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Abstract— This paper introduces an image classification
method based on the encoding of a set of covariance matrices.
This encoding relies on Fisher vectors adapted to the log-
Euclidean metric: the log-Euclidean Fisher vectors (LE FV).
This approach is next extended to full local Gaussian descriptors
composed by a set of local mean vectors and local covariance
matrices. For that, the local Gaussian model is transformed
to a zero-mean Gaussian model with an augmented covariance
matrix. All these approaches are used to encode handcrafted
or deep learning features. Finally, they are applied in a remote
sensing application on the UC Merced dataset which consists in
classifying land cover images. A sensitivity analysis is carried out
to evaluate the potential of the proposed LE FV.

Keywords— Fisher vector, vector of locally aggregated descrip-
tors, log-Euclidean metric, covariance matrices, SIFT descriptors,
deep neural network, classification.

I. INTRODUCTION

The goal of a supervised classification algorithm is to label
an image with one class name depending on its content. The
leading approaches in the beginning of the 2000s were based
on feature coding. These approaches include the bag of words
model (BoW) [1], the vector of locally aggregated descriptors
(VLAD) [2], [3] and the Fisher vectors (FV) [4], [5], [6]. All
these approaches have been successfully validated in a wide
variety of applications such as image classification [4], [7],
[8], text retrieval [9], action and face recognition [10], etc.

Since 2012, Convolutional Neural Networks (CNN) have
become a standard for image classification problems [11], [12].
Since then, in order to take advantage of both approaches
(deep neural network architecture and FV descriptors), many
authors have proposed hybrid classification algorithms which
combine them. For example, a network of fully connected
layers has been trained on the FV descriptors in [13]. The
deep Fisher network composed by stacking several FV layers
is another hybrid architecture [14]. Inspired by the VLAD
image representation, the NetVLAD has been proposed in [15]
to mimick a VLAD layer. Other approaches include the FV
or VLAD encoding of CNN features from different layers of
the network [16], [17], [18], [19].

Recently, many works are dedicated to extend the formalism
of encoding to features lying in a non-Euclidean space. This is
for example the case of covariance matrices that have already
proved their interest in many classification problems [10],

[20], [21], [22]. But, since covariance matrices are symmetric
positive definite (SPD) matrices, standard Euclidean calculus
are not adapted. The use of the geometrical information can
lead to more accurate representation of the inherent structure
of these observed covariance matrices. Since then, the Rie-
mannian geometry has become increasingly popular in the
computer vision community. When dealing with covariance
matrices, two Riemannian metrics are generally considered:
the log-Euclidean and the affine-invariant Riemannian metric.
Recently, some authors have proposed to use these metrics in
order to extend the BoW and VLAD descriptors. This yields
to the so-called log-Euclidean bag of words (LE BoW) [23],
[24], bag of Riemannian words (BoRW) [25], log-Euclidean
vector of locally aggregated descriptors (LE VLAD) [10] and
intrinsic Riemannian vector of locally aggregated descriptors
(RVLAD) [10]. Recently, we have proposed to extend the
FV descriptors to SPD features. This has involved the Log-
Euclidean Fisher vectors (LE FV) and the Riemannian Fisher
vectors (RFV) [26], [27], [28]. Although the log-Euclidean
metric do not yield full affine invariance compared to the
affine invariant Riemannian metric, it is invariant by similarity
(orthogonal transformation and scaling). These characteris-
tics allow to reduce the computation time while maintaining
comparable performance with methods based on the affine
invariant Riemannian metric. Nevertheless, all these coding
methods are only valid for covariance matrix descriptors. Here,
we propose to extend these methods to full local Gaussian
descriptors that are composed of local means and local co-
variance matrices.

The main contributions of the paper are threefold. First, we
present how FV can be used to encode a set of covariance
matrix by using the log-Euclidean metric. Next, we extend
this encoding to full local Gaussian descriptors. The proposed
approach relies on an augmented SPD matrix which repre-
sents both the local means and the covariance matrices [29],
[30], [31]. And finally, we propose an hybrid deep-learning
architecture which allows to encode CNN features with the
proposed LE FV.

The paper is structured as follows. Section II recalls the
general principle of a classification algorithm based on FV.
Section III introduces the proposed LE FV descriptor and its
adaptation to full local Gaussian descriptors. An application of



Fig. 1. Workflow of the general process : SIFT features coding for image
classification.

these descriptors to the classification of remote sensing images
is presented in Section IV. Section V introduces an hybrid
deep learning architecture based on the encoding of CNN
layers with the LE FV. And finally, Section VI synthesizes
the main conclusions of this work.

II. VLAD AND FISHER VECTORS ENCODING OF SIFT
DESCRIPTORS

In this section, we present the very conventional approach
which consists in encoding handcrafted features such as scale
invariant feature transform (SIFT) descriptors [32] with the
Fisher vectors (FV) [4], [5], [6] or with the vector of locally
aggregated descriptors (VLAD) [2]. This approach has been
successfully used in a wide variety of image processing
applications [4], [7], [8], [9], [10]. The global principle of this
approach is presented in Fig. 1. It consists in the following
steps:

1) Data splitting: At the beginning, data are separated into
two disjoints sets used respectively for training and
testing.

2) Feature extraction: An handcrafted features extraction
step is then applied, with for example SIFT descriptors.
This latter allows to obtain feature vectors invariant
to scale, rotation, translation, and partially invariant to
illumination. The SIFT algorithm is achieved through
two stages. First, a detection algorithm is applied to
detect keypoints in the image. Then, the SIFT descriptor
x is computed for each detected keypoint. In the end,
each image is represented by a set of N SIFT descriptors
xi of dimension 128.

3) Codebook creation: A codebook (also named dictionary)
is generated with the previously extracted descriptors
computed on the training set. It consists in extracting a
set of visual words which are classically obtained by a

clustering algorithms, such as k-means or expectation-
maximization (EM) algorithms. Formally, a Gaussian
mixture model (GMM) is assumed to model the set
(x1, x2, . . . , xT ) ∈ RT×d of d-dimensional local
features extracted from the training images (with d =
128 for the SIFT descriptors). The probability density
function of the GMM model is given by:

p(xt|λ) =

K∑
i=1

ωkpk(xt|λ), (1)

where, for each cluster k:

pk(xt|λ) =
exp{− 1

2 (xt − µk)TΣ−1k (xt − µk)}
(2π)d/2|Σk|1/2

, (2)

where (·)T is the transpose operator, | · | is the deter-
minant, ωk ∈ (0, 1), µk ∈ Rd, Σk ∈ Pd the space of
d× d symmetric positive definite matrices. In addition,
the covariance matrix is assumed to be diagonal, i.e.
σ2
k = diag(Σk) ∈ Rd is the variance vector. For a GMM

model, a k-means or EM algorithm can be employed
to estimate the parameters of each mixture component
(µk, σ2

k and ωk). These elements represent a codeword
and the set composed by the K codewords gives the
codebook. The k-means (resp. the EM) algorithm is used
when the SIFT features are encoded with the VLAD
(resp. the FV) descriptors.

4) Fisher vector and VLAD encoding: Let X =
(x1, x2, . . . , xN ) be a set of d-dimensional vectors
extracted form an image. The FV or VLAD encoding
consists in projecting these descriptors in the previously
learned codebook.
The FV descriptor associated to X is obtained as the
gradient of the sample log-likelihood with respect to the
parameters of the GMM model, scaled by the inverse
square root of the Fisher information matrix (FIM) Fλ:

G X
λ = F

− 1
2

λ ∇λ log p(X |λ). (3)

Next, by deriving with respect to the mean, the disper-
sion or the weight parameters, the following three FV
are obtained:

G X
µd
k

=
1
√
ωk

N∑
n=1

γk(xn)

(
xdn − µdk
σdk

)
, (4)

G X
σd
k

=
1√
2ωk

N∑
n=1

γk(xn)

([
xdn − µdk

]2(
σdk
)2 − 1

)
, (5)

G X
ωk

=
1
√
ωk

N∑
n=1

(
γk(xn)− ωk

)
, (6)

where µdk (resp. σdk) is the dth element of vector µk
(resp. σk) and γk(xn) is the occupancy probability of
xn to the k-th Gaussian component, also named the
posterior probability, and is defined as:

γk(xn) =
ωkpk(xn|λk)∑K
j=1 ωjpj(xn|λj)

. (7)



In the following, only the two gradients with respect to
the mean µdk and standard deviation σdk are considered
since the state-of-the-art in computer vision have shown
that the best results are obtained with these FV [4], [5],
[6].
The VLAD descriptor has been introduced in [2] in a
similar spirit to the FV. It can be interpreted as an hard
version of the FV where only the derivative with respect
to the mean is considered in (3). The homoscedasticity
assumption should also be made i.e. σk = σ. To
summarize, the VLAD encoding of X is obtained as
the concatenation of vectors vk:

VLAD = [vT1 , . . . ,v
T
K ], (8)

where, for each atom of the codebook, the vector vk
contains the sum of differences between the codeword
and the feature samples assigned to it:

vk =
∑

xn∈ck

xn − µk. (9)

Once the FV or VLAD descriptors are computed, a post-
processing step is classically employed to improve the
classification performance [5], [8]. It consists on a power
and an `2 normalization.

5) Dimension reduction: Since the dimensionality of the
feature space (FV or VLAD descriptors) can be high, a
dimension reduction step can be considered to avoid the
curse of dimensionality phenomenon. For that, different
unsupervised or supervised dimension reduction tech-
niques can be employed such as principal component
analysis (PCA), linear discriminant analysis (LDA), Ker-
nel discriminant analysis (KDA) to cite a few of them.

6) Classification: This final step consists on making a deci-
sion for each test image based on information contained
in their vector representation (FV or VLAD). In practice,
various classifiers can be employed such as k-nearest
neighbors, support vector machine (SVM) or random
forest.

III. LOG-EUCLIDEAN FISHER VECTORS FOR COVARIANCE
MATRICES ENCODING

The objective of this section is to explain how the clas-
sification algorithm detailed in Section II can be adapted to
local covariance matrix descriptors. Indeed, since covariance
matrices are positive definite matrices, conventional tools
developed in the Euclidean space are not well adapted to these
observations. The characteristics of the Riemannian geometry
of the space Pd of d×d symmetric and positive definite (SPD)
matrices should be considered in order to obtain appropriate
algorithms. Here, we address this point by considering the
log-Euclidean metric.

A. Log-Euclidean Fisher Vectors (LE FV)

First, the covariance matrices of handcrafted features (such
as SIFT descriptors calculated on a regular grid) are computed

on a sliding window. It yields that each image is repre-
sented by a set M = {Mn}n=1:N of covariance matrices
Mn ∈ Pd. Employing the log-Euclidean metric to analyze
these covariance matrices is equivalent to use the Euclidean
metric on the log-Euclidean space. For that, each covariance
matrix Mn is first mapped on the log-Euclidean space by
applying the matrix logarithm MLE

n = logMn [24], [33],
[34]. Next, a vectorization operator is applied to obtain the
log-Euclidean vector representation. To summarize, the log-
Euclidean vector representation of an SPD matrix M is the
vector m ∈ R

d(d+1)
2 defined as m = Vec(log(M)) where

Vec is the vectorization operator defined as:

Vec(X) =
[
X11,

√
2X12, . . . ,

√
2X1m, X22,

√
2X23, . . . , Xmm

]
,

(10)
with Xij the elements of X. Now that SPD matrices are
mapped on the log-Euclidean metric space, all the algorithms
developed on the Euclidean space can be employed, in particu-
lar the FV and VLAD encoding which yield respectively to the
so-called log-Euclidean FV (LE FV) [27] and log-Euclidean
VLAD (LE VLAD) [10] descriptors.

Note that since dense SIFT descriptors may contain redun-
dant information, the covariance matrices of these descriptors
will not be well conditioned. To circumvent this and in
order to reduce the dimension of the log-Euclidean vector
representation m, a dimension reduction step such as PCA
is applied on the handcrafted features as a pre-processing
step. This step allows also to better fit the diagonal covariance
matrix assumption made in Section II when deriving the FV,
i.e. σ2

k = diag(Σk). In the following, NPCA will refer to the
number of retained principal components.

B. LE FV for full local Gaussian descriptors

In the previous subsection, only the local covariance matrix
descriptor has been considered. In a full local Gaussian
descriptor, the local mean vector can be jointly exploited with
the local covariance matrix in order to increase the image
representation within the classification task. Based on the
works of [29], the local Gaussian model can be transformed to
a zero-mean Gaussian model with an augmented SPD matrix
of dimension (d+ 1)× (d+ 1) given by:

Maugmented = |M|−
1

d+1

[
M + µµT µ

µT 1

]
. (11)

This approach has been successfully validated by many authors
for image classification tasks [30], [31]. Now that local mean
and covariance matrix are embedded in a larger SPD matrix,
the LE FV and LE VLAD descriptors can be computed for
full local Gaussian descriptors by following the same strategy
as the one described in Section III.

IV. APPLICATION TO REMOTE SENSING IMAGE
CLASSIFICATION

This section introduces an application to remote sensing
image classification. For that, the UC Merced land use land



Fig. 2. Classification accuracy for the FV and VLAD encoding methods.

cover dataset is considered [35]. It contains 21 land cover
classes such as beach, golf course, harbor with 100 color
images per class of dimension 256× 256 pixels with a spatial
resolution of 1 foot. The aim of the following experiments is
to compare the different classification methods presented in
Sections II and III.

In the following, a linear SVM classifier is considered for
the final step in Fig. 1. The performance is evaluated in term of
overall accuracy where half of the database is used for training
while the remaining half is used for testing.

A. Comparison between FV and VLAD encoding

Fig. 2 draws the evolution of classification accuracy for the
FV (in blue) and VLAD (in red) based encoding methods as
a function of the proportion of training samples for K = 30.
In addition, three versions of FV descriptors are considered,
i.e. by considering separately the derivative with respect to
the mean µdk, the dispersion σdk or by fusing them, noted
respectively FV (µ), FV (σ) and FV (µ+σ). One can observe
that best performances are obtained for the VLAD and FV
(when both derivatives are considered) descriptors with a
similar behavior. In the following, only FV descriptor will be
used.

B. Comparison between FV and LE FV

The purpose of this second experiment is to illustrate the
potential of the proposed LE FV descriptor. For that, Fig. 3
draws the evolution of the classification accuracy for the FV
(in blue) and the LE FV (in red). As observed, the best results
are observed for the proposed LE FV illustrating the interest of
local covariance matrix descriptor. A significant gain of about
6% if observed for the LE FV compared to FV. Note also that
it does not require a large codebook, performances are quite
stable with the codebook dimension.

In Fig. 4, we evaluate the influence of the number of
retained principal components NPCA in the pre-processing
step for K = 30. As observed, the dimension reduction greatly
impacts the classification accuracy. It is hence necessary to
find an optimal trade-off between performance and resources

Fig. 3. Influence of the codebook dimension on the FV and LE FV
classification accuracy.

Fig. 4. Influence of the number of retained principal components on
classification accuracy for LE FV.

Table 1. Comparison between FV and LE FV descriptors for K = 30 and
NPCA = 20

Descriptor Overall accuracy ± standard deviation
FV [4] 75.5 ± 1.3%
LE FV 79.4 ± 1.3%

LE FV augmented 80.1 ± 1.2%

consumption in terms of computational time and memory
space.

As explained in Section III-B, the local mean vector can be
exploited jointly with the local covariance matrix to form an
augmented SPD matrix. In order to evaluate the interest of this
approach, Table 1 summarizes the classification performance
obtained on the UC Merced dataset for the FV, LE FV and
LE FV computed on the augmented SPD matrices for K = 30
and NPCA = 20. As observed the best classification result
is obtained with these augmented descriptors illustrating the
interest of a full local Gaussian descriptor.

V. LOG-EUCLIDEAN FISHER VECTORS IN AN HYBRID
DEEP LEARNING ARCHITECTURE

A. FV encoding of CNN features

Now that the interest of the proposed LE FV has been
observed for the classification of handcrafted features such



Fig. 5. LE FV encoding for CNN features

Table 2. Classification results for the first and second convolutional layers
of vgg-verydeep-16 model

Descriptor Conv 1 Conv 2
FV [4] 58.2 ± 0.7% 62.5 ± 1.2%
LE FV 70.3 ± 1.0% 87.7 ± 0.7%

LE FV augmented 66.3 ± 1.1% 84.8 ± 0.2%

as SIFT, an application to deep learning is introduced. Con-
volutional Neural Networks (CNNs) have proven to be very
effective in many image processing applications such as clas-
sification, segmentation and synthesis. Recently, some hybrid
architectures have been proposed to combine FV and CNN in
order to benefit from both approaches. For example, in [19],
Li et al. have proposed an hybrid architecture which extract
FV computed on the ouput of different convolutional layers
of a pre-trained neural network. This strategy has shown
competitive results for remote sensing image classification.
The main idea consists in using multi-layer features of a pre-
trained CNN model. Once the features are extracted, improved
FV encoding is applied to generate features vectors. Those
vectors are then fused with features of fully-connected layers
to represent the mid-level feature vectors of a scene image.
Finally, a linear SVM classifier is applied for classification
purpose.

Inspired by this approach, we propose to encode the out-
put of the convolutional layers with the LE FV defined in
Section III. Fig. 5 introduces the workflow of this proposed
approach for a single convolutionnal layer. As a preliminary
approach, we propose to encode only the first and second
layers of a CNN. Indeed, for the deepest layers, the spatial
dimension of the output are too small to extract a set of
covariance matrices. The LE FV encoding can hence only be
done for the first layers. Table 2 synthesizes the classification
results obtained on the first (Conv 1) and second (Conv
2) layers of the vgg-verydeep-16 model [36]. As observed,
a gain is recorded for the proposed LE FV compared to
the conventional FV approach. This is in agreement with
the previous experiment on SIFT features where a similar
conclusion has been done when encoding handcrafted features.
Nevertheless, note that for this approach, the exploitation
of the mean vector in the augmented SPD matrix (LE FV
augmented) seems useless.

B. Global hybrid deep learning architecture

Now that LE FV have shown promising results to encode
the first layers of a CNN. We propose an hybrid architecture

Table 3. Classification comparison between the two approaches comprising
the LE FV encoding

Descriptor Overall accuracy ± standard deviation
SIFT 79.4 ± 1.3%
CNN 94.4 ± 0.1%

which combines these LE FV with FV computed on the last
layers of the CNN. The general framework is described in
Fig. 6. Table 3 summarizes the classification results obtained
for the LE FV encoding of SIFT and CNN descriptors.

As observed on this experiment on the UC Merced database,
the combination of LE FV computed on the first two layers
and FV computed on the last five CNN layers as shown in
Fig. 6 allows to improve the classification performance (94.4
± 0.1%) and exceeds the classification results obtained with
the SIFT descriptors (79.4 ± 1.3%). A significant gain of 15%
is observed.

VI. CONCLUSION

In this paper, an image classification algorithm has been
introduced. It consists in encoding a set of local covariance
matrices with Fisher vectors (FV) derived with the log-
Euclidean metric: the log-Euclidean Fisher vectors (LE FV).
An extension of this method to full local Gaussian descriptors
has been proposed. It consists in computing the LE FV on
augmented symmetric positive definite matrices gathering both
the local mean vectors and local covariance matrices. The
experiment on the UC Merced land use land cover dataset
have shown the potential of the proposed approach compared
to FV for the encoding of handcrafted features (such as SIFT)
or convolutional neural networks features.
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