
failure calculated using the hypergeometric distribution to
uniformly sample a committee when the population of the
whole network is 2000. The amount of malicious nodes is
666, exactly less than one-third of the size of the network.

Particularly, when c = 240, the error probability for a single
committee is less than 2.1 × 10−9. Applying union bound,
when m is less than 20, the error probability is no more than
5× 10−8.

Fig. 5. Probability of failure in sampling one committee from a population
of 2000 nodes in CycLedger. The amount of malicious nodes is set to 666.

C. Security on Partial Sets

We say a partial set is secure when at least one node in the
set is honest. As no more than 1/3 validators are faulty, when
the size of the partial set is set to 40, the probability that a
partial set is insecure at most:

(
1

3
)40 < 8× 10−20.

Associated with union bound, when the number of com-
mittees is 20, the probability that at least one partial set is
insecure is no more than 2× 10−18.

D. Security on Semi-Commitments

Recall that we use the hash of the member list as a semi-
commitment of a committee. To start with, we show that
SEMI COMr

k = H(S) satisfies the computational binding
property, where S is the member list.

Lemma 1. When H is modeled as a collision-resistant hash
function (CRHF), SEMI COMr

k satisfies the computational
binding property, i.e., once the semi-commitment is released,
a probabilistic polynomial-time malicious leader cannot forge
another member list which corresponds to the same semi-
commitment with non-negligible probability.

Proof. The lemma can be directly derived from the collision-
resistance property of a CRHF.

With the above lemma, we come up with the following
theorem.

Theorem 2. A malicious leader cannot deceive a trustful
leader by forging a member list of his/her committee as long
as CR has an honest majority.

Proof. There are only two opportunities when a betrayer can
lie to a loyalist on the member list. The first chance is when
he/she tries to broadcast the semi-commitment. However,
because all members in CR, as well as the partial set members
of the committee, see the exact member list, any false hash
on the list will be perceived. Thus the liar will be detected.
The other chance for the malicious leader is when the semi-
commitment is revealed. However, according to the Lemma 1,
misleading behavior will not take effect in this phase.

We emphasize that the hiding property of a commitment is
not necessary for our protocol. For a vicious leader, even if
he/she figures out the members of a committee in the semi-
commitment exchanging phase, he/she can do nothing under
our threat model as the adversary cannot get control of a trusty
node immediately.

Here we introduce the leader re-selection procedure in
CycLedger. The program is invoked when an honest partial
set member notices that his/her leader is malicious or any
participant of CR notice that some leader is vicious. In the
semi-commitment case, the event happens when a loyal party
(CR or a partial set member) discovers inconsistency between
the member list he/she owns and the leader claims.

If a partial set member wants to accuse his/her leader,
he/she would broadcast his/her witness to all members in the
committee and ask them to vote on the impeachment. Here,
a witness is a pair of messages W = (ml,m0) where ml

should be sent and signed by the leader. We say a witness is
valid if and only if the pair can derive dishonest behaviors of
the leader. E.g., ml be the member list that the leader sends,
and m0 be the semi-commitment of the committee where
m0 6= H(ml). If the proposal is approved by more than half of
the validators, the prosecutor will forward the voting result as
well as his/her witness to everyone in the referee committee.

When any node in CR receives a witness W and a signature
list Cert approving the prosecution from a partial set member
pm from committee Ck, he/she starts Algorithm 6 to re-select
a committee leader.

Algorithm 6 Leader Re-selection
1: procedure RE-SELECTION(r, pm, SIGpm <
k,W,Cert, pm >)

2: For any referee member rm:
3: SigList ←Inside Consensus(r,< k, pm >
,SIGpm < k,W,Cert, pm >);

4: for each i ∈ Ck do
5: Send(i | SIGrm < NEW, pm >, SigList);

Fig. 6 shows the above process. Afterwhile, the new leader
needs to make a new semi-commitment of the commit-
tee via the semi-commitment exchanging protocol (Algo-
rithm 4). When a participant of CR receives the new semi-
commitment, he/she informs every committee leader the new
semi-commitment and leader’s address, so that cross-shard
transaction handling may start safely.

Now we claim that the given procedure is both complete
and sound:

Claim 3. A faulty leader is always detected and thus evicted
via the leader re-selection procedure, as long as CR has an
honest majority.

Proof. Note that there is at least one credible node in any
partial set. Therefore, as a leader’s action is always monitored
by the partial set during the execution of the whole protocol
(see further analysis in later subsections), any irregular be-

havior from the leader will be detected and a witness will be
inevitably grasped by the non-faulty partial set member. At
the same time, as the evidence is signed by the ”criminal”, no
erroneous judgment will occur.

Claim 4. A trustful leader will never be framed up by a faulty
partial set member, as long as CR has an honest majority.

Proof. We mention that a witness is valid if and only if the first
part of it is a message signed by the leader. For the security
of the digital signature scheme, a vicious partial set member
cannot counterfeit a shred of evidence as the latter has to be a
leader’s signed message. Therefore, a loyal leader will never
be unjustly accused.

As proved above, the probability that more than half mem-
bers in CR are faulty is negligible. Thus, we claim that our
recovering procedure remains complete and sound with high
probability.

E. Security on Intra-committee Consensus

Resembling Claim 3 and 4, We assert that a faulty leader is
always detected and expelled in the intra-committee consensus
phase.

Theorem 5. In Algorithm 5, a faulty leader can always be
detected, meanwhile, malicious members can never calumniate
a non-faulty leader.

F. Security on Inter-committee Consensus

Finally, we show that cross-shard transactions are safely
processed by our protocol.

Lemma 6. A malicious leader who tries to imitate or conceal
some cross-shard transactions is always detected by a trustful
partial set member and thus evicted via the leader re-selection
procedure.

Proof. We prove this lemma conditioned on the fact that the
messages are unforgeable. If the malicious leader imitates
or conceals some cross-shard transactions, a trusty partial
set member can challenge the leaders honesty by checking
signatures from members of the departing committee.

Lemma 7. A malicious leader can never frame up a trustful
leader by misleading partial set members, as long as the delay
of communication between shards is Γ.

Proof. Notice that if the faulty leader tries to frame up a
credible leader, the only way is to sending a message to the
partial set members, meanwhile do not send anything to the
honest leader, misleading that the non-faulty leader hides all
transactions. However, if a non-faulty partial set member does
not receive transactions from his/her leader after 2Γ time since
he/she receives the transactions set from another committee
leader, he/she can send the transactions set to his/her leader
and continues running consensus protocol.

Combining the above two lemmas, we give the following
theorem, which shows that our protocol guarantees security
when processing cross-shard transactions.

Theorem 8. In the inter-committee consensus phase, a faulty
leader can always be detected, in the meantime, non-faulty
leaders can never be framed up.

Proof. This theorem can be derived by Lemma 6 and 7.

VI. PERFORMANCE ANALYSIS

We claim that our protocol is efficient in intra-shard and
cross-shard transactions processing.

Recall that we use n to denote the number of nodes in
the network, m to denote the number of committees and c to
denote the expected amount of participants in a committee.

A. Complexity of Committee Configuration

In this phase, all members in any committee except CR
will recognize each other, which imposes a communication,
computation and storage complexity of O(c) for all common
members. For leaders and partial set members, the communi-
cation complexity is multiplied by c as each of them has to
deliver i pieces of information to the ith applying participant.

B. Complexity of Commitment Exchanging

For any leader, he/she is obliged to produce the commitment
of his/her committee and note down commitments from all
other committees. Thus, the computation complexity is O(c)
while the storage complexity is O(m). However, members
in CR has to suffer from the huge transportation overhead
of O(m2) as they have to propagate all commitments to all
committees as intermediaries.

C. Complexity of Reaching Intra-committee Consensus

To reach a consensus on a set of transactions with constant
size, one in a committee has to broadcast the set with his/her
signature to all members in a committee, which causes a
communication complexity of O(c). For key members, they
must store the information with at least half of the members’
certification to acknowledge the set, hence, a storage complex-
ity of O(c) is induced. At the same time, common members
only need to keep their own opinion in reserve.

D. Complexity of Block Generation and Propagation

To propose a block with size O(n) and broadcast it to all
committees, an O(mn) communicating burden and an O(n)
storage overhead are inevitable for any participant in CR.
However, we point out that the expense also exists in almost all
previous protocols. At the same time, for any other attendee,
the storage complexity is just O(c), as he/she only needs to
maintain the participants, transactions, and UTXOs within the
committee he/she belongs to.

We summarize the theoretical analysis of the performance
of CycLedger in Table II.

VII. INCENTIVE ANALYSIS

Besides security, reputation is also a highlight of CycLedger.
There are two main problems when introducing reputation
to our protocol: what reputation reflects and how reputation
works. In this section, we give a discussion on the incentive
of our protocol, by analyzing these two problems.

Fig. 6. This figure shows an example of the reporting mechanism and leader re-selection, where CR is the Referee Committee, cp is a partial set member, a
and b are two committee members.

TABLE II
COMMUNICATION, COMPUTATION & STORAGE COMPLEXITY OF CYCLEDGER

Communication & Computation / Storage Complexity Common Members Leaders & Partial Set Members CR Members

Committee Configuration O(c)/O(c) O(c2)/O(c2) -

Semi-Commitment Exchanging - O(c)/O(m) O(m2)/O(m)

Intra-committee Consensus O(c)/O(1) O(c)/O(c) O(n)/O(n)

Inter-committee Consensus O(m)/O(1) O(n)/O(1) O(n)/O(n)

Reputation Updating O(c)/O(1) O(c)/O(c) O(n)/O(n)

Key Member Selection - - O(n)/O(n)

Block Generation & Propagation O(m)/O(c) O(n)/O(c) O(mn)/O(n)

1 n: total amount of nodes in the network m: amount of committees c: amount of nodes in a committee, we mention again that
n = mc.

A. Incentive on Reputation

In general, reputation is expected to reflect the honest
computational resources of each node in CycLedger.

The basic task of nodes in each committee, in short, is to
give opinions on the validation of requested transactions. One’s
reputation is a reflection of his/her behaviors. For a newly
joined node, based on his/her blank work experience, the repu-
tation will start from zero. However, as long as he/she begins to
work, the reputation matches his/her behavior. Specifically, for
an honest node with more computing resources, he/she could
make more correct judgments on the validation of transactions,
thus, earning a higher reputation. While for the malicious
nodes, reputation is closely related to his/her evilness, or
in other words, the honest computational resources he/she
contributes.

One’s reputation determines his/her profit in each round.
Nodes with a higher reputation get more payment after a new
block is successfully generated. Owing to the scoring mech-
anism and reward mechanism, reputation provides enough
incentive for nodes to work honestly and as hard as they can.
In this way, reputation is considered as a reflection of the
trustworthy computational resources one node contributes.

In CycLedger, leaders have a higher workload compared
with other members. With this in mind, we directly choose
nodes with the highest reputation as leaders in each round,
thus to enhance the performance and throughput of CycLedger
even further. In return, leaders obtain some extra reputation
as a bonus for their hard work, which turns into higher

revenue. Therefore, leaders will have enough incentive to
behave trustfully.

Certainly, a high reputation is not once and for all. Recalling
the proportional design in our reward mechanism, one’s rev-
enue depends on the relative value of his/her reputation. Thus
for each node, not to advance is to go back. So it appears
that the best possible strategy for a node is, to use all his/her
computational resources to work within rules.

B. Punishment on Reputation

We have been focusing on how the reputation motivates
nodes to work hard. In this part, we will discuss what if
someone, especially a leader, breaks the rules.

Intuitively, the scoring mechanism can be translated as,
awarding points for right answers, deducting marks for wrong
answers and doing nothing for an Unknown reply. Thus
when giving wrong votes, intentionally or unintentionally, the
node will face the corresponding decline in reputation. That
is, the scoring mechanism itself contains the punishment on
reputation.

Moreover, a leader who violates the protocol faces a more
serious penalty. Once a leader is confirmed to commit a fault
by the referee committee, his/her reputation will be decreased
to the cube root. Recall that all leaders are those nodes with
the highest reputation. We believe that the reputation of each
leader is larger than 0, including malicious ones. Combining
this punishment with (2), the mapped value, which is closely
related to his/her revenue, will reduce to about one-third of
the original mapped value. That is, the higher the reputation

a leader has, the stronger the punishment he/she will suffer
when he/she behaves maliciously.

VIII. FUTURE WORKS

In this section, we introduce two skills that may enhance
the efficiency of our protocol.

A. Excluding Low-value Transactions through Extra Commu-
nication

According to our protocol, if lri wants to pack transactions
that are related to UTXOs managed by Crj , lri should pack up
those transactions while nodes in Cri should run Algorithm 3 to
generate a package PACK. Then nodes in Crj should also run
Algorithm 3 again to confirm if PACK is valid. However, in
some situations, most transactions in PACK may be invalid,
for example, when the network suffers a Denial-of-Service
(DoS) attack. In this case, this interaction process may be a
waste of computational resources.

We hope that transactions chosen by lri have a high prob-
ability to be accepted by Crj to enhance efficiency. One
practical way is that leaders can communicate with each
other before sending packages. For instance, lri can enquire lrj
which transactions are valid, and receives a preference directly
from lrj rather than the agreement of Crj . This extra step
of communication reduces the number of invalid transactions
being packaged as long as both leaders trust each other.

We can set up a mechanism to mitigate the possibility that
either leader lies. To achieve this, lri can record the response
of lrj and then generate a packet by Algorithm 3, including
all transactions mentioned by lrj . Thus, if lrj lies to lri on
the validity of a transaction, he/she gets punished, such as
a reduction on reputation.

B. Parallelizing Block Generation

In our protocol, CR is in charge of proposing a block at
the end of a round. This causes a huge connection burden
on the referee committee. To boost efficiency, we can have
each committee broadcast the block. In detail, after receiving
enough authentication on a certain set of transactions from
committee participants, a leader can forward the set to CR
for verification. After obtaining permission from the referee
committee, the leader can immediately broadcast the block to
the whole network. Applying this change to our protocol, we
can adapt the schedule proposed by [17] in our protocol. We
call two transactions are relevant if they follow one of the
following properties:

1) They use the same UTXO as input;
2) One transaction spends the output of the other one.
Observe that those irrelevant transactions can be processed

in parallel. Thus, a committee can sequentially produce and
broadcast blocks within a round. As a result, two transactions
satisfying the second property above may both be accepted
in the same round. This event never happens in our original
protocol as at least one of them will be regarded as illegal.
Thus, by using this mechanism, we can enhance the efficiency
and reliability of our protocol.

IX. CONCLUSION

We present CycLedger, a 1/3-resilient sharding-based dis-
tributed ledger protocol with scalability, reliable safety, and
incentives.

By splitting nodes into parallel committees, we maximize
the utilization of the computational resource, bringing high
throughput to our protocol. We enable users to trade safely
by introducing semi-commitments among committees and a
recovery procedure to detect and evict faulty leaders. By
evaluating each validator’s behavior explicitly, our protocol has
a considerable incentive for nodes to follow the instructions.
At the same time, the reputation mechanism helps CycLedger
locate those nodes with higher trusty computational power.
By assigning them to high-workload positions, we further
enhance the efficiency of the protocol. Finally, our analysis
demonstrates that CycLedger has a nice performance and can
provide striking security.

REFERENCES

[1] I. Bentov, R. Pass, and E. Shi. Snow white: Provably secure proofs of
stake. IACR Cryptology ePrint Archive, 2016:919, 2016.

[2] C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to reliable and
secure distributed programming. Springer Science & Business Media,
2011.

[3] Cardano. Cardano settlement layer documentation. leader selection in
cardano sl. https://cardanodocs.com/technical/leader-selection.

[4] I. Cascudo and B. David. SCRAPE: scalable randomness attested by
public entities. In Applied Cryptography and Network Security - 15th
International Conference, ACNS 2017, Proceedings, pages 537–556,
2017.

[5] M. Castro and B. Liskov. Practical byzantine fault tolerance. In
Proceedings of the Third USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 173–186, 1999.

[6] N. Christin, A. S. Weigend, and J. Chuang. Content availability, pollution
and poisoning in file sharing peer-to-peer networks. In Proceedings of
the 6th ACM Conference on Electronic Commerce (EC-2005), pages
68–77, 2005.

[7] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. E. Kosba,
A. Miller, P. Saxena, E. Shi, E. G. Sirer, D. Song, and R. Wattenhofer.
On scaling decentralized blockchains - (A position paper). In Financial
Cryptography and Data Security - FC 2016 International Workshops,
BITCOIN, VOTING, and WAHC, Revised Selected Papers, pages 106–
125, 2016.

[8] E. Damiani, S. D. C. di Vimercati, S. Paraboschi, P. Samarati, and
F. Violante. A reputation-based approach for choosing reliable resources
in peer-to-peer networks. In Proceedings of the 9th ACM Conference
on Computer and Communications Security, CCS 2002, pages 207–216,
2002.

[9] G. Danezis and S. Meiklejohn. Centrally banked cryptocurrencies.
In 23rd Annual Network and Distributed System Security Symposium,
NDSS 2016, 2016.

[10] B. David, P. Gazi, A. Kiayias, and A. Russell. Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain. In
Advances in Cryptology - EUROCRYPT 2018 - 37th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, Proceedings, Part II, pages 66–98, 2018.

[11] M. Feldman, K. Lai, I. Stoica, and J. Chuang. Robust incentive
techniques for peer-to-peer networks. In Proceedings of the 5th ACM
Conference on Electronic Commerce (EC-2004), pages 102–111, 2004.

[12] A. Gervais, G. O. Karame, V. Capkun, and S. Capkun. Is bitcoin a
decentralized currency? IEEE Secur. Priv., 12(3):54–60, 2014.

[13] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of the
26th Symposium on Operating Systems Principles, pages 51–68, 2017.

[14] C. Huang, Z. Wang, H. Chen, Q. Hu, Q. Zhang, W. Wang, and X. Guan.
Repchain: A reputation based secure, fast and high incentive blockchain
system via sharding. CoRR, abs/1901.05741, 2019.

https://cardanodocs.com/technical/leader-selection

[15] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The eigentrust
algorithm for reputation management in P2P networks. In Proceedings of
the 12th International World Wide Web Conference, WWW 2003, pages
640–651, 2003.

[16] A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A
provably secure proof-of-stake blockchain protocol. In Advances in
Cryptology - CRYPTO 2017 - 37th Annual International Cryptology
Conference, Proceedings, Part I, pages 357–388, 2017.

[17] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford. Omniledger: A secure, scale-out, decentralized ledger via
sharding. In 2018 IEEE Symposium on Security and Privacy, SP 2018,
Proceedings, pages 583–598, 2018.

[18] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena.
A secure sharding protocol for open blockchains. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2016, pages 17–30, 2016.

[19] S. Micali, M. O. Rabin, and S. P. Vadhan. Verifiable random functions.
In 40th Annual Symposium on Foundations of Computer Science, FOCS
’99, pages 120–130, 1999.

[20] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical
report, Manubot, 2019.

[21] M. Nojoumian, A. Golchubian, L. Njilla, K. Kwiat, and C. Kamhoua.
Incentivizing blockchain miners to avoid dishonest mining strategies

by a reputation-based paradigm. In Proceedings of the 2018 IEEE
Computing Conference, CC 2018, Volume 2, pages 1118–1134, 2018.

[22] R. Pass and E. Shi. The sleepy model of consensus. In Advances
in Cryptology - ASIACRYPT 2017 - 23rd International Conference on
the Theory and Applications of Cryptology and Information Security,
Proceedings, Part II, pages 380–409, 2017.

[23] B. Schoenmakers. A simple publicly verifiable secret sharing scheme
and its application to electronic voting. In Advances in Cryptology -
CRYPTO’99, 19th Annual International Cryptology Conference, Pro-
ceedings, pages 148–164. Springer, 1999.

[24] E. Syta, P. Jovanovic, E. Kokoris-Kogias, N. Gailly, L. Gasser, I. Khoffi,
M. J. Fischer, and B. Ford. Scalable bias-resistant distributed random-
ness. In 2017 IEEE Symposium on Security and Privacy, SP 2017, pages
444–460, 2017.

[25] Visa. Visa’s transaction per second. https://usa.visa.com/
run-your-business/small-business-tools/retail.html.

[26] K. Walsh and E. G. Sirer. Experience with an object reputation system
for peer-to-peer filesharing. In 3rd Symposium on Networked Systems
Design and Implementation (NSDI 2006), Proceedings, 2006.

[27] M. Zamani, M. Movahedi, and M. Raykova. Rapidchain: Scaling
blockchain via full sharding. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018,

pages 931–948, 2018.

https://usa.visa.com/run-your-business/small-business-tools/retail.html
https://usa.visa.com/run-your-business/small-business-tools/retail.html

	I Introduction
	II Background and Related Work
	II-A Sharding-based Blockchains
	II-B Distributed Randomness and Cryptographic Sortition
	II-C Reputation and Blockchain

	III Model, Problem Definition and Overview
	III-A Notation
	III-B Network Model
	III-C Threat Model
	III-D Problem Definition
	III-E Protocol Overview

	IV Main Protocol
	IV-A Committee Configuration
	IV-B Semi-Commitment Exchanging
	IV-C Intra-committee Consensus
	IV-D Inter-committee Consensus
	IV-E Reputation Updating
	IV-F Referee Committee, Leaders and Partial Sets Selection
	IV-G Block Generation and Propagation

	V Security Analysis
	V-A Security on Randomness
	V-B Security on Committee Configuration
	V-C Security on Partial Sets
	V-D Security on Semi-Commitments
	V-E Security on Intra-committee Consensus
	V-F Security on Inter-committee Consensus

	VI Performance Analysis
	VI-A Complexity of Committee Configuration
	VI-B Complexity of Commitment Exchanging
	VI-C Complexity of Reaching Intra-committee Consensus
	VI-D Complexity of Block Generation and Propagation

	VII Incentive Analysis
	VII-A Incentive on Reputation
	VII-B Punishment on Reputation

	VIII Future Works
	VIII-A Excluding Low-value Transactions through Extra Communication
	VIII-B Parallelizing Block Generation

	IX Conclusion
	References

