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Abstract

We present an efficient and scalable scheme for implementing agent-based modeling (ABM) 

simulation with In Situ visualization of large complex systems on heterogeneous computing 

platforms. The scheme is designed to make optimal use of the resources available on a 

heterogeneous platform consisting of a multicore CPU and a GPU, resulting in minimal to no 

resource idle time. Furthermore, the scheme was implemented under a client-server paradigm that 

enables remote users to visualize and analyze simulation data as it is being generated at each time 

step of the model. Performance of a simulation case study of vocal fold inflammation and wound 

healing with 3.8 million agents shows 35× and 7× speedup in execution time over single-core and 

multi-core CPU respectively. Each iteration of the model took less than 200 ms to simulate, 

visualize and send the results to the client. This enables users to monitor the simulation in real-

time and modify its course as needed.
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I. Introduction

Agent-based modeling (ABM) is a powerful and widely used approach to quantitatively 

simulate a system defined by a set of autonomous agents that operate and interact in discrete 

time steps. ABMs represent models at the microscale, which attempt to explain the 

emergence of higher order properties of the overall system. Depending on the system being 

modeled, each agent can represent a wide variety of entity types in an environment ranging 

from living cells in a biological process modeling, animals in an ecosystem modeling, to 

cities or countries in an economic model. These agents ’live’ in their environment, or world, 
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whose organization may vary substantially depending on the particular application. In this 

work, we constrain the world to a two-dimensional grid whose size is determined by the 

granularity of the simulation. For complex biological systems such as inflammatory and 

wound healing response, the world consists of a grid of tissue patches, each patch may 

contain a number of entities such as cells and extra-cellular matrix (ECM) proteins. The size 

of the grid reflects the granularity of the simulation, and hence the larger the grid the more 

accurate the simulation. However, high fidelity simulation typically introduces a significant 

computational burden that, when coupled with the work needed to perform in-situ 

visualization, makes the overall task of real-time simulation and visualization quite 

challenging. Thus, such high fidelity simulations stand to benefit substantially from an 

efficient and scalable parallel implementation.

A challenge in biological simulation is to handle the differences in spatiotemporal scales 

between cellular and chemical interactions [1]. For example, cellular movements occur at 

the rate of micrometers per hour (μm/τ), while cytokine diffusion in tissue occurs at the rate 

of micrometers per second (μm/t). A naive approach would be to simulate the model at the 

smallest temporal scale required, i.e. time step ts = t. Clearly, this would unnecessarily 

increase the complexity of the coarse-grain processes. To solve this problem, we design a 

mechanism that captures the behavior of the finer-scale processes over a coarse time window 

using convolution, and offload this intensive computation to the GPU while the CPU cores 

focus on coarse-grain processes.

Visualization is a crucial component of any ABM simulation and is usually done separately 

on the stored data that was generated during the simulation. To date, most visualization 

techniques proposed fall into one of the following categories; local simulation, conventional 

work-flow remote simulation [2], or client-render remote simulation. In local simulation, the 

visualization happens in the same place where the computation is performed. Thus, this 

assumes a monitor attached locally to the computing platform, which means that, in order to 

take advantage of a powerful server, the user needs to have a physical access to it. This 

solution is not acceptable since servers are usually maintained in an isolated highly-

regulated area, which is only accessible to the users via a secured network protocol. A 

commonly used model, conventional work-flow remote simulation, performs computational 

part of the simulation on the server first, store data on disk for later visualization on the 

client machine. This approach requires temporary storage and heavy traffic on disk. Note 

that this approach precludes computation steering. The last category is rarely seen, but is 

mentioned here for completeness, namely the client-render remote simulation. This scheme 

performs the simulation on the server then send the rendering commands to the client. This 

leaves all rendering responsibility to the client’s local computing resource, which is usually 

much less powerful than that of the server. Existing well-known ABM platforms use a mix 

of strategies for visualization. NetLogo assumes local simulation [3], while SPADES uses 

conventional work flow [4]. MASON and FLAME GPU allow for both conventional work 

flow and computation/visualization coupling [5], [6]. No server-client rendering protocol, 

however, were specified for the latter option, thus it is fair to assume the local simulation 

model was used for the coupling of computation and visualization.
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In situ visualization, or in-place simulation output processing, addresses all the issues other 

visualization work flows pose. A quadtree-based ABM is proposed by [7] to reduce the 

amount of irrelevant data analyzed in-situ, where [8] attempts to accomplish the same goal 

with a bitmap-based approach. Paraview Catalyst [9], [10] was developed to process 

simulation output data in-situ according to the user’s co-processing script. An image-based 

approach built on top of Paraview Catalyst was presented by [11] to efficiently manage 

rendered images created in-situ by Paraview Catalyst. As much as all these work ([7]-[11]) 

reduce I/O loads, none completely by-pass I/O.

In the present study, VirtualGL is used in the implementation, resulting in an In Situ 

visualization ABMs framework that completely by-passes the disk as a mediator in the 

visualization pipeline. Our main goal is to be able, for each time step of the model, to 

perform the simulation and visualization in a few hundred milliseconds, including the 

transfer time of the visualization and statistical summary information to the remote client. 

Such a performance enables the users to take full advantage of the computational power of 

the server, while analyzing and steering the computation in real-time.

II. Overview and Background

A. Heterogeneous Computing Platform

Heterogeneous computing systems refer to a diverse set of computing resources 

interconnected via high speed network to collaboratively support execution of 

computationally intensive parallel and distributed applications [12]. Heterogeneous 

platforms of various architectures and scales are quite popular. For example the larger scale 

platforms are based on large clusters of different types of multicore CPUs and many-core 

accelerators such as GPUs. In fact, almost all current personal computers are based on 

heterogeneous computing platforms that include a multicore CPU with an attached 

accelerator of one or more GPUs. However, most often the applications do not make 

effective use of these available resources. For example, if the CPU is only there to move data 

and launch GPU kernels, or the GPU is there to merely act as an accelerator to the CPUs, the 

program is not really employing the full power of the heterogeneous computing 

environment. On the other hand, if both CPUs and GPUs collaborate to handle important 

computations, then major performance gains are possible. But this requires a careful 

scheduling and orchestration of the operations using the available resources. In this work, we 

will focus on a single node platform consisting of a multi-core CPU with one or several 

many-core GPUs attached to it.

1) Multi-Core Central Processing Units (CPUs)—Driven by a performance hungry 

market, there is always a demand for faster processor regardless of the speed of the fastest 

available processor at the time. Moore’s law predicts that the number of transistors in a chip 

doubles every 18 months [13]. And continuous performance improvement of a processor has 

been relying on increase in density of integrated circuits (ICs) on a chip for decades [14], 

[15]. However, according to Pollack’s rule, performance increase by microarchitecture alone 

is roughly proportional to square root of increase in complexity [16], thus the performance 

of a single processor core does not scale linearly with the number of logic on the core. As 

Seekhao et al. Page 3

IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. Author manuscript; available in PMC 2016 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the transistor size shrinks, the leakage current becomes larger [17]. And with higher 

integrated density, power dissipation becomes the bottleneck of the architecture [16], [17]. 

Alternatively, performance boost could be achieved by increasing the clock speed, or the 

frequency at which the processor operates at. This gives more instructions per second, 

however, due to increased dynamic power dissipation and design complexity, the clock 

frequency is currently limited to about 4 GHz [18]. Multicore architecture allows scalable 

processor design and offers a way to achieve better performance without infringing the 

power dissipation requirements [16]-[18].

Today, a CPU chip typically consists of 2 to 10 CPU cores. A powerful compute node may 

consist of multiple CPU sockets resulting in more number of cores, typically 16 to 20. For 

more computing power, multiple compute nodes can work together in a cluster and 

communicate among themselves via high-speed connections.

2) Graphics Processing Units (GPUs)—GPUs were originally designed as special 

purpose processors focusing on graphics computations such as polygon calculations, or 

image filtering. Since the introduction of the CUDA high level programming environment 

by NVIDIA, GPUs have become the preferred high performance computing platform 

especially for data parallel computations, achieving a much better performance/energy 

tradeoff than multicore CPUs. In general, a GPU consists of thousands of processing cores, 

making them very suitable for data parallel operations. The scientific community has picked 

up interest in GPU computing due to their computationally demanding applications, which 

has given rise to General Purpose GPU (GPGPU). CUDA (II-B) was then introduced in 

2007 to enable GPGPU programming in C language with C-like extensions. Since its 

introduction, more than 100 million computers with CUDA-capable GPUs have been 

shipped to end users [19].

GPUs consist of a number of Streaming Multiprocessors (SMs), each of which contains a 

number of Streaming Processors (SPs or cores). The GPUs are capable of launching 

thousands of threads simultaneously. All the SMs have access to the high bandwidth Device 

memory (peak bandwidth 240 GB/s). The best bandwidth is achieved when all threads in 

warp access coalesced memory. In this work, the computation component was tested on a 

compute node with the Tesla K20c, whereas the whole suite (computation and visualization) 

was tested on a node with a Tesla K80 GPU. The overview of their architecture is 

summarized in table I.

B. Programming Environment

Designing with speed and efficiency in mind, a light-weight object-oriented programming 

language C++ is chosen. To take advantage of multiple CPU cores, the code was extended 

with Open Multi-Processing (OpenMP) to employ concurrency. OpenMP is a highly 

portable application programming interface (API) which supports parallel executions on 

shared-memory platforms via a set of platform-independent compiler directives [20].

To communicate and issue instructions to GPUs, Compute Unified Device Architecture 

(CUDA) programming interface is used. CUDA is a parallel computing platform and 
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programming model, which allows general-purpose programming of the GPU via C-like 

language extension keywords [2]. CUDA assumes a GPU attached to the host (CPU) which 

control data movement to/from GPU, and is responsible for launching kernels, functions to 

be executed by all threads launched on the GPU.

Visualization was implemented using Open Graphics Library (OpenGL). OpenGL is an 

open standard, cross-language API for 2D and 3D rendering. OpenGL is widely used in 

extensive range of graphics applications for its portability and speed.

C. Agent-Based Modeling (ABM)

Agent-based modeling (ABM) is a powerful bottom-up approach for modeling systems with 

interacting components to observe emerging behavior and insightful information about the 

system [21]. The basic components of ABMs are:

• Agents - Autonomous objects which perform actions and interact with 

other agents and the environment

• Agent Rules - Behaviors of each type of agents

• World - The environment in which all agents ’live’ in Multiple types of 

agents can be modeled in a single ABM.

Agents are usually object instances, thus most ABMs are implemented using object-oriented 

programs such as C++, or JAVA.

Each type of agents behaves according to a set of pre-defined rules, which can be 

deterministic or stochastic. For example, a simulation related to tissue inflammation may 

have various cell types, such as neutrophils, macrophages and fibroblasts, as agents. Rules 

are then determined using the best available knowledge in literature about the behavior of 

cells. The autonomous agents are mobile and make decisions based on their states and the 

world environment. The world in our case is modeled as a grid of tiny squares (2D) called 

patches. Patch size is uniform across the world, and thus the resolution of the simulation 

environment is inversely proportional to patch size.

The temporal dimension of ABMs is discrete and the simulation progresses in sequence of 

synchronous iterations (sometimes referred to as tick). Thus, even if the semantics of agent 

execution in ABMs is parallel in nature, constant updates and synchronizations at iteration-

granularity are inevitable, making the task of designing an efficient parallel algorithm for 

ABMs challenging.

D. Modeling of Inflammatory and Healing Process in Vocal Folds

Human vocal folds experience continuous biomechanical stresses during phonation. 

Excessive vocalization can cause phonotrauma, which, like any other forms of mechanical 

trauma, triggers a highly complex process of inflammation and tissue repair. Treatment 

outcomes often depend on the level of the initial damage and influenced by individual’s 

genetics or pre-morbid tissue status [22]. Thus, personalized treatments based on 

individual’s biological profile can increase the chance of better healing results. A vocal fold 
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ABM has been developed to simulate inflammation and repair to gain a deeper mechanistic 

understanding of the underlying cellular and molecular processes, which has shed insights of 

rational therapeutic design. Vocal fold wound healing modeling is thus an excellent 

candidate application to test and validate our proposed parallelization of ABMs, due to its 

complexity and the availability of patient-specific data [23], [24].

Table II summarizes actions of each agent type for our application. The cells, which includes 

Platelets, Neutrophils, Macrophages and Fibroblasts, are mobile agents that make action 

decisions based on the states of their surroundings. At the time of acute injury, the 

traumatized mucosal tissue within the damaged area triggers platelet degranulation [23], 

[25]. Different chemokine gradients were readily created and stimulate vasodilation and 

attraction of inflammatory cells, namely, neutrophils and macrophages. Activated 

neutrophils and macrophages at the wound site secrete more chemokines to attract 

fibroblasts and clean up cell debris. Fibroblasts activated by tissue damage deposit 

extracellular matrix (ECM) proteins such as collagen, elastin, and hyaluronans at the wound 

area of repair. These ECM proteins then form a scaffold for supporting fibroblasts in wound 

contraction and other cells’ migration and wound repair activities [26]. The flow diagram of 

the interactions between all the components in the model is shown in Figure 1.

To achieve the best resolution in the ABM world, each patch is made to be the smallest 

possible for a single cell to occupy. This results in patch size of 15μm × 15 μm [27], [28]. 

Initial density of cells and ECM proteins were calculated based on empirical data from 

literature [29]-[33]. The configuration details, which were determined based on our best 

knowledge of vocal folds anatomy, are shown in table III.

E. Chemical Diffusion

Chemical diffusion is one of the most crucial and highly intensive computational 

components of the model. Diffusion equation with decay in 2D can be written as follows:

(1)

where c is the chemical concentration, D is the diffusion coefficient and γ is the decay 

constant. By using a Taylor expansion to discretize the continuous diffusion equation, we 

get:
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(2)

In our case, Δx = Δy, thus Eqn. (2) becomes:

(3)

Notice that Eqn. (3) is a discrete function that can be implemented easily as a function. 

However, we need to first make sure that the solution is stable. Using Von Neumann 

Stability Analysis method to study the growth of the waves eikx [34], we have the following 

stability conditions:

(4)

Since Δx = Δy, we have,

(5)

Given that the largest values of D in our set of chemical types is , with patch 

width Δx = 15μm, Δt ≤ 0.0625 minute. Clearly, the work complexity of the simulation would 

be unnecessarily high if we simulate the model at Δτ = 0.0625 minute rather than Δτ = 30 

minutes.

Fortunately, there is a way to capture Eqn. (3) at a larger time step. By letting , Eqn. 

(3) can be rewritten as follows:
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(6)

or,

(7)

where

Clearly, Eqn. (7) is equivalent to saying c (x, y, t + Δt) = c (x, y, t) * f (x), where * represents 

convolution. Thus, we can fast forward this process to capture diffusion at large time step, 

Δτ, without violating stability constraints using convolution.

In order to compute c (x, y, τ + Δτ), where Δτ = m · Δt, we convolve the chemical 

concentrations from previous step, c (x, y, τ), with f (x, y), m times. By commutative 

property of convolution, we can convolve f (x, y) with itself m times to get fm (x, y), and 

compute the diffused concentrations at each tick as follows:

(8)

For example, the effective diffusitivity of IL-1β in tissue is  [35]. In our 15-μm 
patch world, simulating at 30-minute time steps, the program has to calculates c (x, y, τ) * 

f480 (x, y) at each time step. This means a chemical on a given patch (x,y) can diffuse to all 

patches within x ± 480 and y ± 480, which is a window of dimension 961×961 or 

approximately 1 million patches.

After obtaining the formula for fast-forward diffusion calculations, we need to also consider 

boundary conditions to appropriately pad the data for convolution operations. Depending on 

the area of interest, the padding chosen could either be constant padding or mirror padding 
or both.

In our case study of vocal fold modeling, our tissue area of interest has epithelium on the 

outermost layer. Since the dynamics of vocal fold epithelium is abstracted in this ABM, we 
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have effectively one wall, or 1-side 0-flux boundaries. And the rest of the walls are padded 

with empirically obtained baseline chemical levels, or constant padding.

III. Methodology

A. Scheduling and Coordination of the CPU and GPU Computations

As discussed in section II-E, chemical concentration in a patch can affect other patches 

within a radius of up to 480 patches. In other words, our convolution kernel can be as large 

as 961 × 961, defining a window that contains roughly a million patches. Fortunately, GPUs 

are much faster at computing convolutions than CPUs [36]. However, the diffusion needs to 

be updated at every iteration, which means we need to move data between the CPU and 

GPU at the end of each iteration, which makes the total time to compute diffusion and move 

the results back quite significant.

To address this issue, we hide the diffusion computation time by utilizing our GPU and p 
CPU cores as follows:

i) We allocate p – 1 CPU threads for executing parallel operations other than 

diffusion.

ii) The remaining CPU thread prepares and manages data movement to and from 

the GPU

iii) GPU computes chemical diffusion using FFT-based convolutions concurrently 

with the CPU threads executing their operations

Since all agent decisions during time step t are determined by the state of the environment 

determined at the end of time step t – 1, steps (i) and (iii) can be executed simultaneously as 

shown in Figure 2.

This approach is applicable to chemical diffusion in biological systems such as hormones in 

the endocrine system, or pharmacokinetics of drug infusions. Furthermore, particle diffusion 

is encountered in a wide range of system modeling applications. Hence, the technique 

discussed can be applied to a broad range of system modeling applications involving any 

type of particle diffusion. The diffusion equation (Eqn. 1) is of the same form as the Heat 

Equation, which has an even larger range of applications such as the aforementioned particle 

diffusion, Brownian motion, Schrodinger equation for a free particle, thermal diffusivity, 

financial mathematics etc. And more importantly, if we generalized this idea, the 

computational overlap technique discussed can also be applied to any system modeling 

application with the following properties:

1) Simulation is carried out in discretized synchronous temporal steps.

2) All operations in time step t depend solely on the state of the environment and 

agents determined by the end of time step t – 1.

3) Computations in each time step can be divided into multiple independent tasks 

with at least one task in each of the following categories:
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(a) CPU suitable task

(b) Intensive GPU suitable task

If all the three properties above hold, the CPU-GPU computation overlap technique can be 

applied to any systemmodeling implementation on a heterogeneous (CPU/GPU) computing 

platform to ensure data and task parallelization, resulting in efficiency and performance 

improvements on the model computation.

B. Update and Synchronization

All agents make decisions in time step t based on the state of the system in time step t – 1. 

Each agent then modifies its own state in time step t according to the decisions made in the 

same time step. This means there is little to no data dependency in the process of state 

update for each agent for any specific time step, making ABM simulation an excellent 

candidate for parallelization. However, as discussed earlier in section II-C, constant updates 

are unavoidable causing heavy traffic to memory. In order to mitigate memory bandwidth 

contention, each agent maintains dirty flags, and each agent only updates when necessary.

Apart from writing to their own fields, agents’ decisions also affect their environment. If we 

assume that the resolution of the world is the finest possible, each patch will only allow one 

agent. When an agent targets a patch to move into, it needs to make sure no other agents will 

move into that patch. Naively, one could maintain a lock for each patch; however locks incur 

a high overhead. For optimal performance, atomic operations were used for synchronization 

to enforce the rule of one agent per patch as shown in algorithm 1. The function 

atomic_test_and_set(v) atomically sets the content of v to true and return the previous value 

of v, thus an agent can find out if the patch is available by checking the return value.

C. In Situ Remote Visualization

In recent years, as the computational power of computing platforms has substantially 

increased, numerical simulations developed on these platforms have grown much more 

complex, generating outputs that measure up to hundreds of terabytes in sizes (and soon 

exabytes) [2]. Conventional visualization work-flow of writing output to disk for later 

visualization is not really a cost effective solution for such cases. To design a simulation 

framework that scales with the computational power of the latest platforms, a compute-

visualize paradigm satisfying the following properties will be extremely desirable.

1) Both the computation and the visualization will take full advantage of 

computational power of the server;

2) The load on the disks should be minimized;

3) The researcher should be able to steer the computation based on the data as it is 

being generated and visualized.

The local simulation, as previously discussed, can rarely take advantage of the server as it 

assumes direct connection between the compute node and the display and it is uncommon 

for the user to have physical access to the server. On the other hand, conventional work-flow 
remote simulation may be able to partly take advantage of the powerful server, but it doesn’t 
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exhibit neither property 2 nor 3. Lastly, the client-render remote simulation scheme may 

manifest both 2 and 3; however, it doesn’t fully take advantage of the powerful server since 

it redirects the rendering to the client.

The In Situ Remote Visualization paradigm [37] exhibits all three of the desired properties. 

Our ABM implementation was developed and tested on a system configured with VirtualGL 

and TurboVNC. VirtualGL is an open source package which gives any Unix or Linux remote 

display software the ability to run OpenGL applications with full 3D hardware acceleration 

[38]. Figure 4 shows the X11 transport with an X proxy diagram. The application uses Xlib 

to communicate with the 3D X server to request for an openGL context. Once the context is 

created, the application can then talk directly to the rendering hardware via libGL. An X 

proxy, in our case TurboVNC, essentially acts as a virtual X server. The X11 rendering is 

then performed to a virtual framebuffer in main memory rather than a real framebuffer on 

the graphics card. This allows the X proxy to compress and transmit the buffer content to 

end user without the need to provide any X server capabilities, thus a very thin client can be 

used.

Once the remote visualization protocol has been established, the next step is to make sure 

the rendering code is efficient. The visualization code is optimized using Vertex Buffer 

Objects (VBOs) as well as Index Buffer Objects (IBOs), which is a way for OpenGL to 

reserve fast graphics memory. ABMs generally consist of at least one plane, the world plane. 

The world plane is usually heterogeneous in patch type. In the case that the programmer 

knows that the ratio of a certain type of patches to other types is high, he or she can make 

that patch type a base type, spread them across the world using one big texture and store the 

coordinates of their outline in a VBO, and render other types of patches on top. This strategy 

reduces the number of OpengGL draw calls to the number of patches that are not of the base 
type, which can result in a significant work reduction in many cases. For example, the vocal 

fold model, about 80% of the patches are tissue, then the rest are capillary and epithelial 

patches. In this case, the calls to render the world plane can be reduced by 80% using the 

technique discussed.

IV. Performance

A. Computation Only

Different versions of Vocal Fold ABM were implemented for performance evaluation 

purposes as shown in table IV. These versions follow the same model rules, but differ in 

computing resource utilization. They were tested and bench-marked on a compute node with 

16-core Intel(R) Xeon(R) E5-2690 CPU and NVIDIA Tesla K20c GPU. As shown in Figure 

5, the GPU-mCPU-Overlap implementation achieves the best performance. This 

implementation follows the techniques discussed in Section III, where the ABM model 

execution is being divided up into smaller more manageable tasks that are either high-

throughput computationally-intensive or complex, but less computationally intensive. The 

former is considered GPU-suitable, thus is executed on the GPU, whereas the latter gets 

executed on the CPU. The CPU-suitable tasks are then further sped up by multiple CPU 
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threads. The total time to execute one iteration of the program is governed by the following 

equation:

(9)

where  and  are the time consumed by executing tasks using 

maximum number of threads on CPU and GPU respectively. The maximum number of 

threads typically corresponds to the number of physical cores on the specified computing 

device. tsync is the time it takes to synchronize the data resulting from task executions on 

CPU and GPU. If , then clearly, any number of threads 

launched beyond k threads on device2 would not benefit the overall performance. For the 

vocal folds simulation on the afore-mentioned compute node, , 

thus the load is most balanced when executing with 8 CPU threads.

Our implementations are able to execute the vocal fold ABM at a scale, which is infeasible 

on a popular existing ABM framework, NetLogo [3]. To demonstrate the performance gain 

of the proposed techniques compared to an existing ABM framework, we obtain the 

performance of the GPU-mCPU-overlap implementation running at a scale feasible on 

NetLogo. For a 1-million patch world, with half number of initial cells, the model runs on 

average 36.6 s per iteration on NetLogo and an average of 0.091 s per iteration on the GPU-

mCPU-overlap implementation, resulting in a 400× speedup.

Despite differences in underlying hardware, D’Souza’s work on Tuberculosis (TB) ABM 

Simulation [43] is arguably most suitable for performance comparison with the work 

reported in this paper. The aforementioned TB ABM describes a complex multi-scale 

biological system of agents that communicate via chemical signals, which aligns in most 

respects with our model. The largest case reported in their work consists of 256 patches x 

256 patches world with 100 initial Macrophages, and takes 450 seconds to run for a 4-day 

simulation. In comparison, our case study consists of 30× world size with 1000× the number 

of initial cells, and takes only 25 seconds, i.e. 20× less, to perform a 4-day simulation.

Next, we compare the performance improvement gained by the GPU-mCPU-overlap 

implementation over other low-level highly optimized implementations. A 5-day high-

resolution simulation that takes 20 minutes on CPU only takes half a minute when both CPU 

and GPU are efficiently utilized via our proposed task orchestration technique, accounting 

for a 35.1× and 6.6× speedup in execution time over single-core and multi-core CPU 

respectively. This improvement is significant given the fairly complex and biologically 

representative 2D model with intensive calculations and heavy memory traffic.

B. Computation + Visualization

We coupled the GPU-mCPU-overlap computation implementation, which shows the best 

performance from section IV-A with visualization code implemented with OpenGL. The 

advanced visualization component displays aggregated statistics and simulation state of 
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multiple components over spatio-temporal dimensions simultaneously. This complex 

simulation suite (Figure 6, 7) is then tested and benchmarked on a compute node which 

consists of a 16-core Intel(R) Xeon(R) CPU E5-2630 and an NVIDIA Tesla K80 GPU with 

rendering enabled. As shown in table VI, average execution time per tick, which includes 

complex simulation computation and rendering on the server, takes a little bit less than 200 

ms. VirtualGL and TurboVNC enable simulation frames to be transmitted to the end user 

with very minimal overhead. Therefore, the total time from the start of the iteration 

execution to the time the simulation output frame gets completely rendered on the client 

terminal can be kept under 200 ms.

V. Conclusion

We presented an efficient ABM task scheduling and management technique which optimally 

utilizes both multicore CPU and many-core GPU on a single heterogeneous compute node 

simultaneously. The techniques proposed showed a speedup of 35× over an optimized 

sequential implementation when benchmarked with a complex biological modeling 

application of vocal folds inflammation and wound healing. More importantly, the proposed 

technique can be generalized to improve efficiency and performance of many complex 

discrete synchronized time step simulations which can be partitioned into smaller tasks that 

are either high-throughput and computationally-intensive (GPU-suitable) or more complex 

but less computationally-intensive (CPU-suitable).

The model computation is then coupled with an advanced visualization component which 

displays aggregated statistics and simulation state of multiple components over spatio-

temporal dimensions. To take full advantage of the powerful computational server, minimize 

disk load, and enable computational steering, the program was tested and benchmarked on 

the system with X11 transport via X proxy protocol configured. In-situ visualization along 

with optimization using OpenGL buffer objects and base-type main plane bring the total 

time to under 200 ms per iteration enabling remote real-time simulation and visualization.

VI. Future Work

While the proposed techniques resulted in a significant improvement on efficiency and 

speedup of a fairly complex ABM simulation, there is still room for further optimization. 

Future work includes optimization of GPU implementation on multi-device GPU chips (2D) 

and high performance clusters for the 3D case. Changes in data structures to improve spatial 

locality and memory access are being explored. Additional visualization functionalities such 

as computational steering input user interface are being expanded to aid users in obtaining 

more insightful information from the simulation.
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Figure 1. 
Flowchart of Vocal Fold ABM. Modified from [22].
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Figure 2. 
A diagram depicting the proposed CPU-GPU computation overlap technique (GPU-mCPU-

overlap).
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Figure 3. 
Pseudo code demonstrating atomic move algorithm for enforcing one agent per patch rule 

efficiently.
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Figure 4. 
Diagram depicting the system configuration for In Situ remote visualization using X11 

transport with an X proxy.
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Figure 5. 
Performance of 2D Vocal Fold Inflammation and healing ABM on different processing 

platforms.
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Figure 6. 
A screenshot of a running vocal fold inflammatory and wound-healing process with 

aggregated chemical statistics plots and chemical visualization on (heat map and surface 

plots)1.

1Texture sources: [39], [40]
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Figure 7. 
A screenshot of a running vocal fold inflammatory and wound-healing process with 

aggregated chemical statistics plots and ECM visualization on2.

2Texture sources: [39]-[42]
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Table I

Summary of Tesla C2050 and K20c Specifications

GPU Tesla K20c Tesla K80

SMs (per Device) 13 13

CUDA Cores per SM 192 192

Registers per SM 64k 64k

Configurable L1 Cache +
 Shared Memory per SM

64 kB 128 kB

L2 Cache Size 1.25 MB 1.50 MB

Global Memory (per Device) 4.7 GB 11.25 GB

Max Clock Rate 0.71 GHz 0.82 GHz

Memory Clock Rate 2.6 GHz 2.5 GHz

Memory Bandwidth 208 GB/s 240 GB/s

Compute Capability 3.5 3.7
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Table II

Summary of Agent Rules

Agent Actions

Platelets Secrete TGF, MMP8 and IL-1,β to attract
other cells.

Neutrophils Secrete TNF and MMP8 to attract other
Neutrophils and Macrophages.

Macrophages Secrete TNF, TGF, FGF, IL-1,β, IL-6,
IL-8, IL-10 to attract Neutrophils, other
Macrophages and Fibroblasts.

Clean up cell debris.

Fibroblasts Secrete TNF, TGF, FGF, IL-6, IL-8 to attract
Neutrophils, Macrophages and other Fibrob-
lasts.

Deposit ECM proteins to repair tissue dam-
age.

ECM Managers Manages ECM functions and conversion.

One Manager per patch.
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Table III

Summary of Simulation Configurations

Item Unit Size

World patches × patches 1660 × 1160

Patch μm × μm 15 × 15

patches 1.9M

Simulated area mm × mm 24.9 × 17.4

Simulated time-step minutes 30

Neutrophils cells 182.4k

Macrophages cells 22.8k

Fibroblasts cells 22.8k
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Table IV

Implementation Summary

Implementation Single-core CPU
Tasks Executed on

Multi-core CPU GPU

sCPU-sCPU Diffusion
Other functions

- -

mCPU-mCPU - Diffusion
Other functions

-

GPU-sCPU Other functions - Diffusion

GPU-mCPU - Other functions Diffusion

GPU-mCPU-
overlap

- Other functions Diffusion
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Table V

Performance Comparison of Various Implementations

Implementation Execution Time
(ms/tick)

Speedup over
Serial Execution

sCPU-sCPU 4562 1.0×

mCPU-mCPU 855 5.3×

GPU-sCPU 640 7.1×

GPU-mCPU 210 21.7×

GPU-mCPU-overlap 130 35.1×

IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. Author manuscript; available in PMC 2016 August 17.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Seekhao et al. Page 28

Table VI

Average Execution Time of Remote In Situ Simulation

Average Execution Time
(ms/tick)

Computation 142

Rendering + Image Transmission 47

Total 189
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