
Real-Time Agent-Based Modeling Simulation with in-situ
Visualization of Complex Biological Systems:
A Case Study on Vocal Fold Inflammation and Healing

Nuttiiya Seekhao*, Caroline Shung†, Joseph JaJa*, Luc Mongeau†, and Nicole Y. K. Li-
Jessen‡

*Department of Electrical and Computer Engineering - University of Maryland-College Park,
Maryland, USA

†Department of Mechanical Engineering - McGill University, Montreal, Canada

‡School of Communication Sciences and Disorders - McGill University, Montreal, Canada

Abstract

We present an efficient and scalable scheme for implementing agent-based modeling (ABM)

simulation with In Situ visualization of large complex systems on heterogeneous computing

platforms. The scheme is designed to make optimal use of the resources available on a

heterogeneous platform consisting of a multicore CPU and a GPU, resulting in minimal to no

resource idle time. Furthermore, the scheme was implemented under a client-server paradigm that

enables remote users to visualize and analyze simulation data as it is being generated at each time

step of the model. Performance of a simulation case study of vocal fold inflammation and wound

healing with 3.8 million agents shows 35× and 7× speedup in execution time over single-core and

multi-core CPU respectively. Each iteration of the model took less than 200 ms to simulate,

visualize and send the results to the client. This enables users to monitor the simulation in real-

time and modify its course as needed.

Keywords

component; HPC; ABMs; In Situ Visualization; Heterogeneous Platform; Systems Biology

I. Introduction

Agent-based modeling (ABM) is a powerful and widely used approach to quantitatively

simulate a system defined by a set of autonomous agents that operate and interact in discrete

time steps. ABMs represent models at the microscale, which attempt to explain the

emergence of higher order properties of the overall system. Depending on the system being

modeled, each agent can represent a wide variety of entity types in an environment ranging

from living cells in a biological process modeling, animals in an ecosystem modeling, to

cities or countries in an economic model. These agents ’live’ in their environment, or world,

Contact: nseekhao@umiacs.umd.edu.

HHS Public Access
Author manuscript
IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. Author manuscript;
available in PMC 2016 August 17.

Published in final edited form as:
IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. 2016 May ; 2016: 463–472. doi:10.1109/
IPDPSW.2016.20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

whose organization may vary substantially depending on the particular application. In this

work, we constrain the world to a two-dimensional grid whose size is determined by the

granularity of the simulation. For complex biological systems such as inflammatory and

wound healing response, the world consists of a grid of tissue patches, each patch may

contain a number of entities such as cells and extra-cellular matrix (ECM) proteins. The size

of the grid reflects the granularity of the simulation, and hence the larger the grid the more

accurate the simulation. However, high fidelity simulation typically introduces a significant

computational burden that, when coupled with the work needed to perform in-situ

visualization, makes the overall task of real-time simulation and visualization quite

challenging. Thus, such high fidelity simulations stand to benefit substantially from an

efficient and scalable parallel implementation.

A challenge in biological simulation is to handle the differences in spatiotemporal scales

between cellular and chemical interactions [1]. For example, cellular movements occur at

the rate of micrometers per hour (μm/τ), while cytokine diffusion in tissue occurs at the rate

of micrometers per second (μm/t). A naive approach would be to simulate the model at the

smallest temporal scale required, i.e. time step ts = t. Clearly, this would unnecessarily

increase the complexity of the coarse-grain processes. To solve this problem, we design a

mechanism that captures the behavior of the finer-scale processes over a coarse time window

using convolution, and offload this intensive computation to the GPU while the CPU cores

focus on coarse-grain processes.

Visualization is a crucial component of any ABM simulation and is usually done separately

on the stored data that was generated during the simulation. To date, most visualization

techniques proposed fall into one of the following categories; local simulation, conventional

work-flow remote simulation [2], or client-render remote simulation. In local simulation, the

visualization happens in the same place where the computation is performed. Thus, this

assumes a monitor attached locally to the computing platform, which means that, in order to

take advantage of a powerful server, the user needs to have a physical access to it. This

solution is not acceptable since servers are usually maintained in an isolated highly-

regulated area, which is only accessible to the users via a secured network protocol. A

commonly used model, conventional work-flow remote simulation, performs computational

part of the simulation on the server first, store data on disk for later visualization on the

client machine. This approach requires temporary storage and heavy traffic on disk. Note

that this approach precludes computation steering. The last category is rarely seen, but is

mentioned here for completeness, namely the client-render remote simulation. This scheme

performs the simulation on the server then send the rendering commands to the client. This

leaves all rendering responsibility to the client’s local computing resource, which is usually

much less powerful than that of the server. Existing well-known ABM platforms use a mix

of strategies for visualization. NetLogo assumes local simulation [3], while SPADES uses

conventional work flow [4]. MASON and FLAME GPU allow for both conventional work

flow and computation/visualization coupling [5], [6]. No server-client rendering protocol,

however, were specified for the latter option, thus it is fair to assume the local simulation

model was used for the coupling of computation and visualization.

Seekhao et al. Page 2

IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. Author manuscript; available in PMC 2016 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In situ visualization, or in-place simulation output processing, addresses all the issues other

visualization work flows pose. A quadtree-based ABM is proposed by [7] to reduce the

amount of irrelevant data analyzed in-situ, where [8] attempts to accomplish the same goal

with a bitmap-based approach. Paraview Catalyst [9], [10] was developed to process

simulation output data in-situ according to the user’s co-processing script. An image-based

approach built on top of Paraview Catalyst was presented by [11] to efficiently manage

rendered images created in-situ by Paraview Catalyst. As much as all these work ([7]-[11])

reduce I/O loads, none completely by-pass I/O.

In the present study, VirtualGL is used in the implementation, resulting in an In Situ

visualization ABMs framework that completely by-passes the disk as a mediator in the

visualization pipeline. Our main goal is to be able, for each time step of the model, to

perform the simulation and visualization in a few hundred milliseconds, including the

transfer time of the visualization and statistical summary information to the remote client.

Such a performance enables the users to take full advantage of the computational power of

the server, while analyzing and steering the computation in real-time.

II. Overview and Background

A. Heterogeneous Computing Platform

Heterogeneous computing systems refer to a diverse set of computing resources

interconnected via high speed network to collaboratively support execution of

computationally intensive parallel and distributed applications [12]. Heterogeneous

platforms of various architectures and scales are quite popular. For example the larger scale

platforms are based on large clusters of different types of multicore CPUs and many-core

accelerators such as GPUs. In fact, almost all current personal computers are based on

heterogeneous computing platforms that include a multicore CPU with an attached

accelerator of one or more GPUs. However, most often the applications do not make

effective use of these available resources. For example, if the CPU is only there to move data

and launch GPU kernels, or the GPU is there to merely act as an accelerator to the CPUs, the

program is not really employing the full power of the heterogeneous computing

environment. On the other hand, if both CPUs and GPUs collaborate to handle important

computations, then major performance gains are possible. But this requires a careful

scheduling and orchestration of the operations using the available resources. In this work, we

will focus on a single node platform consisting of a multi-core CPU with one or several

many-core GPUs attached to it.

1) Multi-Core Central Processing Units (CPUs)—Driven by a performance hungry

market, there is always a demand for faster processor regardless of the speed of the fastest

available processor at the time. Moore’s law predicts that the number of transistors in a chip

doubles every 18 months [13]. And continuous performance improvement of a processor has

been relying on increase in density of integrated circuits (ICs) on a chip for decades [14],

[15]. However, according to Pollack’s rule, performance increase by microarchitecture alone

is roughly proportional to square root of increase in complexity [16], thus the performance

of a single processor core does not scale linearly with the number of logic on the core. As

Seekhao et al. Page 3

IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. Author manuscript; available in PMC 2016 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the transistor size shrinks, the leakage current becomes larger [17]. And with higher

integrated density, power dissipation becomes the bottleneck of the architecture [16], [17].

Alternatively, performance boost could be achieved by increasing the clock speed, or the

frequency at which the processor operates at. This gives more instructions per second,

however, due to increased dynamic power dissipation and design complexity, the clock

frequency is currently limited to about 4 GHz [18]. Multicore architecture allows scalable

processor design and offers a way to achieve better performance without infringing the

power dissipation requirements [16]-[18].

Today, a CPU chip typically consists of 2 to 10 CPU cores. A powerful compute node may

consist of multiple CPU sockets resulting in more number of cores, typically 16 to 20. For

more computing power, multiple compute nodes can work together in a cluster and

communicate among themselves via high-speed connections.

2) Graphics Processing Units (GPUs)—GPUs were originally designed as special

purpose processors focusing on graphics computations such as polygon calculations, or

image filtering. Since the introduction of the CUDA high level programming environment

by NVIDIA, GPUs have become the preferred high performance computing platform

especially for data parallel computations, achieving a much better performance/energy

tradeoff than multicore CPUs. In general, a GPU consists of thousands of processing cores,

making them very suitable for data parallel operations. The scientific community has picked

up interest in GPU computing due to their computationally demanding applications, which

has given rise to General Purpose GPU (GPGPU). CUDA (II-B) was then introduced in

2007 to enable GPGPU programming in C language with C-like extensions. Since its

introduction, more than 100 million computers with CUDA-capable GPUs have been

shipped to end users [19].

GPUs consist of a number of Streaming Multiprocessors (SMs), each of which contains a

number of Streaming Processors (SPs or cores). The GPUs are capable of launching

thousands of threads simultaneously. All the SMs have access to the high bandwidth Device

memory (peak bandwidth 240 GB/s). The best bandwidth is achieved when all threads in

warp access coalesced memory. In this work, the computation component was tested on a

compute node with the Tesla K20c, whereas the whole suite (computation and visualization)

was tested on a node with a Tesla K80 GPU. The overview of their architecture is

summarized in table I.

B. Programming Environment

Designing with speed and efficiency in mind, a light-weight object-oriented programming

language C++ is chosen. To take advantage of multiple CPU cores, the code was extended

with Open Multi-Processing (OpenMP) to employ concurrency. OpenMP is a highly

portable application programming interface (API) which supports parallel executions on

shared-memory platforms via a set of platform-independent compiler directives [20].

To communicate and issue instructions to GPUs, Compute Unified Device Architecture

(CUDA) programming interface is used. CUDA is a parallel computing platform and

Seekhao et al. Page 4

IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. Author manuscript; available in PMC 2016 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

programming model, which allows general-purpose programming of the GPU via C-like

language extension keywords [2]. CUDA assumes a GPU attached to the host (CPU) which

control data movement to/from GPU, and is responsible for launching kernels, functions to

be executed by all threads launched on the GPU.

Visualization was implemented using Open Graphics Library (OpenGL). OpenGL is an

open standard, cross-language API for 2D and 3D rendering. OpenGL is widely used in

extensive range of graphics applications for its portability and speed.

C. Agent-Based Modeling (ABM)

Agent-based modeling (ABM) is a powerful bottom-up approach for modeling systems with

interacting components to observe emerging behavior and insightful information about the

system [21]. The basic components of ABMs are:

• Agents - Autonomous objects which perform actions and interact with

other agents and the environment

• Agent Rules - Behaviors of each type of agents

• World - The environment in which all agents ’live’ in Multiple types of

agents can be modeled in a single ABM.

Agents are usually object instances, thus most ABMs are implemented using object-oriented

programs such as C++, or JAVA.

Each type of agents behaves according to a set of pre-defined rules, which can be

deterministic or stochastic. For example, a simulation related to tissue inflammation may

have various cell types, such as neutrophils, macrophages and fibroblasts, as agents. Rules

are then determined using the best available knowledge in literature about the behavior of

cells. The autonomous agents are mobile and make decisions based on their states and the

world environment. The world in our case is modeled as a grid of tiny squares (2D) called

patches. Patch size is uniform across the world, and thus the resolution of the simulation

environment is inversely proportional to patch size.

The temporal dimension of ABMs is discrete and the simulation progresses in sequence of

synchronous iterations (sometimes referred to as tick). Thus, even if the semantics of agent

execution in ABMs is parallel in nature, constant updates and synchronizations at iteration-

granularity are inevitable, making the task of designing an efficient parallel algorithm for

ABMs challenging.

D. Modeling of Inflammatory and Healing Process in Vocal Folds

Human vocal folds experience continuous biomechanical stresses during phonation.

Excessive vocalization can cause phonotrauma, which, like any other forms of mechanical

trauma, triggers a highly complex process of inflammation and tissue repair. Treatment

outcomes often depend on the level of the initial damage and influenced by individual’s

genetics or pre-morbid tissue status [22]. Thus, personalized treatments based on

individual’s biological profile can increase the chance of better healing results. A vocal fold

Seekhao et al. Page 5

IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. Author manuscript; available in PMC 2016 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ABM has been developed to simulate inflammation and repair to gain a deeper mechanistic

understanding of the underlying cellular and molecular processes, which has shed insights of

rational therapeutic design. Vocal fold wound healing modeling is thus an excellent

candidate application to test and validate our proposed parallelization of ABMs, due to its

complexity and the availability of patient-specific data [23], [24].

Table II summarizes actions of each agent type for our application. The cells, which includes

Platelets, Neutrophils, Macrophages and Fibroblasts, are mobile agents that make action

decisions based on the states of their surroundings. At the time of acute injury, the

traumatized mucosal tissue within the damaged area triggers platelet degranulation [23],

[25]. Different chemokine gradients were readily created and stimulate vasodilation and

attraction of inflammatory cells, namely, neutrophils and macrophages. Activated

neutrophils and macrophages at the wound site secrete more chemokines to attract

fibroblasts and clean up cell debris. Fibroblasts activated by tissue damage deposit

extracellular matrix (ECM) proteins such as collagen, elastin, and hyaluronans at the wound

area of repair. These ECM proteins then form a scaffold for supporting fibroblasts in wound

contraction and other cells’ migration and wound repair activities [26]. The flow diagram of

the interactions between all the components in the model is shown in Figure 1.

To achieve the best resolution in the ABM world, each patch is made to be the smallest

possible for a single cell to occupy. This results in patch size of 15μm × 15 μm [27], [28].

Initial density of cells and ECM proteins were calculated based on empirical data from

literature [29]-[33]. The configuration details, which were determined based on our best

knowledge of vocal folds anatomy, are shown in table III.

E. Chemical Diffusion

Chemical diffusion is one of the most crucial and highly intensive computational

components of the model. Diffusion equation with decay in 2D can be written as follows:

(1)

where c is the chemical concentration, D is the diffusion coefficient and γ is the decay

constant. By using a Taylor expansion to discretize the continuous diffusion equation, we

get:

Seekhao et al. Page 6

IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. Author manuscript; available in PMC 2016 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(2)

In our case, Δx = Δy, thus Eqn. (2) becomes:

(3)

Notice that Eqn. (3) is a discrete function that can be implemented easily as a function.

However, we need to first make sure that the solution is stable. Using Von Neumann

Stability Analysis method to study the growth of the waves eikx [34], we have the following

stability conditions:

(4)

Since Δx = Δy, we have,

(5)

Given that the largest values of D in our set of chemical types is , with patch

width Δx = 15μm, Δt ≤ 0.0625 minute. Clearly, the work complexity of the simulation would

be unnecessarily high if we simulate the model at Δτ = 0.0625 minute rather than Δτ = 30

minutes.

Fortunately, there is a way to capture Eqn. (3) at a larger time step. By letting , Eqn.

(3) can be rewritten as follows:

Seekhao et al. Page 7

IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. Author manuscript; available in PMC 2016 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(6)

or,

(7)

where

Clearly, Eqn. (7) is equivalent to saying c (x, y, t + Δt) = c (x, y, t) * f (x), where * represents

convolution. Thus, we can fast forward this process to capture diffusion at large time step,

Δτ, without violating stability constraints using convolution.

In order to compute c (x, y, τ + Δτ), where Δτ = m · Δt, we convolve the chemical

concentrations from previous step, c (x, y, τ), with f (x, y), m times. By commutative

property of convolution, we can convolve f (x, y) with itself m times to get fm (x, y), and

compute the diffused concentrations at each tick as follows:

(8)

For example, the effective diffusitivity of IL-1β in tissue is [35]. In our 15-μm
patch world, simulating at 30-minute time steps, the program has to calculates c (x, y, τ) *

f480 (x, y) at each time step. This means a chemical on a given patch (x,y) can diffuse to all

patches within x ± 480 and y ± 480, which is a window of dimension 961×961 or

approximately 1 million patches.

After obtaining the formula for fast-forward diffusion calculations, we need to also consider

boundary conditions to appropriately pad the data for convolution operations. Depending on

the area of interest, the padding chosen could either be constant padding or mirror padding
or both.

In our case study of vocal fold modeling, our tissue area of interest has epithelium on the

outermost layer. Since the dynamics of vocal fold epithelium is abstracted in this ABM, we

Seekhao et al. Page 8

IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. Author manuscript; available in PMC 2016 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

have effectively one wall, or 1-side 0-flux boundaries. And the rest of the walls are padded

with empirically obtained baseline chemical levels, or constant padding.

III. Methodology

A. Scheduling and Coordination of the CPU and GPU Computations

As discussed in section II-E, chemical concentration in a patch can affect other patches

within a radius of up to 480 patches. In other words, our convolution kernel can be as large

as 961 × 961, defining a window that contains roughly a million patches. Fortunately, GPUs

are much faster at computing convolutions than CPUs [36]. However, the diffusion needs to

be updated at every iteration, which means we need to move data between the CPU and

GPU at the end of each iteration, which makes the total time to compute diffusion and move

the results back quite significant.

To address this issue, we hide the diffusion computation time by utilizing our GPU and p
CPU cores as follows:

i) We allocate p – 1 CPU threads for executing parallel operations other than

diffusion.

ii) The remaining CPU thread prepares and manages data movement to and from

the GPU

iii) GPU computes chemical diffusion using FFT-based convolutions concurrently

with the CPU threads executing their operations

Since all agent decisions during time step t are determined by the state of the environment

determined at the end of time step t – 1, steps (i) and (iii) can be executed simultaneously as

shown in Figure 2.

This approach is applicable to chemical diffusion in biological systems such as hormones in

the endocrine system, or pharmacokinetics of drug infusions. Furthermore, particle diffusion

is encountered in a wide range of system modeling applications. Hence, the technique

discussed can be applied to a broad range of system modeling applications involving any

type of particle diffusion. The diffusion equation (Eqn. 1) is of the same form as the Heat

Equation, which has an even larger range of applications such as the aforementioned particle

diffusion, Brownian motion, Schrodinger equation for a free particle, thermal diffusivity,

financial mathematics etc. And more importantly, if we generalized this idea, the

computational overlap technique discussed can also be applied to any system modeling

application with the following properties:

1) Simulation is carried out in discretized synchronous temporal steps.

2) All operations in time step t depend solely on the state of the environment and

agents determined by the end of time step t – 1.

3) Computations in each time step can be divided into multiple independent tasks

with at least one task in each of the following categories:

Seekhao et al. Page 9

IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. Author manuscript; available in PMC 2016 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(a) CPU suitable task

(b) Intensive GPU suitable task

If all the three properties above hold, the CPU-GPU computation overlap technique can be

applied to any systemmodeling implementation on a heterogeneous (CPU/GPU) computing

platform to ensure data and task parallelization, resulting in efficiency and performance

improvements on the model computation.

B. Update and Synchronization

All agents make decisions in time step t based on the state of the system in time step t – 1.

Each agent then modifies its own state in time step t according to the decisions made in the

same time step. This means there is little to no data dependency in the process of state

update for each agent for any specific time step, making ABM simulation an excellent

candidate for parallelization. However, as discussed earlier in section II-C, constant updates

are unavoidable causing heavy traffic to memory. In order to mitigate memory bandwidth

contention, each agent maintains dirty flags, and each agent only updates when necessary.

Apart from writing to their own fields, agents’ decisions also affect their environment. If we

assume that the resolution of the world is the finest possible, each patch will only allow one

agent. When an agent targets a patch to move into, it needs to make sure no other agents will

move into that patch. Naively, one could maintain a lock for each patch; however locks incur

a high overhead. For optimal performance, atomic operations were used for synchronization

to enforce the rule of one agent per patch as shown in algorithm 1. The function

atomic_test_and_set(v) atomically sets the content of v to true and return the previous value

of v, thus an agent can find out if the patch is available by checking the return value.

C. In Situ Remote Visualization

In recent years, as the computational power of computing platforms has substantially

increased, numerical simulations developed on these platforms have grown much more

complex, generating outputs that measure up to hundreds of terabytes in sizes (and soon

exabytes) [2]. Conventional visualization work-flow of writing output to disk for later

visualization is not really a cost effective solution for such cases. To design a simulation

framework that scales with the computational power of the latest platforms, a compute-

visualize paradigm satisfying the following properties will be extremely desirable.

1) Both the computation and the visualization will take full advantage of

computational power of the server;

2) The load on the disks should be minimized;

3) The researcher should be able to steer the computation based on the data as it is

being generated and visualized.

The local simulation, as previously discussed, can rarely take advantage of the server as it

assumes direct connection between the compute node and the display and it is uncommon

for the user to have physical access to the server. On the other hand, conventional work-flow
remote simulation may be able to partly take advantage of the powerful server, but it doesn’t

Seekhao et al. Page 10

IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. Author manuscript; available in PMC 2016 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

exhibit neither property 2 nor 3. Lastly, the client-render remote simulation scheme may

manifest both 2 and 3; however, it doesn’t fully take advantage of the powerful server since

it redirects the rendering to the client.

The In Situ Remote Visualization paradigm [37] exhibits all three of the desired properties.

Our ABM implementation was developed and tested on a system configured with VirtualGL

and TurboVNC. VirtualGL is an open source package which gives any Unix or Linux remote

display software the ability to run OpenGL applications with full 3D hardware acceleration

[38]. Figure 4 shows the X11 transport with an X proxy diagram. The application uses Xlib

to communicate with the 3D X server to request for an openGL context. Once the context is

created, the application can then talk directly to the rendering hardware via libGL. An X

proxy, in our case TurboVNC, essentially acts as a virtual X server. The X11 rendering is

then performed to a virtual framebuffer in main memory rather than a real framebuffer on

the graphics card. This allows the X proxy to compress and transmit the buffer content to

end user without the need to provide any X server capabilities, thus a very thin client can be

used.

Once the remote visualization protocol has been established, the next step is to make sure

the rendering code is efficient. The visualization code is optimized using Vertex Buffer

Objects (VBOs) as well as Index Buffer Objects (IBOs), which is a way for OpenGL to

reserve fast graphics memory. ABMs generally consist of at least one plane, the world plane.

The world plane is usually heterogeneous in patch type. In the case that the programmer

knows that the ratio of a certain type of patches to other types is high, he or she can make

that patch type a base type, spread them across the world using one big texture and store the

coordinates of their outline in a VBO, and render other types of patches on top. This strategy

reduces the number of OpengGL draw calls to the number of patches that are not of the base
type, which can result in a significant work reduction in many cases. For example, the vocal

fold model, about 80% of the patches are tissue, then the rest are capillary and epithelial

patches. In this case, the calls to render the world plane can be reduced by 80% using the

technique discussed.

IV. Performance

A. Computation Only

Different versions of Vocal Fold ABM were implemented for performance evaluation

purposes as shown in table IV. These versions follow the same model rules, but differ in

computing resource utilization. They were tested and bench-marked on a compute node with

16-core Intel(R) Xeon(R) E5-2690 CPU and NVIDIA Tesla K20c GPU. As shown in Figure

5, the GPU-mCPU-Overlap implementation achieves the best performance. This

implementation follows the techniques discussed in Section III, where the ABM model

execution is being divided up into smaller more manageable tasks that are either high-

throughput computationally-intensive or complex, but less computationally intensive. The

former is considered GPU-suitable, thus is executed on the GPU, whereas the latter gets

executed on the CPU. The CPU-suitable tasks are then further sped up by multiple CPU

Seekhao et al. Page 11

IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. Author manuscript; available in PMC 2016 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

threads. The total time to execute one iteration of the program is governed by the following

equation:

(9)

where and are the time consumed by executing tasks using

maximum number of threads on CPU and GPU respectively. The maximum number of

threads typically corresponds to the number of physical cores on the specified computing

device. tsync is the time it takes to synchronize the data resulting from task executions on

CPU and GPU. If , then clearly, any number of threads

launched beyond k threads on device2 would not benefit the overall performance. For the

vocal folds simulation on the afore-mentioned compute node, ,

thus the load is most balanced when executing with 8 CPU threads.

Our implementations are able to execute the vocal fold ABM at a scale, which is infeasible

on a popular existing ABM framework, NetLogo [3]. To demonstrate the performance gain

of the proposed techniques compared to an existing ABM framework, we obtain the

performance of the GPU-mCPU-overlap implementation running at a scale feasible on

NetLogo. For a 1-million patch world, with half number of initial cells, the model runs on

average 36.6 s per iteration on NetLogo and an average of 0.091 s per iteration on the GPU-

mCPU-overlap implementation, resulting in a 400× speedup.

Despite differences in underlying hardware, D’Souza’s work on Tuberculosis (TB) ABM

Simulation [43] is arguably most suitable for performance comparison with the work

reported in this paper. The aforementioned TB ABM describes a complex multi-scale

biological system of agents that communicate via chemical signals, which aligns in most

respects with our model. The largest case reported in their work consists of 256 patches x

256 patches world with 100 initial Macrophages, and takes 450 seconds to run for a 4-day

simulation. In comparison, our case study consists of 30× world size with 1000× the number

of initial cells, and takes only 25 seconds, i.e. 20× less, to perform a 4-day simulation.

Next, we compare the performance improvement gained by the GPU-mCPU-overlap

implementation over other low-level highly optimized implementations. A 5-day high-

resolution simulation that takes 20 minutes on CPU only takes half a minute when both CPU

and GPU are efficiently utilized via our proposed task orchestration technique, accounting

for a 35.1× and 6.6× speedup in execution time over single-core and multi-core CPU

respectively. This improvement is significant given the fairly complex and biologically

representative 2D model with intensive calculations and heavy memory traffic.

B. Computation + Visualization

We coupled the GPU-mCPU-overlap computation implementation, which shows the best

performance from section IV-A with visualization code implemented with OpenGL. The

advanced visualization component displays aggregated statistics and simulation state of

Seekhao et al. Page 12

IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. Author manuscript; available in PMC 2016 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

multiple components over spatio-temporal dimensions simultaneously. This complex

simulation suite (Figure 6, 7) is then tested and benchmarked on a compute node which

consists of a 16-core Intel(R) Xeon(R) CPU E5-2630 and an NVIDIA Tesla K80 GPU with

rendering enabled. As shown in table VI, average execution time per tick, which includes

complex simulation computation and rendering on the server, takes a little bit less than 200

ms. VirtualGL and TurboVNC enable simulation frames to be transmitted to the end user

with very minimal overhead. Therefore, the total time from the start of the iteration

execution to the time the simulation output frame gets completely rendered on the client

terminal can be kept under 200 ms.

V. Conclusion

We presented an efficient ABM task scheduling and management technique which optimally

utilizes both multicore CPU and many-core GPU on a single heterogeneous compute node

simultaneously. The techniques proposed showed a speedup of 35× over an optimized

sequential implementation when benchmarked with a complex biological modeling

application of vocal folds inflammation and wound healing. More importantly, the proposed

technique can be generalized to improve efficiency and performance of many complex

discrete synchronized time step simulations which can be partitioned into smaller tasks that

are either high-throughput and computationally-intensive (GPU-suitable) or more complex

but less computationally-intensive (CPU-suitable).

The model computation is then coupled with an advanced visualization component which

displays aggregated statistics and simulation state of multiple components over spatio-

temporal dimensions. To take full advantage of the powerful computational server, minimize

disk load, and enable computational steering, the program was tested and benchmarked on

the system with X11 transport via X proxy protocol configured. In-situ visualization along

with optimization using OpenGL buffer objects and base-type main plane bring the total

time to under 200 ms per iteration enabling remote real-time simulation and visualization.

VI. Future Work

While the proposed techniques resulted in a significant improvement on efficiency and

speedup of a fairly complex ABM simulation, there is still room for further optimization.

Future work includes optimization of GPU implementation on multi-device GPU chips (2D)

and high performance clusters for the 3D case. Changes in data structures to improve spatial

locality and memory access are being explored. Additional visualization functionalities such

as computational steering input user interface are being expanded to aid users in obtaining

more insightful information from the simulation.

Acknowledgment

The authors would like to thank Yun (Yvonna) Li and Alireza Najafi Yazdi for their contributions to the
development of the initial model. Sujal Bista for guidance in developing the visualization component. And
UMIACS staffs for assistance in VirtualGL and TurboVNC configuration. Research reported in this publication was
supported by National Institute of Deafness and other Communication Disorder of the National Institutes of Health
under award number R03DC012112 and R01DC005788.

Seekhao et al. Page 13

IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. Author manuscript; available in PMC 2016 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

References

[1]. Cilfone NA, Kirschner DE, Linderman JJ. Strategies for efficient numerical implementation of
hybrid multiscale agent-based models to describe biological systems. Cellular and Molecular
Bioengineering. 2014; 8(1):119–136. [PubMed: 26366228]

[2]. Nvidia, C. Remote visualization on server-class tesla gpus. 2007.

[3]. Tisue, S.; Wilensky, U. International conference on complex systems. Boston, MA: 2004. Netlogo:
A simple environment for modeling complexity; p. 16-21.

[4]. Riley, PF.; Riley, GF. Next generation modeling iii-agents: Spades—a distributed agent simulation
environment with software-in-the-loop execution. Proceedings of the 35th conference on Winter
simulation: driving innovation; Winter Simulation Conference; 2003; p. 817-825.

[5]. Luke S, Cioffi-Revilla C, Panait L, Sullivan K. Mason: A new multi-agent simulation toolkit.
Proceedings of the 2004 swarmfest workshop. 2004; 8:44.

[6]. Richmond P, Walker D, Coakley S, Romano D. High performance cellular level agent-based
simulation with flame for the gpu. Briefings in bioinformatics. 2010; 11(3):334–347. [PubMed:
20123941]

[7]. Krekhov, A.; Grüninger, J.; Schlönvoigt, R.; Krüger, J. SIGGRAPH Asia 2015 Visualization in
High Performance Computing. ACM; 2015. Towards in situ visualization of extreme-scale,
agent-based, worldwide disease-spreading simulations; p. 7

[8]. Su, Y.; Wang, Y.; Agrawal, G. In-situ bitmaps generation and efficient data analysis based on
bitmaps; Proceedings of the 24th International Symposium on High-Performance Parallel and
Distributed Computing; ACM. 2015; p. 61-72.

[9]. Bauer, AC.; Geveci, B.; Schroeder, W. The paraview catalyst user’s guide. 2013.

[10]. Ayachit, U.; Bauer, A.; Geveci, B.; O’Leary, P.; Moreland, K.; Fabian, N.; Mauldin, J. Paraview
catalyst: Enabling in situ data analysis and visualization; Proceedings of the First Workshop on In
Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization; ACM. 2015; p.
25-29.

[11]. Ahrens, J.; Jourdain, S.; O’Leary, P.; Patchett, J.; Rogers, DH.; Petersen, M. An image-based
approach to extreme scale in situ visualization and analysis; Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis; IEEE Press.
2014; p. 424-434.

[12]. Topcuoglu H, Hariri S, Wu M.-y. Performance-effective and low-complexity task scheduling for
heterogeneous computing. Parallel and Distributed Systems, IEEE Transactions on. 2002; 13(3):
260–274.

[13]. Schaller RR. Moore’s law: past, present and future. Spectrum, IEEE. 1997; 34(6):52–59.

[14]. Hammond L, Nayfeh BA, Olukotun K. A single-chip multiprocessor. Computer. 1997; (9):79–85.

[15]. Venu, B. arXiv preprint arXiv:1110.3535. 2011. Multi-core processors-an overview.

[16]. Borkar, S. Thousand core chips: a technology perspective; Proceedings of the 44th annual Design
Automation Conference; ACM. 2007; p. 746-749.

[17]. Roy, A.; Xu, J.; Chowdhury, MH. Multi-core processors: A new way forward and challenges.
Microelectronics, 2008. ICM 2008; International Conference on; IEEE. 2008; p. 454-457.

[18]. Parkhurst, J.; Darringer, J.; Grundmann, B. From single core to multi-core: preparing for a new
exponential; Proceedings of the 2006 IEEE/ACM international conference on Computer-aided
design; ACM. 2006; p. 67-72.

[19]. Wen-Mei, WH. GPU Computing Gems Emerald Edition. Elsevier; 2011.

[20]. Dagum L, Enon R. Openmp: an industry standard api for shared-memory programming.
Computational Science & Engineering, IEEE. 1998; 5(1):46–55.

[21]. Page, SE. The New Palgrave Dictionary of Economics. Palgrave MacMillan; New York: 2005.
Agent based models.

[22]. Li N, Verdolini K, Clermont G, Mi Q, Rubinstein EN, Hebda PA, Vodovotz Y. A patient-specific
in silico model of inflammation and healing tested in acute vocal fold injury. PloS one. 2008;
3(7):e2789. [PubMed: 18665229]

Seekhao et al. Page 14

IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. Author manuscript; available in PMC 2016 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[23]. Li NY, Vodovotz Y, Kim KH, Mi Q, Hebda PA, Abbott KV. Biosimulation of acute phonotrauma:
an extended model. The Laryngoscope. 2011; 121(11):2418–2428. [PubMed: 22020892]

[24]. Abbott KV, Li NY, Branski RC, Rosen CA, Grillo E, Steinhauer K, Hebda PA. Vocal exercise
may attenuate acute vocal fold inflammation. Journal of Voice. 2012; 26(6):814-e1.

[25]. Li NY, Vodovotz Y, Hebda PA, Abbott KV. Biosimulation of inflammation and healing in
surgically injured vocal folds. The Annals of otology, rhinology, and laryngology. 2010; 119(6):
412.

[26]. Bainbridge, P., et al. Wound healing and the role of fibroblasts. 2013.

[27]. Bettega D, Calzolari P, Doglia SM, Dulio B, Tallone L, Villa AM. Technical report: cell thickness
measurements by confocal fluorescence microscopy on c3h10t1/2 and v79 cells. International
journal of radiation biology. 1998; 74(3):397–403. [PubMed: 9737542]

[28]. F., RA, Jr.. Nanomedicine, Volume I: Basic Capabilities 8.5.1 cytometrics. 1999. http://
www.nanomedicine.com/NMI/8.5.1.htm

[29]. Catten M, Gray SD, Hammond TH, Zhou R, Hammond E. Analysis of cellular location and
concentration in vocal fold lamina propria. Otolaryngology-Head and Neck Surgery. 1998;
118(5):663–667. [PubMed: 9591866]

[30]. Hahn MS, Kobler JB, Zeitels SM, Langer R. Midmembranous vocal fold lamina propria
proteoglycans across selected species. Annals of Otology, Rhinology & Laryngology. 2005;
114(6):451–462.

[31]. Muñoz-Pinto D, Whittaker P, Hahn MS. Lamina propria cellularity and collagen composition: an
integrated assessment of structure in humans. Annals of Otology, Rhinology & Laryngology.
2009; 118(4):299–306.

[32]. Hahn MS, Kobler JB, Starcher BC, Zeitels SM, Langer R. Quantitative and comparative studies
of the vocal fold extracellular matrix i: elastic fibers and hyaluronic acid. Annals of Otology,
Rhinology & Laryngology. 2006; 115(2):156–164.

[33]. Hahn MS, Kobler JB, Zeitels SM, Langer R. Quantitative and comparative studies of the vocal
fold extracellular matrix ii: collagen. Annals of Otology, Rhinology & Laryngology. 2006;
115(3):225–232.

[34]. LeVeque, RJ. Finite difference methods for ordinary and partial differential equations: steady-
state and time-dependent problems. Vol. 98. Siam; 2007.

[35]. Spiros, A. Alzheimer’s In Silico diffusion of molecules. Feb. 2000 http://www.math.ubc.ca/~ais/
website/status/diffuse.html

[36]. Garland M, LeGrand S, Nickolls J, Anderson J, Hardwick J, Morton S, Phillips E, Zhang Y,
Volkov V. Parallel computing experiences with cuda. IEEE micro. 2008; (4):13–27.

[37]. Nvidia, C. Compute unified device architecture programming guide. 2014.

[38]. Project, TV. VirtualGL background. 2015. http://www.virtualgl.org/About/Background

[39]. WDC3D. 6 seamless organic textures 1. Apr. 2010 http://wdc3d.com/blog/textures/6-seamless-
organic-textures-1/

[40]. C., I.; van Waveren, JMP. Real-time normal map dxt compression. Feb. 2008 http://
www.nvidia.com/object/real-time-normal-map-dxt-compression.html

[41]. Nøttaasen, L. Beach wood texture. Oct. 2009 https://www.flickr.com/photos/magnera/
4022717270

[42]. Plain water (seamless) texture high quality. http://textures101.com/view/3551/Plain/
Plain_Water_Seamless

[43]. D’Souza, RM.; Lysenko, M.; Marino, S.; Kirschner, D. Data-parallel algorithms for agent-based
model simulation of tuberculosis on graphics processing units; Proceedings of the 2009 Spring
Simulation Multiconference; Society for Computer Simulation International. 2009; p. 21

Seekhao et al. Page 15

IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. Author manuscript; available in PMC 2016 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nanomedicine.com/NMI/8.5.1.htm
http://www.nanomedicine.com/NMI/8.5.1.htm
http://www.math.ubc.ca/~ais/website/status/diffuse.html
http://www.math.ubc.ca/~ais/website/status/diffuse.html
http://www.virtualgl.org/About/Background
http://wdc3d.com/blog/textures/6-seamless-organic-textures-1/
http://wdc3d.com/blog/textures/6-seamless-organic-textures-1/
http://www.nvidia.com/object/real-time-normal-map-dxt-compression.html
http://www.nvidia.com/object/real-time-normal-map-dxt-compression.html
http://https://www.flickr.com/photos/magnera/4022717270
http://https://www.flickr.com/photos/magnera/4022717270
http://textures101.com/view/3551/Plain/Plain_Water_Seamless
http://textures101.com/view/3551/Plain/Plain_Water_Seamless

Figure 1.
Flowchart of Vocal Fold ABM. Modified from [22].

Seekhao et al. Page 16

IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. Author manuscript; available in PMC 2016 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
A diagram depicting the proposed CPU-GPU computation overlap technique (GPU-mCPU-

overlap).

Seekhao et al. Page 17

IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. Author manuscript; available in PMC 2016 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Pseudo code demonstrating atomic move algorithm for enforcing one agent per patch rule

efficiently.

Seekhao et al. Page 18

IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. Author manuscript; available in PMC 2016 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
Diagram depicting the system configuration for In Situ remote visualization using X11

transport with an X proxy.

Seekhao et al. Page 19

IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. Author manuscript; available in PMC 2016 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5.
Performance of 2D Vocal Fold Inflammation and healing ABM on different processing

platforms.

Seekhao et al. Page 20

IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. Author manuscript; available in PMC 2016 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6.
A screenshot of a running vocal fold inflammatory and wound-healing process with

aggregated chemical statistics plots and chemical visualization on (heat map and surface

plots)1.

1Texture sources: [39], [40]

Seekhao et al. Page 21

IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. Author manuscript; available in PMC 2016 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7.
A screenshot of a running vocal fold inflammatory and wound-healing process with

aggregated chemical statistics plots and ECM visualization on2.

2Texture sources: [39]-[42]

Seekhao et al. Page 22

IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. Author manuscript; available in PMC 2016 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Seekhao et al. Page 23

Table I

Summary of Tesla C2050 and K20c Specifications

GPU Tesla K20c Tesla K80

SMs (per Device) 13 13

CUDA Cores per SM 192 192

Registers per SM 64k 64k

Configurable L1 Cache +
 Shared Memory per SM

64 kB 128 kB

L2 Cache Size 1.25 MB 1.50 MB

Global Memory (per Device) 4.7 GB 11.25 GB

Max Clock Rate 0.71 GHz 0.82 GHz

Memory Clock Rate 2.6 GHz 2.5 GHz

Memory Bandwidth 208 GB/s 240 GB/s

Compute Capability 3.5 3.7

IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. Author manuscript; available in PMC 2016 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Seekhao et al. Page 24

Table II

Summary of Agent Rules

Agent Actions

Platelets Secrete TGF, MMP8 and IL-1,β to attract
other cells.

Neutrophils Secrete TNF and MMP8 to attract other
Neutrophils and Macrophages.

Macrophages Secrete TNF, TGF, FGF, IL-1,β, IL-6,
IL-8, IL-10 to attract Neutrophils, other
Macrophages and Fibroblasts.

Clean up cell debris.

Fibroblasts Secrete TNF, TGF, FGF, IL-6, IL-8 to attract
Neutrophils, Macrophages and other Fibrob-
lasts.

Deposit ECM proteins to repair tissue dam-
age.

ECM Managers Manages ECM functions and conversion.

One Manager per patch.

IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. Author manuscript; available in PMC 2016 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Seekhao et al. Page 25

Table III

Summary of Simulation Configurations

Item Unit Size

World patches × patches 1660 × 1160

Patch μm × μm 15 × 15

patches 1.9M

Simulated area mm × mm 24.9 × 17.4

Simulated time-step minutes 30

Neutrophils cells 182.4k

Macrophages cells 22.8k

Fibroblasts cells 22.8k

IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. Author manuscript; available in PMC 2016 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Seekhao et al. Page 26

Table IV

Implementation Summary

Implementation Single-core CPU
Tasks Executed on

Multi-core CPU GPU

sCPU-sCPU Diffusion
Other functions

- -

mCPU-mCPU - Diffusion
Other functions

-

GPU-sCPU Other functions - Diffusion

GPU-mCPU - Other functions Diffusion

GPU-mCPU-
overlap

- Other functions Diffusion

IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. Author manuscript; available in PMC 2016 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Seekhao et al. Page 27

Table V

Performance Comparison of Various Implementations

Implementation Execution Time
(ms/tick)

Speedup over
Serial Execution

sCPU-sCPU 4562 1.0×

mCPU-mCPU 855 5.3×

GPU-sCPU 640 7.1×

GPU-mCPU 210 21.7×

GPU-mCPU-overlap 130 35.1×

IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. Author manuscript; available in PMC 2016 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Seekhao et al. Page 28

Table VI

Average Execution Time of Remote In Situ Simulation

Average Execution Time
(ms/tick)

Computation 142

Rendering + Image Transmission 47

Total 189

IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. Author manuscript; available in PMC 2016 August 17.

	Abstract
	I. Introduction
	II. Overview and Background
	A. Heterogeneous Computing Platform
	1) Multi-Core Central Processing Units (CPUs)
	2) Graphics Processing Units (GPUs)

	B. Programming Environment
	C. Agent-Based Modeling (ABM)
	D. Modeling of Inflammatory and Healing Process in Vocal Folds
	E. Chemical Diffusion

	III. Methodology
	A. Scheduling and Coordination of the CPU and GPU Computations
	B. Update and Synchronization
	C. In Situ Remote Visualization

	IV. Performance
	A. Computation Only
	B. Computation + Visualization

	V. Conclusion
	VI. Future Work
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Table I
	Table II
	Table III
	Table IV
	Table V
	Table VI

